1
|
Patané JSL, Martins J, Setubal JC. A Guide to Phylogenomic Inference. Methods Mol Biol 2024; 2802:267-345. [PMID: 38819564 DOI: 10.1007/978-1-0716-3838-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. Phylogenomics has significant applications in fields such as evolutionary biology, systematics, comparative genomics, and conservation genetics, providing valuable insights into the origins and relationships of species and contributing to our understanding of biological diversity and evolution. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração/Heart Institute Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo São Paulo, São Paulo, SP, Brazil
| | - Joaquim Martins
- Integrative Omics group, Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - João Carlos Setubal
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
3
|
Marzullo A, Vitelli E, Cazzato G, Fanelli M, Ingravallo G, Vimercati A, Rossi R, Resta L. Placental Angiodysplasia: A New Sign for Prediction of Fetal Outcome? J Clin Med 2023; 12:3835. [PMID: 37298030 PMCID: PMC10253983 DOI: 10.3390/jcm12113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The study of the placenta is of great importance, not only in the attempt to understand the etiopathogenesis of various maternal-fetal pathologies, but also in the attempt to understand whether it is possible to find the cause of pathological neonatal outcomes. On the other hand, abnormalities of blood vessel formation, such as angiodysplasias, have been poorly characterised in the literature, and there is a need for more studies investigating the potential impact on the fetus. In this paper, we retrospectively analysed 2063 placentas received at the Department of Pathology of the University of Bari 'Aldo Moro', among which we identified 70 placentas affected by angiodysplasia. On these placentas, we carried out histochemical staining with Masson's Trichrome, orcein-alcian blue, and, subsequently, immunostaining with anti-CD31, CD34, and desmin and actin muscle smoothness antibodies. Finally, we performed a morphometric analysis on the allantochorionic and truncal vessels and correlated the results with neonatal outcomes. We studied the characteristics of the angiodysplasias in detail, dividing the patients into two classes (A and B) according to the morphology and histochemical characteristics of the affected vessels; statistical analysis reported a statistically significant association (p < 0.05) between the ratio of maximum thickness to maximum diameter (Tmax/Dmax) and neonatal outcome, with only 30% physiological outcome in the cohort of the placentas affected by angiodysplasia. These results shed light on a rather neglected aspect in the 2015 Amsterdam Classification, as well as in the literature, and provided strong evidence that placental angiodysplasia is predictive of an increased likelihood of the pathological fetal outcome, while other factors remain in the field. Studies with larger case series and guidelines with more attention to these aspects are mandated to further investigate the predictive potential of this pathology.
Collapse
Affiliation(s)
- Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| | - Emmanuela Vitelli
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| | - Margherita Fanelli
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| | - Antonella Vimercati
- Section of Gynaecology and Obstetrics, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Roberta Rossi
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| | - Leonardo Resta
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.); (E.V.); (M.F.); (R.R.)
| |
Collapse
|
4
|
Phenotyping in the era of genomics: MaTrics—a digital character matrix to document mammalian phenotypic traits. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA new and uniquely structured matrix of mammalian phenotypes, MaTrics (Mammalian Traits for Comparative Genomics) in a digital form is presented. By focussing on mammalian species for which genome assemblies are available, MaTrics provides an interface between mammalogy and comparative genomics.MaTrics was developed within a project aimed to find genetic causes of phenotypic traits of mammals using Forward Genomics. This approach requires genomes and comprehensive and recorded information on homologous phenotypes that are coded as discrete categories in a matrix. MaTrics is an evolving online resource providing information on phenotypic traits in numeric code; traits are coded either as absent/present or with several states as multistate. The state record for each species is linked to at least one reference (e.g., literature, photographs, histological sections, CT scans, or museum specimens) and so MaTrics contributes to digitalization of museum collections. Currently, MaTrics covers 147 mammalian species and includes 231 characters related to structure, morphology, physiology, ecology, and ethology and available in a machine actionable NEXUS-format*. Filling MaTrics revealed substantial knowledge gaps, highlighting the need for phenotyping efforts. Studies based on selected data from MaTrics and using Forward Genomics identified associations between genes and certain phenotypes ranging from lifestyles (e.g., aquatic) to dietary specializations (e.g., herbivory, carnivory). These findings motivate the expansion of phenotyping in MaTrics by filling research gaps and by adding taxa and traits. Only databases like MaTrics will provide machine actionable information on phenotypic traits, an important limitation to genomics. MaTrics is available within the data repository Morph·D·Base (www.morphdbase.de).
Collapse
|
5
|
Asher RJ, Smith MR. Phylogenetic Signal and Bias in Paleontology. Syst Biol 2021; 71:986-1008. [PMID: 34469583 PMCID: PMC9248965 DOI: 10.1093/sysbio/syab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
An unprecedented amount of evidence now illuminates the phylogeny of living mammals and birds on the Tree of Life. We use this tree to measure phylogenetic value of data typically used in paleontology (bones and teeth) from six datasets derived from five published studies. We ask three interrelated questions: 1) Can these data adequately reconstruct known parts of the Tree of Life? 2) Is accuracy generally similar for studies using morphology, or do some morphological datasets perform better than others? 3) Does the loss of non-fossilizable data cause taxa to occur in misleadingly basal positions? Adding morphology to DNA datasets usually increases congruence of resulting topologies to the well corroborated tree, but this varies among morphological datasets. Extant taxa with a high proportion of missing morphological characters can greatly reduce phylogenetic resolution when analyzed together with fossils. Attempts to ameliorate this by deleting extant taxa missing morphology are prone to decreased accuracy due to long-branch artefacts. We find no evidence that fossilization causes extinct taxa to incorrectly appear at or near topologically basal branches. Morphology comprises the evidence held in common by living taxa and fossils, and phylogenetic analysis of fossils greatly benefits from inclusion of molecular and morphological data sampled for living taxa, whatever methods are used for phylogeny estimation.
