1
|
Salarvandian S, Digaleh H, Khodagholi F, Javadpour P, Asadi S, Zaman AAO, Dargahi L. Harmonic activity of glutamate dehydrogenase and neuroplasticity: The impact on aging, cognitive dysfunction, and neurodegeneration. Behav Brain Res 2025; 480:115399. [PMID: 39675635 DOI: 10.1016/j.bbr.2024.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
In recent years, glutamate has attracted significant attention for its roles in various brain processes. However, one of its key regulators, glutamate dehydrogenase (GDH), remains understudied despite its pivotal role in several biochemical pathways. Dysfunction or dysregulation of GDH has been implicated in aging and various neurological disorders, such as Alzheimer's disease and Parkinson's disease. In this review, the impact of GDH on aging, cognitive impairment, and neurodegenerative conditions, as exemplars of the phenomena that may affected by neuroplasticity, has been reviewed. Despite extensive research on synaptic plasticity, the precise influence of GDH on brain structure and function remains undiscovered. This review of existing literature on GDH and neuroplasticity reveals diverse and occasionally conflicting effects. Future research endeavors should aim to describe the precise mechanisms by which GDH influences neuroplasticity (eg. synaptic plasticity and neurogenesis), particularly in the context of human aging and disease progression. Studies on GDH activity have been limited by factors such as insufficient sample sizes and varying experimental conditions. Researchers should focus on investigating the molecular mechanisms by which GDH modulates neuroplasticity, utilizing various animal strains and species, ages, sexes, GDH isoforms, brain regions, and cell types. Understanding GDH's role in neuroplasticity may offer innovative therapeutic strategies for neurodegenerative and psychiatric diseases, potentially slowing the aging process and promoting brain regeneration.
Collapse
Affiliation(s)
- Shakiba Salarvandian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Orang Zaman
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lu MQ, Shi ZG, Shang J, Gao L, Gao L, Gao WJ. ChangPu YuJin Tang improves Tourette disorder symptoms by modulating amino acid neurotransmitters in IDPN model rats. Metab Brain Dis 2024; 39:1543-1558. [PMID: 39312065 DOI: 10.1007/s11011-024-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/09/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Changpu Yujin Tang(CPYJT), a Chinese herbal compound, is an effective therapeutic strategy for pediatric patients with Tourette disorder (TD). Therefore, this work aims to investigate the therapeutic mechanisms of CPYJT. METHODS Behavioral and cellular ultrastructural evaluation of the therapeutic effects of CPYJT in TD model rats. Colorimetric methods, reverse transcription‑quantitative PCR, and Western Blot were used to measure the altered levels of GLU, GABA, and the levels of VGLUT1, GLUD1, GABRA3, and GAD65 in the cortex, striatum, and thalamus of the TD model rats after 7, 14, 21, and 28 days of CPYJT administration. RESULTS CPYJT significantly reduced stereotypic behavior and motor behavior scores in TD model rats. CPYJT ameliorates myelin structural damage in TD model rat neuronal cells. CPYJT decreased GLU content, elevated GABA content, decreased GLUD1 and VGLUT1 levels, and elevated GAD65 and GABRA3 levels in TD model rats' cortex, striatum, and thalamus. CPYJT has different regulatory time points in the cortex, striatum, and thalamus for critical factors of amino acid-based neurotransmission. CONCLUSION CPYJT protects behavioral and structural damage of neuronal cells in multiple brain regions in TD model rats.
Collapse
Affiliation(s)
- Man-Qi Lu
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, shanghai, 200000, China
| | - Zheng-Gang Shi
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China.