Collapse
Affiliation(s)
- Robert J Asher
- Department of Zoology, Downing St., University of Cambridge CB2 3EJ, UK
| | - Martin R Smith
- Department of Earth Sciences, Lower Mount Joy, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
6
|
Lv X, Hu J, Hu Y, Li Y, Xu D, Ryder OA, Irwin DM, Yu L. Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships. Mol Phylogenet Evol 2020; 157:107065. [PMID: 33387649 DOI: 10.1016/j.ympev.2020.107065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Resolving the interordinal relationships in the mammalian superorder Laurasiatheria has been among the most intractable problems in higher-level mammalian systematics, with many conflicting hypotheses having been proposed. The present study collected three different sources of genome-scale data with comprehensive taxon sampling of laurasiatherian species, including two protein-coding datasets (4,186 protein-coding genes for an amino acid dataset comprising 2,761,247 amino acid residues and a nucleotide dataset comprising 5,516,340 nucleotides from 1st and 2nd codon positions), an intronic dataset (1,210 introns comprising 1,162,723 nucleotides) and an ultraconserved elements (UCEs) dataset (1,246 UCEs comprising 1,946,472 nucleotides) from 40 species representing all six laurasiatherian orders and 7 non-laurasiatherian outgroups. Remarkably, phylogenetic trees reconstructed with the four datasets using different tree-building methods (RAxML, FastTree, ASTRAL and MP-EST) all supported the relationship (Eulipotyphla, (Chiroptera, ((Carnivora, Pholidota), (Cetartiodactyla, Perissodactyla)))). We find a resolution of interordinal relationships of Laurasiatheria among all types of markers used in the present study, and the likelihood ratio tests for tree comparisons confirmed that the present tree topology is the optimal hypothesis compared to other examined hypotheses. Jackknifing subsampling analyses demonstrate that the results of laurasiatherian tree reconstruction varied with the number of loci and ordinal representatives used, which are likely the two main contributors to phylogenetic disagreements of Laurasiatheria seen in previous studies. Our study provides significant insight into laurasiatherian evolution, and moreover, an important methodological strategy and reference for resolving phylogenies of adaptive radiation, which have been a long-standing challenge in the field of phylogenetics.
Collapse
Affiliation(s)
- Xue Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yiwen Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Yitian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Dongming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
7
|
Celik MA, Phillips MJ. Conflict Resolution for Mesozoic Mammals: Reconciling Phylogenetic Incongruence Among Anatomical Regions. Front Genet 2020; 11:0651. [PMID: 32774343 PMCID: PMC7381353 DOI: 10.3389/fgene.2020.00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
The evolutionary history of Mesozoic mammaliaformes is well studied. Although the backbone of their phylogeny is well resolved, the placement of ecologically specialized groups has remained uncertain. Functional and developmental covariation has long been identified as an important source of phylogenetic error, yet combining incongruent morphological characters altogether is currently a common practice when reconstructing phylogenetic relationships. Ignoring incongruence may inflate the confidence in reconstructing relationships, particularly for the placement of highly derived and ecologically specialized taxa, such as among australosphenidans (particularly, crown monotremes), haramiyidans, and multituberculates. The alternative placement of these highly derived clades can alter the taxonomic constituency and temporal origin of the mammalian crown group. Based on prior hypotheses and correlated homoplasy analyses, we identified cheek teeth and shoulder girdle character complexes as having a high potential to introduce phylogenetic error. We showed that incongruence among mandibulodental, cranial, and postcranial anatomical partitions for the placement of the australosphenidans, haramiyids, and multituberculates could largely be explained by apparently non-phylogenetic covariance from cheek teeth and shoulder girdle characters. Excluding these character complexes brought agreement between anatomical regions and improved the confidence in tree topology. These results emphasize the importance of considering and ameliorating major sources of bias in morphological data, and we anticipate that these will be valuable for confidently integrating morphological and molecular data in phylogenetic and dating analyses.
Collapse
Affiliation(s)
- Mélina A. Celik
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Matthew J. Phillips
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Heckeberg NS. The systematics of the Cervidae: a total evidence approach. PeerJ 2020; 8:e8114. [PMID: 32110477 PMCID: PMC7034380 DOI: 10.7717/peerj.8114] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022] Open
Abstract
Systematic relationships of cervids have been controversial for decades. Despite new input from molecular systematics, consensus could only be partially reached. The initial, gross (sub) classification based on morphology and comparative anatomy was mostly supported by molecular data. The rich fossil record of cervids has never been extensively tested in phylogenetic frameworks concerning potential systematic relationships of fossil cervids to extant cervids. The aim of this work was to investigate the systematic relationships of extant and fossil cervids using molecular and morphological characters and make implications about their evolutionary history based on the phylogenetic reconstructions. To achieve these objectives, molecular data were compiled consisting of five nuclear markers and the complete mitochondrial genome of 50 extant and one fossil cervids. Several analyses using different data partitions, taxon sampling, partitioning schemes, and optimality criteria were undertaken. In addition, the most extensive morphological character matrix for such a broad cervid taxon sampling was compiled including 168 cranial and dental characters of 41 extant and 29 fossil cervids. The morphological and molecular data were analysed in a combined approach and other comprehensive phylogenetic reconstructions. The results showed that most Miocene cervids were more closely related to each other than to any other cervids. They were often positioned between the outgroup and all other cervids or as the sister taxon to Muntiacini. Two Miocene cervids were frequently placed within Muntiacini. Plio- and Pleistocene cervids could often be affiliated to Cervini, Odocoileini or Capreolini. The phylogenetic analyses provide new insights into the evolutionary history of cervids. Several fossil cervids could be successfully related to living representatives, confirming previously assumed affiliations based on comparative morphology and introducing new hypotheses. New systematic relationships were observed, some uncertainties persisted and resolving systematics within certain taxa remained challenging.
Collapse
Affiliation(s)
- Nicola S. Heckeberg
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Berlin, Germany
| |
Collapse
|
9
|
Beck RMD, Baillie C. Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc Biol Sci 2018; 285:20181632. [PMID: 30963896 PMCID: PMC6304057 DOI: 10.1098/rspb.2018.1632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/23/2018] [Indexed: 01/16/2023] Open
Abstract
Phylogenies of mammals based on morphological data continue to show several major areas of conflict with the current consensus view of their relationships, which is based largely on molecular data. This raises doubts as to whether current morphological character sets are able to accurately resolve mammal relationships. We tested this under a hypothetical 'best case scenario' by using ancestral state reconstruction (under both maximum parsimony and maximum likelihood) to infer the morphologies of fossil ancestors for all clades present in a recent comprehensive DNA sequence-based phylogeny of mammals, and then seeing what effect the subsequent inclusion of these predicted ancestors had on unconstrained phylogenetic analyses of morphological data. We found that this resulted in topologies that are highly congruent with the current consensus phylogeny, at least when the predicted ancestors are assumed to be well preserved and densely sampled. Most strikingly, several analyses recovered the monophyly of clades that have never been found in previous morphology-only studies, such as Afrotheria and Laurasiatheria. Our results suggest that, at least in principle, improvements in the fossil record-specifically the discovery of fossil taxa that preserve the ancestral or near-ancestral morphologies of the nodes in the current consensus-may be sufficient to largely reconcile morphological and molecular estimates of mammal phylogeny, even using current morphological character sets.
Collapse
Affiliation(s)
- Robin M. D. Beck
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Charles Baillie
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
10
|
Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018; 72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Lia Humeniuk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Nikita Kozlov
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Sophie Roigas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Susan Adel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine, Division of Hepathology and Gastroenterology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
11
|
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. The abundance of genomic data for an enormous variety of organisms has enabled phylogenomic inference of many groups, and this has motivated the development of many computer programs implementing the associated methods. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - João C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
12
|
Halliday TJD, Upchurch P, Goswami A. Resolving the relationships of Paleocene placental mammals. Biol Rev Camb Philos Soc 2017; 92:521-550. [PMID: 28075073 PMCID: PMC6849585 DOI: 10.1111/brv.12242] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023]
Abstract
The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.
Collapse
Affiliation(s)
- Thomas J. D. Halliday
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Paul Upchurch
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Anjali Goswami
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| |
Collapse
|
13
|
Foley NM, Springer MS, Teeling EC. Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150140. [PMID: 27325836 PMCID: PMC4920340 DOI: 10.1098/rstb.2015.0140] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Most molecular phylogenetic studies place all placental mammals into four superordinal groups, Laurasiatheria (e.g. dogs, bats, whales), Euarchontoglires (e.g. humans, rodents, colugos), Xenarthra (e.g. armadillos, anteaters) and Afrotheria (e.g. elephants, sea cows, tenrecs), and estimate that these clades last shared a common ancestor 90-110 million years ago. This phylogeny has provided a framework for numerous functional and comparative studies. Despite the high level of congruence among most molecular studies, questions still remain regarding the position and divergence time of the root of placental mammals, and certain 'hard nodes' such as the Laurasiatheria polytomy and Paenungulata that seem impossible to resolve. Here, we explore recent consensus and conflict among mammalian phylogenetic studies and explore the reasons for the remaining conflicts. The question of whether the mammal tree of life is or can be ever resolved is also addressed.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Nicole M Foley
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| | - Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
14
|
Brocklehurst RJ, Crumpton N, Button E, Asher RJ. Jaw anatomy of Potamogale velox (Tenrecidae, Afrotheria) with a focus on cranial arteries and the coronoid canal in mammals. PeerJ 2016; 4:e1906. [PMID: 27114870 PMCID: PMC4841219 DOI: 10.7717/peerj.1906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Afrotheria is a strongly supported clade within placental mammals, but morphological synapomorphies for the entire group have only recently come to light. Soft tissue characters represent an underutilized source of data for phylogenetic analysis, but nonetheless provide features shared by some or all members of Afrotheria. Here, we investigate the developmental anatomy of Potamogale velox (Tenrecidae) with histological and computerized tomographic data at different ontogenetic ages, combined with osteological data from other mammals, to investigate patterns of cranial arterial supply and the distribution of the coronoid canal. Potamogale is atypical among placental mammals in exhibiting a small superior stapedial artery, a primary supply of the posterior auricular by the posterior stapedial artery, and the development of vascular plexuses (possibly with relevance for heat exchange) in the posterior and dorsal regions of its neck. In addition, the posterior aspect of Meckel's cartilage increases its medial deflection in larger embryonic specimens as the mandibular condyle extends mediolaterally during embryogenesis. We also map the distribution of the coronoid canal across mammals, and discuss potential confusion of this feature with alveoli of the posterior teeth. The widespread distribution of the coronoid canal among living and fossil proboscideans, sirenians, and hyracoids supports previous interpretations that a patent coronoid canal is a synapomorphy of paenungulates, but not afrotherians as a whole.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Nick Crumpton
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Research Department of Cell & Developmental Biology, University College London, United Kingdom
| | - Evie Button
- Department of Zoology, University of Cambridge , Cambridge , United Kingdom
| | - Robert J Asher
- Department of Zoology, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
15
|
Mounce RCP, Sansom R, Wills MA. Sampling diverse characters improves phylogenies: Craniodental and postcranial characters of vertebrates often imply different trees. Evolution 2016; 70:666-86. [PMID: 26899622 DOI: 10.1111/evo.12884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022]
Abstract
Morphological cladograms of vertebrates are often inferred from greater numbers of characters describing the skull and teeth than from postcranial characters. This is either because the skull is believed to yield characters with a stronger phylogenetic signal (i.e., contain less homoplasy), because morphological variation therein is more readily atomized, or because craniodental material is more widely available (particularly in the palaeontological case). An analysis of 85 vertebrate datasets published between 2000 and 2013 confirms that craniodental characters are significantly more numerous than postcranial characters, but finds no evidence that levels of homoplasy differ in the two partitions. However, a new partition test, based on tree-to-tree distances (as measured by the Robinson Foulds metric) rather than tree length, reveals that relationships inferred from the partitions are significantly different about one time in three, much more often than expected. Such differences may reflect divergent selective pressures in different body regions, resulting in different localized patterns of homoplasy. Most systematists attempt to sample characters broadly across body regions, but this is not always possible. We conclude that trees inferred largely from either craniodental or postcranial characters in isolation may differ significantly from those that would result from a more holistic approach. We urge the latter.