| | - Jing Shang
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| | - Lü Gao
- Shanxi University Of Chinese Medicine Third Clinical Medical College Pediatric Teaching and Research Department, Taiyuan, 140100, Shanxi, China
| | - Lei Gao
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| | - Wei-Jiao Gao
- Clinical College of Chinese Medicine, Gansu University Of Chinese Medicine, Lanzhou, 730000, Gansu, P.R. China
| |
Collapse
|
3
|
Lee P, Kim J, Choi IY, Pal R, Hui D, Marcario JK, Michaelis ML, Michaelis EK. Increases in anterograde axoplasmic transport in neurons of the hyper-glutamatergic, glutamate dehydrogenase 1 (Glud1) transgenic mouse: Effects of glutamate receptors on transport. J Neurochem 2024; 168:719-727. [PMID: 38124277 PMCID: PMC11102336 DOI: 10.1111/jnc.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The excitatory neurotransmitter glutamate has a role in neuronal migration and process elongation in the central nervous system (CNS). The effects of chronic glutamate hyperactivity on vesicular and protein transport within CNS neurons, that is, processes necessary for neurite growth, have not been examined previously. In this study, we measured the effects of lifelong hyperactivity of glutamate neurotransmission on axoplasmic transport in CNS neurons. We compared wild-type (wt) to transgenic (Tg) mice over-expressing the glutamate dehydrogenase gene Glud1 in CNS neurons and exhibiting increases in glutamate transmitter formation, release, and synaptic activation in brain throughout the lifespan. We found that Glud1 Tg as compared with wt mice exhibited increases in the rate of anterograde axoplasmic transport in neurons of the hippocampus measured in brain slices ex vivo, and in olfactory neurons measured in vivo. We also showed that the in vitro pharmacologic activation of glutamate synapses in wt mice led to moderate increases in axoplasmic transport, while exposure to selective inhibitors of ion channel forming glutamate receptors very significantly suppressed anterograde transport, suggesting a link between synaptic glutamate receptor activation and axoplasmic transport. Finally, axoplasmic transport in olfactory neurons of Tg mice in vivo was partially inhibited following 14-day intake of ethanol, a known suppressor of axoplasmic transport and of glutamate neurotransmission. The same was true for transport in hippocampal neurons in slices from Glud1 Tg mice exposed to ethanol for 2 h ex vivo. In conclusion, endogenous activity at glutamate synapses regulates and glutamate synaptic hyperactivity increases intraneuronal transport rates in CNS neurons.
Collapse
Affiliation(s)
- Phil Lee
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Jieun Kim
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - In-Young Choi
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Ranu Pal
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | - Dongwei Hui
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Joanne K. Marcario
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Mary L. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | - Elias K. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
4
|
Hammer M, Krzyzaniak C, Bahramnejad E, Smelser K, Hack J, Watkins J, Ronaldson P. Sex differences in physiological response to increased neuronal excitability in a knockin mouse model of pediatric epilepsy. Clin Sci (Lond) 2024; 138:205-223. [PMID: 38348743 PMCID: PMC10881277 DOI: 10.1042/cs20231572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disease; however, few if any of the currently marketed antiseizure medications prevent or cure epilepsy. Discovery of pathological processes in the early stages of epileptogenesis has been challenging given the common use of preclinical models that induce seizures in physiologically normal animals. Moreover, despite known sex dimorphism in neurological diseases, females are rarely included in preclinical epilepsy models. METHODS We characterized sex differences in mice carrying a pathogenic knockin variant (p.N1768D) in the Scn8a gene that causes spontaneous tonic-clonic seizures (TCs) at ∼3 months of age and found that heterozygous females are more resilient than males in mortality and morbidity. To investigate the cellular mechanisms that underlie female resilience, we utilized blood-brain barrier (BBB) and hippocampal transcriptomic analyses in heterozygous mice before seizure onset (pre-TC) and in mice that experienced ∼20 TCs (post-TC). RESULTS In the pre-TC latent phase, both sexes exhibited leaky BBB; however, patterns of gene expression were sexually dimorphic. Females exhibited enhanced oxidative phosphorylation and protein biogenesis, while males activated gliosis and CREB signaling. After seizure onset (chronic phase), females exhibited a metabolic switch to lipid metabolism, while males exhibited increased gliosis and BBB dysfunction and a strong activation of neuroinflammatory pathways. CONCLUSION The results underscore the central role of oxidative stress and BBB permeability in the early stages of epileptogenesis, as well as sex dimorphism in response to increasing neuronal hyperexcitability. Our results also highlight the need to include both sexes in preclinical studies to effectively translate results of drug efficacy studies.