Collapse
Affiliation(s)
- Ross C P Mounce
- The Milner Centre for Evolution, Department of Biology and Biochemistry, The University of Bath, The Avenue, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Robert Sansom
- Department of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Matthew A Wills
- The Milner Centre for Evolution, Department of Biology and Biochemistry, The University of Bath, The Avenue, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
16
|
Tarver JE, Dos Reis M, Mirarab S, Moran RJ, Parker S, O'Reilly JE, King BL, O'Connell MJ, Asher RJ, Warnow T, Peterson KJ, Donoghue PCJ, Pisani D. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biol Evol 2016; 8:330-44. [PMID: 26733575 PMCID: PMC4779606 DOI: 10.1093/gbe/evv261] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean.
Collapse
Affiliation(s)
- James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Ireland School of Earth Sciences, University of Bristol, United Kingdom
| | - Mario Dos Reis
- Department of Genetics, Evolution and Environment, University College London, United Kingdom School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Siavash Mirarab
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego
| | - Raymond J Moran
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Sean Parker
- School of Earth Sciences, University of Bristol, United Kingdom
| | | | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Robert J Asher
- Museum of Zoology, University of Cambridge, United Kingdom
| | - Tandy Warnow
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, United Kingdom School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
17
|
Backus TC, Solounias N, Mihlbachler MC. The Brachial Plexus of the Sumatran Rhino (Dicerorhinus sumatrensis) and Application of Brachial Plexus Anatomy Toward Mammal Phylogeny. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9297-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Averianov AO, Lopatin AV. High-level systematics of placental mammals: Current status of the problem. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014090039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Geiger M, Forasiepi AM, Koyabu D, Sánchez-Villagra MR. Heterochrony and post-natal growth in mammals - an examination of growth plates in limbs. J Evol Biol 2013; 27:98-115. [DOI: 10.1111/jeb.12279] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/14/2013] [Indexed: 12/01/2022]
Affiliation(s)
- M. Geiger
- Paläontologisches Institut und Museum der Universität Zürich; Zürich Switzerland
| | | | - D. Koyabu
- University Museum; University of Tokyo; Tokyo Japan
| | | |
Collapse
|
20
|
Helgen KM, Pinto CM, Kays R, Helgen LE, Tsuchiya MTN, Quinn A, Wilson DE, Maldonado JE. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. Zookeys 2013; 324:1-83. [PMID: 24003317 PMCID: PMC3760134 DOI: 10.3897/zookeys.324.5827] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022] Open
Abstract
We present the first comprehensive taxonomic revision and review the biology of the olingos, the endemic Neotropical procyonid genus Bassaricyon, based on most specimens available in museums, and with data derived from anatomy, morphometrics, mitochondrial and nuclear DNA, field observations, and geographic range modeling. Species of Bassaricyon are primarily forest-living, arboreal, nocturnal, frugivorous, and solitary, and have one young at a time. We demonstrate that four olingo species can be recognized, including a Central American species (Bassaricyon gabbii), lowland species with eastern, cis-Andean (Bassaricyon alleni) and western, trans-Andean (Bassaricyon medius) distributions, and a species endemic to cloud forests in the Andes. The oldest evolutionary divergence in the genus is between this last species, endemic to the Andes of Colombia and Ecuador, and all other species, which occur in lower elevation habitats. Surprisingly, this Andean endemic species, which we call the Olinguito, has never been previously described; it represents a new species in the order Carnivora and is the smallest living member of the family Procyonidae. We report on the biology of this new species based on information from museum specimens, niche modeling, and fieldwork in western Ecuador, and describe four Olinguito subspecies based on morphological distinctions across different regions of the Northern Andes.
Collapse
Affiliation(s)
- Kristofer M. Helgen
- Division of Mammals, National Museum of Natural History, NHB 390, MRC 108, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
| | - C. Miguel Pinto
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Quito, Ecuador
- Department of Mammalogy, and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- The Graduate Center, City University of New York, 365 Fifth Ave., New York, NY, 10016 USA
- Department of Biological Sciences and the Museum, Texas Tech University, Lubbock, Texas 79409-3131, USA
| | - Roland Kays
- North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC, 27601, USA
- Fisheries, Wildlife & Conservation Program, North Carolina State University, Raleigh, NC, 27695, USA
- Smithsonian Tropical Research Institute, Balboa Ancón, Republic of Panamá
| | - Lauren E. Helgen
- Division of Mammals, National Museum of Natural History, NHB 390, MRC 108, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
| | - Mirian T. N. Tsuchiya
- Division of Mammals, National Museum of Natural History, NHB 390, MRC 108, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
- Department of Environmental Science & Policy, George Mason University, Fairfax, VA, 22030 USA
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Aleta Quinn
- Division of Mammals, National Museum of Natural History, NHB 390, MRC 108, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
- Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Don E. Wilson
- Division of Mammals, National Museum of Natural History, NHB 390, MRC 108, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
| | - Jesús E. Maldonado
- Division of Mammals, National Museum of Natural History, NHB 390, MRC 108, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| |
Collapse
|
21
|
Hu JY, Zhang YP, Yu L. Summary of Laurasiatheria (mammalia) phylogeny. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:E65-74. [PMID: 23266984 DOI: 10.3724/sp.j.1141.2012.e05-06e65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laurasiatheria is one of the richest and most diverse superorders of placental mammals. Because this group had a rapid evolutionary radiation, the phylogenetic relationships among the six orders of Laurasiatheria remain a subject of heated debate and several issues related to its phylogeny remain open. Reconstructing the true phylogenetic relationships of Laurasiatheria is a significant case study in evolutionary biology due to the diversity of this suborder and such research will have significant implications for biodiversity conservation. We review the higher-level (inter-ordinal) phylogenies of Laurasiatheria based on previous cytogenetic, morphological and molecular data, and discuss the controversies of its phylogenetic relationship. This review aims to outline future researches on Laurasiatheria phylogeny and adaptive evolution.
Collapse
|
22
|
Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O'Connell MJ. Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol 2013; 30:2145-56. [PMID: 23813979 PMCID: PMC3748356 DOI: 10.1093/molbev/mst117] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heterogeneity among life traits in mammals has resulted in considerable phylogenetic conflict, particularly concerning the position of the placental root. Layered upon this are gene- and lineage-specific variation in amino acid substitution rates and compositional biases. Life trait variations that may impact upon mutational rates are longevity, metabolic rate, body size, and germ line generation time. Over the past 12 years, three main conflicting hypotheses have emerged for the placement of the placental root. These hypotheses place the Atlantogenata (common ancestor of Xenarthra plus Afrotheria), the Afrotheria, or the Xenarthra as the sister group to all other placental mammals. Model adequacy is critical for accurate tree reconstruction and by failing to account for these compositional and character exchange heterogeneities across the tree and data set, previous studies have not provided a strongly supported hypothesis for the placental root. For the first time, models that accommodate both tree and data set heterogeneity have been applied to mammal data. Here, we show the impact of accurate model assignment and the importance of data sets in accommodating model parameters while maintaining the power to reject competing hypotheses. Through these sophisticated methods, we demonstrate the importance of model adequacy, data set power and provide strong support for the Atlantogenata over other competing hypotheses for the position of the placental root.
Collapse
Affiliation(s)
- Claire C Morgan
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Ekdale EG. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals. PLoS One 2013; 8:e66624. [PMID: 23805251 PMCID: PMC3689836 DOI: 10.1371/journal.pone.0066624] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Variation is a naturally occurring phenomenon that is observable at all levels of morphology, from anatomical variations of DNA molecules to gross variations between whole organisms. The structure of the otic region is no exception. The present paper documents the broad morphological diversity exhibited by the inner ear region of placental mammals using digital endocasts constructed from high-resolution X-ray computed tomography (CT). Descriptions cover the major placental clades, and linear, angular, and volumetric dimensions are reported. PRINCIPAL FINDINGS The size of the labyrinth is correlated to the overall body mass of individuals, such that large bodied mammals have absolutely larger labyrinths. The ratio between the average arc radius of curvature of the three semicircular canals and body mass of aquatic species is substantially lower than the ratios of related terrestrial taxa, and the volume percentage of the vestibular apparatus of aquatic mammals tends to be less than that calculated for terrestrial species. Aspects of the bony labyrinth are phylogenetically informative, including vestibular reduction in Cetacea, a tall cochlear spiral in caviomorph rodents, a low position of the plane of the lateral semicircular canal compared to the posterior canal in Cetacea and Carnivora, and a low cochlear aspect ratio in Primatomorpha. SIGNIFICANCE The morphological descriptions that are presented add a broad baseline of anatomy of the inner ear across many placental mammal clades, for many of which the structure of the bony labyrinth is largely unknown. The data included here complement the growing body of literature on the physiological and phylogenetic significance of bony labyrinth structures in mammals, and they serve as a source of data for future studies on the evolution and function of the vertebrate ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Paleontology, San Diego Natural History Museum, San Diego, California, United States of America
| |
Collapse
|
24
|
Halliday TJD, Goswami A. Testing the inhibitory cascade model in Mesozoic and Cenozoic mammaliaforms. BMC Evol Biol 2013; 13:79. [PMID: 23565593 PMCID: PMC3626779 DOI: 10.1186/1471-2148-13-79] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background Much of the current research in the growing field of evolutionary development concerns relating developmental pathways to large-scale patterns of morphological evolution, with developmental constraints on variation, and hence diversity, a field of particular interest. Tooth morphology offers an excellent model system for such ‘evo-devo’ studies, because teeth are well preserved in the fossil record, and are commonly used in phylogenetic analyses and as ecological proxies. Moreover, tooth development is relatively well studied, and has provided several testable hypotheses of developmental influences on macroevolutionary patterns. The recently-described Inhibitory Cascade (IC) Model provides just such a hypothesis for mammalian lower molar evolution. Derived from experimental data, the IC Model suggests that a balance between mesenchymal activators and molar-derived inhibitors determines the size of the immediately posterior molar, predicting firstly that molars either decrease in size along the tooth row, or increase in size, or are all of equal size, and secondly that the second lower molar should occupy one third of lower molar area. Here, we tested the IC Model in a large selection of taxa from diverse extant and fossil mammalian groups, ranging from the Middle Jurassic (~176 to 161 Ma) to the Recent. Results Results show that most taxa (~65%) fell within the predicted areas of the Inhibitory Cascade Model. However, members of several extinct groups fell into the regions where m2 was largest, or rarely, smallest, including the majority of the polyphyletic “condylarths”. Most Mesozoic mammals fell near the centre of the space with equality of size in all three molars. The distribution of taxa was significantly clustered by diet and by phylogenetic group. Conclusions Overall, the IC Model was supported as a plesiomorphic developmental system for Mammalia, suggesting that mammal tooth size has been subjected to this developmental constraint at least since the divergence of australosphenidans and boreosphenidans approximately 180 Ma. Although exceptions exist, including many ‘condylarths’, these are most likely to be secondarily derived states, rather than alternative ancestral developmental models for Mammalia.