Collapse
Affiliation(s)
- Michael F. Hammer
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
- Department of Neurology, University of Arizona, Tucson, Arizona, U.S.A
| | | | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, Arizona, U.S.A
| | | | - Joshua B. Hack
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
| | - Joseph C. Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, U.S.A
| | | |
Collapse
|
5
|
San Gil R, Pascovici D, Venturato J, Brown-Wright H, Mehta P, Madrid San Martin L, Wu J, Luan W, Chui YK, Bademosi AT, Swaminathan S, Naidoo S, Berning BA, Wright AL, Keating SS, Curtis MA, Faull RLM, Lee JD, Ngo ST, Lee A, Morsch M, Chung RS, Scotter E, Lisowski L, Mirzaei M, Walker AK. A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration. Nat Commun 2024; 15:1508. [PMID: 38374041 PMCID: PMC10876645 DOI: 10.1038/s41467-024-45646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Understanding the mechanisms that drive TDP-43 pathology is integral to combating amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases. Here we generated a longitudinal quantitative proteomic map of the cortex from the cytoplasmic TDP-43 rNLS8 mouse model of ALS and FTLD, and developed a complementary open-access webtool, TDP-map ( https://shiny.rcc.uq.edu.au/TDP-map/ ). We identified distinct protein subsets enriched for diverse biological pathways with temporal alterations in protein abundance, including increases in protein folding factors prior to disease onset. This included increased levels of DnaJ homolog subfamily B member 5, DNAJB5, which also co-localized with TDP-43 pathology in diseased human motor cortex. DNAJB5 over-expression decreased TDP-43 aggregation in cell and cortical neuron cultures, and knockout of Dnajb5 exacerbated motor impairments caused by AAV-mediated cytoplasmic TDP-43 expression in mice. Together, these findings reveal molecular mechanisms at distinct stages of ALS and FTLD progression and suggest that protein folding factors could be protective in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dana Pascovici
- Insight Stats, Croydon Park, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, NSW, Australia
| | - Juliana Venturato
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Heledd Brown-Wright
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Prachi Mehta
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Lidia Madrid San Martin
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jemma Wu
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, NSW, Australia
| | - Wei Luan
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yi Kit Chui
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Shilpa Swaminathan
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Serey Naidoo
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Britt A Berning
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Wright
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sean S Keating
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Roger S Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Emma Scotter
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Leszek Lisowski
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Pan C, Mao S, Xiong Z, Chen Z, Xu N. Glutamate dehydrogenase: Potential therapeutic targets for neurodegenerative disease. Eur J Pharmacol 2023; 950:175733. [PMID: 37116563 DOI: 10.1016/j.ejphar.2023.175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Glutamate dehydrogenase (GDH) is a key enzyme in mammalian glutamate metabolism. It is located at the intersection of multiple metabolic pathways and participates in a variety of cellular activities. GDH activity is strictly regulated by a variety of allosteric compounds. Here, we review the unique distribution and expressions of GDH in the brain nervous system. GDH plays an essential role in the glutamate-glutamine-GABA cycle between astrocytes and neurons. The dysfunction of GDH may induce the occurrence of many neurodegenerative diseases, such as Parkinson's disease, epilepsy, Alzheimer's disease, schizophrenia, and frontotemporal dementia. GDH activators and gene therapy have been found to protect neurons and improve motor disorders in neurodegenerative diseases caused by glutamate metabolism disorders. To date, no medicine has been discovered that specifically targets neurodegenerative diseases, although several potential medicines are used clinically. Targeting GDH to treat neurodegenerative diseases is expected to provide new insights and treatment strategies.
Collapse
Affiliation(s)
- Chuqiao Pan
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Shijie Mao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Zeping Xiong
- Department of Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Zhao Chen
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Insight into Glyproline Peptides' Activity through the Modulation of the Inflammatory and Neurosignaling Genetic Response Following Cerebral Ischemia-Reperfusion. Genes (Basel) 2022; 13:genes13122380. [PMID: 36553646 PMCID: PMC9777888 DOI: 10.3390/genes13122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glyprolines are Gly-Pro (GP)- or Pro-Gly (PG)-containing biogenic peptides. These peptides can act as neutrophil chemoattractants, or atheroprotective, anticoagulant, and neuroprotective agents. The Pro-Gly-Pro (PGP) tripeptide is an active factor of resistance to the biodegradation of peptide drugs. The synthetic Semax peptide, which includes Met-Glu-His-Phe (MEHF) fragments of adrenocorticotropic hormone and the C-terminal tripeptide PGP, serves as a neuroprotective drug for the treatment of ischemic stroke. Previously, we revealed that Semax mostly prevented the disruption of the gene expression pattern 24 h after a transient middle cerebral artery occlusion (tMCAO) in a rat brain model. The genes of this pattern were grouped into an inflammatory cluster (IC) and a neurotransmitter cluster (NC). Here, using real-time RT-PCR, the effect of other PGP-containing peptides, PGP and Pro-Gly-Pro-Leu (PGPL), on the expression of a number of genes in the IC and NC was studied 24 h after tMCAO. Both the PGP and PGPL peptides showed Semax-unlike effects, predominantly without changing gene expression 24 h after tMCAO. Moreover, there were IC genes (iL1b, iL6, and Socs3) for PGP, as well as IC (iL6, Ccl3, Socs3, and Fos) and NC genes (Cplx2, Neurod6, and Ptk2b) for PGPL, that significantly changed in expression levels after peptide administration compared to Semax treatment under tMCAO conditions. Furthermore, gene enrichment analysis was carried out, and a regulatory gene network was constructed. Thus, the spectra of the common and unique effects of the PGP, PGPL, and Semax peptides under ischemia-reperfusion were distinguished.