Collapse
Affiliation(s)
- Thomas J D Halliday
- Department of Earth Sciences, University College London, Gower Street, London, UK.
| | | |
Collapse
|
25
|
A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order 'Bibymalagasia'. PLoS One 2013; 8:e59614. [PMID: 23555726 PMCID: PMC3608660 DOI: 10.1371/journal.pone.0059614] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Madagascar is well known for its diverse fauna and flora, being home to many species not found anywhere else in the world. However, its biodiversity in the recent past included a range of extinct enigmatic fauna, such as elephant birds, giant lemurs and dwarfed hippopotami. The 'Malagasy aardvark' (Plesiorycteropus) has remained one of Madagascar's least well-understood extinct species since its discovery in the 19(th) century. Initially considered a close relative of the aardvark (Orycteropus) within the order Tubulidentata, more recent morphological analyses challenged this placement on the grounds that the identifiably derived traits supporting this allocation were adaptations to digging rather than shared ancestry. Because the skeletal evidence showed many morphological traits diagnostic of different eutherian mammal orders, they could not be used to resolve its closest relatives. As a result, the genus was tentatively assigned its own taxonomic order 'Bibymalagasia', yet how this order relates to other eutherian mammal orders remains unclear despite numerous morphological investigations. This research presents the first known molecular sequence data for Plesiorycteropus, obtained from the bone protein collagen (I), which places the 'Malagasy aardvark' as more closely related to tenrecs than aardvarks. More specifically, Plesiorycteropus was recovered within the order Tenrecoidea (golden moles and tenrecs) within Afrotheria, suggesting that the taxonomic order 'Bibymalagasia' is obsolete. This research highlights the potential for collagen sequencing in investigating the phylogeny of extinct species as a viable alternative to ancient DNA (aDNA) sequencing, particularly in cases where aDNA cannot be recovered.
Collapse
|
26
|
Benoit J, Crumpton N, Mérigeaud S, Tabuce R. A Memory Already like an Elephant's? The Advanced Brain Morphology of the Last Common Ancestor of Afrotheria (Mammalia). BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:154-69. [DOI: 10.1159/000348481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022]
|
27
|
Hautier L, Bennett NC, Viljoen H, Howard L, Milinkovitch MC, Tzika AC, Goswami A, Asher RJ. PATTERNS OF OSSIFICATION IN SOUTHERN VERSUS NORTHERN PLACENTAL MAMMALS. Evolution 2013; 67:1994-2010. [DOI: 10.1111/evo.12071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/31/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Lionel Hautier
- Department of Zoology; University of Cambridge; Downing St. Cambridge CB2 3EJ United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology; University of Pretoria; Pretoria 0002 South Africa
| | - Hermien Viljoen
- Department of Zoology and Entomology; University of Pretoria; Pretoria 0002 South Africa
| | - Lauren Howard
- Science Facilities Department; British Museum of Natural History; Cromwell Road London SW7 5BD United Kingdom
| | - Michel C. Milinkovitch
- Laboratory of Artificial and Natural Evolution; Department of Genetics & Evolution; Sciences III Building; 30 Quai Ernest-Ansermet 1211 Geneva Switzerland
| | - Athanasia C. Tzika
- Laboratory of Artificial and Natural Evolution; Department of Genetics & Evolution; Sciences III Building; 30 Quai Ernest-Ansermet 1211 Geneva Switzerland
| | - Anjali Goswami
- Department of Genetics, Evolution, and Environment and Department of Earth Sciences; University College London; Wolfson House to Darwin Building; Gower Street London WC1E 6BT United Kingdom
| | - Robert J. Asher
- Department of Zoology; University of Cambridge; Downing St. Cambridge CB2 3EJ United Kingdom
| |
Collapse
|
28
|
Crumpton N, Thompson RS. The Holes of Moles: Osteological Correlates of the Trigeminal Nerve in Talpidae. J MAMM EVOL 2012. [DOI: 10.1007/s10914-012-9213-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
JOHNSTON PETER. New morphological evidence supports congruent phylogenies and Gondwana vicariance for palaeognathous birds. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2011.00730.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
The comparative osteology of the petrotympanic complex (ear region) of extant baleen whales (Cetacea: Mysticeti). PLoS One 2011; 6:e21311. [PMID: 21731700 PMCID: PMC3120854 DOI: 10.1371/journal.pone.0021311] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
Background Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. Principal Findings The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. Significance This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history.
Collapse
|
31
|
Tobe SS, Kitchener AC, Linacre AMT. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome B and cytochrome oxidase subunit I mitochondrial genes. PLoS One 2010; 5:e14156. [PMID: 21152400 PMCID: PMC2994770 DOI: 10.1371/journal.pone.0014156] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/05/2010] [Indexed: 11/18/2022] Open
Abstract
The phylogeny and taxonomy of mammalian species were originally based upon shared or derived morphological characteristics. However, genetic analyses have more recently played an increasingly important role in confirming existing or establishing often radically different mammalian groupings and phylogenies. The two most commonly used genetic loci in species identification are the cytochrome oxidase I gene (COI) and the cytochrome b gene (cyt b). For the first time this study provides a detailed comparison of the effectiveness of these two loci in reconstructing the phylogeny of mammals at different levels of the taxonomic hierarchy in order to provide a basis for standardizing methodologies in the future. Interspecific and intraspecific variation is assessed and for the first time, to our knowledge, statistical confidence is applied to sequence comparisons. Comparison of the DNA sequences of 217 mammalian species reveals that cyt b more accurately reconstructs their phylogeny and known relationships between species based on other molecular and morphological analyses at Super Order, Order, Family and generic levels. Cyt b correctly assigned 95.85% of mammal species to Super Order, 94.31% to Order and 98.16% to Family compared to 78.34%, 93.36% and 96.93% respectively for COI. Cyt b also gives better resolution when separating species based on sequence data. Using a Kimura 2-parameter p-distance (x100) threshold of 1.5-2.5, cyt b gives a better resolution for separating species with a lower false positive rate and higher positive predictive value than those of COI.
Collapse
Affiliation(s)
- Shanan S Tobe
- Centre for Forensic Science, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.
| | | | | |
Collapse
|
32
|
Poulakakis N, Stamatakis A. Recapitulating the evolution of Afrotheria: 57 genes and rare genomic changes (RGCs) consolidate their history. SYST BIODIVERS 2010. [DOI: 10.1080/14772000.2010.484436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Hagey LR, Vidal N, Hofmann AF, Krasowski MD. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 2010; 10:133. [PMID: 20444292 PMCID: PMC2886068 DOI: 10.1186/1471-2148-10-133] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 05/06/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). RESULTS While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. CONCLUSIONS The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates, suggesting that bile salt analysis may have utility in selected paleontological research.
Collapse
Affiliation(s)
- Lee R Hagey
- Department of Medicine, University of California - San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
34
|
Asher RJ, Helgen KM. Nomenclature and placental mammal phylogeny. BMC Evol Biol 2010; 10:102. [PMID: 20406454 PMCID: PMC2865478 DOI: 10.1186/1471-2148-10-102] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 04/20/2010] [Indexed: 11/20/2022] Open
Abstract
An issue arising from recent progress in establishing the placental mammal Tree of Life concerns the nomenclature of high-level clades. Fortunately, there are now several well-supported clades among extant mammals that require unambiguous, stable names. Although the International Code of Zoological Nomenclature does not apply above the Linnean rank of family, and while consensus on the adoption of competing systems of nomenclature does not yet exist, there is a clear, historical basis upon which to arbitrate among competing names for high-level mammalian clades. Here, we recommend application of the principles of priority and stability, as laid down by G.G. Simpson in 1945, to discriminate among proposed names for high-level taxa. We apply these principles to specific cases among placental mammals with broad relevance for taxonomy, and close with particular emphasis on the Afrotherian family Tenrecidae. We conclude that no matter how reconstructions of the Tree of Life change in years to come, systematists should apply new names reluctantly, deferring to those already published and maximizing consistency with existing nomenclature.
Collapse
Affiliation(s)
- Robert J Asher
- Museum of Zoology, University of Cambridge, Downing St, CB2 3EJ UK
| | - Kristofer M Helgen
- National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 108 Washington, DC 20013-7012 USA
| |
Collapse
|
35
|
Asher RJ, Bennett N, Lehmann T. The new framework for understanding placental mammal evolution. Bioessays 2010; 31:853-64. [PMID: 19582725 DOI: 10.1002/bies.200900053] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An unprecedented level of confidence has recently crystallized around a new hypothesis of how living placental mammals share a pattern of common descent. The major groups are afrotheres (e.g., aardvarks, elephants), xenarthrans (e.g., anteaters, sloths), laurasiatheres (e.g., horses, shrews), and euarchontoglires (e.g., humans, rodents). Compared with previous hypotheses this tree is remarkably stable; however, some uncertainty persists about the location of the placental root, and (for example) the position of bats within laurasiatheres, of sea cows and aardvarks within afrotheres, and of dermopterans within euarchontoglires. A variety of names for sub-clades within the new placental mammal tree have been proposed, not all of which follow conventions regarding priority and stability. More importantly, the new phylogenetic framework enables the formulation of new hypotheses and testing thereof, for example regarding the possible developmental dichotomy that seems to distinguish members of the newly identified southern and northern radiations of living placental mammals.
Collapse
Affiliation(s)
- Robert J Asher
- Department of Zoology, University of Cambridge, Downing St., Cambridge CB23EJ, UK.
| | | | | |
Collapse
|
36
|
LEE MSY, CAMENS AB. Strong morphological support for the molecular evolutionary tree of placental mammals. J Evol Biol 2009; 22:2243-57. [DOI: 10.1111/j.1420-9101.2009.01843.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Abstract
Staged embryonic series are important as reference for different kinds of biological studies. I summarise problems that occur when using ‘staging tables’ of ‘model organisms’. Investigations of developmental processes in a broad scope of taxa are becoming commonplace. Beginning in the 1990s, methods were developed to quantify and analyse developmental events in a phylogenetic framework. The algorithms associated with these methods are still under development, mainly due to difficulties of using non-independent characters. Nevertheless, the principle of comparing clearly defined newly occurring morphological features in development (events) in quantifying analyses was a key innovation for comparative embryonic research. Up to date no standard was set for how to define such events in a comparative approach. As a case study I compared the external development of 23 land vertebrate species with a focus on turtles, mainly based on reference staging tables. I excluded all the characters that are only identical for a particular species or general features that were only analysed in a few species. Based on these comparisons I defined 104 developmental characters that are common either for all vertebrates (61 characters), gnathostomes (26), tetrapods (3), amniotes (7), or only for sauropsids (7). Characters concern the neural tube, somite, ear, eye, limb, maxillary and mandibular process, pharyngeal arch, eyelid or carapace development. I present an illustrated guide listing all the defined events. This guide can be used for describing developmental series of any vertebrate species or for documenting specimen variability of a particular species. The guide incorporates drawings and photographs as well as consideration of species identifying developmental features such as colouration. The simple character-code of the guide is extendable to further characters pertaining to external and internal morphological, physiological, genetic or molecular development, and also for other vertebrate groups not examined here, such as Chondrichthyes or Actinopterygii. An online database to type in developmental events for different stages and species could be a basis for further studies in comparative embryology. By documenting developmental events with the standard code, sequence heterochrony studies (i.e. Parsimov) and studies on variability can use this broad comparative data set.