Collapse
|
8
|
Sun L, Wang X, Wang X, Cui X, Li G, Wang L, Wang L, Song M, Yu L. Genome-wide DNA methylation profiles of autism spectrum disorder. Psychiatr Genet 2022; 32:131-145. [PMID: 35353793 DOI: 10.1097/ypg.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD). METHODS First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed. RESULTS Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis. CONCLUSIONS Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.
Collapse
Affiliation(s)
- Ling Sun
- Mental Health Center, The First Hospital of Hebei Medical University
- Medical Department
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Xia Wang
- Child Health Department (Psychological Behavior Department)
| | | | | | - Le Wang
- Institute of Pediatric Research, Children's Hospital of Hebei Province, China
| | - Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Lulu Yu
- Mental Health Center, The First Hospital of Hebei Medical University
| |
Collapse
|
9
|
Dehghan F, Zamani S, Barreiro C, Jami MS. Irisin injection mimics exercise effects on the brain proteome. Eur J Neurosci 2021; 54:7422-7441. [PMID: 34655501 DOI: 10.1111/ejn.15493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022]
Abstract
Physical inactivity can endanger human health and increase the incidence of neurodegenerative disease. Exercise has tremendous beneficial effects on brain health and cognitive function, especially in older adults. It also improves brain-related outcomes in depression, epilepsy and neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease. Irisin is a mediator of the beneficial effects of exercise. This study aimed to assess the proteome alterations in adult male National Maritime Research Institute (NMRI) mice brain tissue upon three different conditions including endurance exercise, resistance exercise and irisin injection. Quantification of irisin levels in blood was performed using irisin-ELISA Kit. Quantification and identification of proteins via two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)/MS showed the alteration of at least 21 proteins due to different treatments. Cellular pathway analysis revealed common beneficial effects of sole irisin treatment and different exercise procedures suggesting the capability of irisin injection to substitute the exercise when physical activity is not possible.
Collapse
Affiliation(s)
- Fariba Dehghan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeed Zamani
- Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), León, Spain.,Biochemistry and Molecular Biology Area, Department of Molecular Biology, University of León, Vegazana Campus, León, Spain
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,QIANBIOTEC, Research and Development Center for Biotechnology, Isfahan, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
10
|
Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, Niu Y, Xu X, Guo S, Yang Y, Wang Z, Xue X, Gu C, Fang W, Sun J, Yu Y, Wang J. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Am J Cancer Res 2021; 11:5650-5674. [PMID: 33897873 PMCID: PMC8058707 DOI: 10.7150/thno.55482] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Rationale: Ferroptosis, a newly identified form of regulated cell death, can be induced following the inhibition of cystine-glutamate antiporter system XC- because of the impaired uptake of cystine. However, the outcome following the accumulation of endogenous glutamate in lung adenocarcinoma (LUAD) has not yet been determined. Yes-associated protein (YAP) is sustained by the hexosamine biosynthesis pathway (HBP)-dependent O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation), and glutamine-fructose-6-phosphate transaminase (GFPT1), the rate-limiting enzyme of the HBP, can be phosphorylated and inhibited by adenylyl cyclase (ADCY)-mediated activation of protein kinase A (PKA). However, whether accumulated endogenous glutamate determines ferroptosis sensitivity by influencing the ADCY/PKA/HBP/YAP axis in LUAD cells is not understood. Methods: Cell viability, cell death and the generation of lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to evaluate the responses to the induction of ferroptosis following the inhibition of system XC-. Tandem mass tags (TMTs) were employed to explore potential factors critical for the ferroptosis sensitivity of LUAD cells. Immunoblotting (IB) and quantitative RT-PCR (qPCR) were used to analyze protein and mRNA expression. Co-immunoprecipitation (co-IP) assays were performed to identify protein-protein interactions and posttranslational modifications. Metabolite levels were measured using the appropriate kits. Transcriptional regulation was evaluated using a luciferase reporter assay, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA). Drug administration and limiting