Collapse
Affiliation(s)
- Ingmar Werneburg
- Paläontologisches Museum und Institut der Universität Zürich, Zürich, Switzerland.
| |
Collapse
|
38
|
|
39
|
Asher RJ, Geisler JH, Sánchez-Villagra MR. Morphology, paleontology, and placental mammal phylogeny. Syst Biol 2008; 57:311-7. [PMID: 18432551 DOI: 10.1080/10635150802033022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Robert J Asher
- Department of Zoology, University of Cambridge, Downing Street, UK
| | | | | |
Collapse
|
40
|
Porto A, de Oliveira FB, Shirai LT, De Conto V, Marroig G. The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes. Evol Biol 2008. [DOI: 10.1007/s11692-008-9038-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Bradley BJ. Reconstructing phylogenies and phenotypes: a molecular view of human evolution. J Anat 2008; 212:337-53. [PMID: 18380860 PMCID: PMC2409108 DOI: 10.1111/j.1469-7580.2007.00840.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2007] [Indexed: 12/19/2022] Open
Abstract
This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution. Ultimately, however, these molecular findings can only be understood in light of data from field sites, morphology labs, and museum collections. Indeed, molecular anthropology depends on these sources for calibrating molecular clocks and placing genetic data within the context of key morphological and ecological transitions in human evolution.
Collapse
Affiliation(s)
- Brenda J Bradley
- Department of Zoology and Christ's College, University of Cambridge, UK.
| |
Collapse
|
42
|
Poux C, Madsen O, Glos J, de Jong WW, Vences M. Molecular phylogeny and divergence times of Malagasy tenrecs: influence of data partitioning and taxon sampling on dating analyses. BMC Evol Biol 2008; 8:102. [PMID: 18377639 PMCID: PMC2330147 DOI: 10.1186/1471-2148-8-102] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 03/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malagasy tenrecs belong to the Afrotherian clade of placental mammals and comprise three subfamilies divided in eight genera (Tenrecinae: Tenrec, Echinops, Setifer and Hemicentetes; Oryzorictinae: Oryzorictes, Limnogale and Microgale; Geogalinae:Geogale). The diversity of their morphology and incomplete taxon sampling made it difficult until now to resolve phylogenies based on either morphology or molecular data for this group. Therefore, in order to delineate the evolutionary history of this family, phylogenetic and dating analyses were performed on a four nuclear genes dataset (ADRA2B, AR, GHR and vWF) including all Malagasy tenrec genera. Moreover, the influence of both taxon sampling and data partitioning on the accuracy of the estimated ages were assessed. RESULTS Within Afrotheria the vast majority of the nodes received a high support, including the grouping of hyrax with sea cow and the monophyly of both Afroinsectivora (Macroscelidea + Afrosoricida) and Afroinsectiphillia (Tubulidentata + Afroinsectivora). Strongly supported relationships were also recovered among all tenrec genera, allowing us to firmly establish the grouping of Geogale with Oryzorictinae, and to confirm the previously hypothesized nesting of Limnogale within the genus Microgale. The timeline of Malagasy tenrec diversification does not reflect a fast adaptive radiation after the arrival on Madagascar, indicating that morphological specializations have appeared over the whole evolutionary history of the family, and not just in a short period after colonization. In our analysis, age estimates at the root of a clade became older with increased taxon sampling of that clade. Moreover an augmentation of data partitions resulted in older age estimates as well, whereas standard deviations increased when more extreme partition schemes were used. CONCLUSION Our results provide as yet the best resolved gene tree comprising all Malagasy tenrec genera, and may lead to a revision of tenrec taxonomy. A timeframe of tenrec evolution built on the basis of this solid phylogenetic framework showed that morphological specializations of the tenrecs may have been affected by environmental changes caused by climatic and/or subsequent colonization events. Analyses including various taxon sampling and data partitions allow us to point out some possible pitfalls that may lead to biased results in molecular dating; however, further analyses are needed to corroborate these observations.
Collapse
Affiliation(s)
- Céline Poux
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Vertebrate Department, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Ole Madsen
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Animal Breeding and Genomics Center, Wageningen University, PO Box 338, 6700 HB Wageningen, The Netherlands
| | - Julian Glos
- Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany
- Animal Ecology and Conservation Biology Department, Biocenter Grindel and Zoological Museum, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Wilfried W de Jong
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany
| |
Collapse
|
43
|
Asher RJ, Lehmann T. Dental eruption in afrotherian mammals. BMC Biol 2008; 6:14. [PMID: 18366669 PMCID: PMC2292681 DOI: 10.1186/1741-7007-6-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/18/2008] [Indexed: 11/29/2022] Open
Abstract
Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy) recall the phenotype of a human genetic pathology (cleidocranial dysplasia), correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles) or two-thirds (tenrecs, hyraxes) of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs), elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in addition to vertebral anomalies, testicondy and other features. Awareness of their possible genetic correlates promises insight into the developmental basis of shared morphological features of afrotherians and other vertebrates.
Collapse
Affiliation(s)
- Robert J Asher
- Department of Zoology, University of Cambridge, Downing St,, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
44
|
|