dilution cell transplantation were performed with cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. The associations among clinical outcome, drug efficacy and ADCY10 expression were determined based on data from patients who underwent curative surgery and evaluated with patient-derived primary LUAD cells and tissues. Results: The accumulation of endogenous glutamate following system XC- inhibition has been shown to determine ferroptosis sensitivity by suppressing YAP in LUAD cells. YAP O-GlcNAcylation and expression cannot be sustained in LUAD cells upon impairment of GFPT1. Thus, Hippo pathway-like phosphorylation and ubiquitination of YAP are enhanced. ADCY10 acts as a key downstream target and diversifies the effects of glutamate on the PKA-dependent suppression of GFPT1. We also discovered that the protumorigenic and proferroptotic effects of ADCY10 are mediated separately. Advanced-stage LUADs with high ADCY10 expression are sensitive to ferroptosis. Moreover, LUAD cells with acquired therapy resistance are also prone to higher ADCY10 expression and are more likely to respond to ferroptosis. Finally, a varying degree of secondary labile iron increase is caused by the failure to sustain YAP-stimulated transcriptional compensation for ferritin at later stages further explains why ferroptosis sensitivity varies among LUAD cells. Conclusions: Endogenous glutamate is critical for ferroptosis sensitivity following the inhibition of system XC- in LUAD cells, and ferroptosis-based treatment is a good choice for LUAD patients with later-stage and/or therapy-resistant tumors.
Collapse
|
11
|
Dhaher R, Gruenbaum SE, Sandhu MRS, Ottestad-Hansen S, Tu N, Wang Y, Lee TSW, Deshpande K, Spencer DD, Danbolt NC, Zaveri HP, Eid T. Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology 2021; 96:e2261-e2271. [PMID: 33722994 PMCID: PMC8166437 DOI: 10.1212/wnl.0000000000011846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To test the hypothesis that glutamate and GABA are linked to the formation of epilepsy networks and the triggering of spontaneous seizures, we examined seizure initiation/propagation characteristics and neurotransmitter levels during epileptogenesis in a translationally relevant rodent model of mesial temporal lobe epilepsy. METHODS The glutamine synthetase (GS) inhibitor methionine sulfoximine was infused into one of the hippocampi in laboratory rats to create a seizure focus. Long-term video-intracranial EEG recordings and brain microdialysis combined with mass spectrometry were used to examine seizure initiation, seizure propagation, and extracellular brain levels of glutamate and GABA. RESULTS All seizures (n = 78 seizures, n = 3 rats) appeared first in the GS-inhibited hippocampus of all animals, followed by propagation to the contralateral hippocampus. Propagation time decreased significantly from 11.65 seconds early in epileptogenesis (weeks 1-2) to 6.82 seconds late in epileptogenesis (weeks 3-4, paired t test, p = 0.025). Baseline extracellular glutamate levels were 11.6-fold higher in the hippocampus of seizure propagation (7.3 µM) vs the hippocampus of seizure onset (0.63 µM, analysis of variance/Fisher least significant difference, p = 0.01), even though the concentrations of the major glutamate transporter proteins excitatory amino acid transporter subtypes 1 and 2 and xCT were unchanged between the brain regions. Finally, extracellular GABA in the seizure focus decreased significantly from baseline several hours before a spontaneous seizure (paired t test/false discovery rate). CONCLUSION The changes in glutamate and GABA suggest novel and potentially important roles of the amino acids in epilepsy network formation and in the initiation and propagation of spontaneous seizures.
Collapse
Affiliation(s)
- Roni Dhaher
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Shaun E Gruenbaum
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Mani Ratnesh S Sandhu
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Sigrid Ottestad-Hansen
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Nathan Tu
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Yue Wang
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Tih-Shih W Lee
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Ketaki Deshpande
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Dennis D Spencer
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Niels Christian Danbolt
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Hitten P Zaveri
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Tore Eid
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
12
|
Hajszan T. Stress and remodeling of hippocampal spine synapses. VITAMINS AND HORMONES 2020; 114:257-279. [DOI: 10.1016/bs.vh.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci Rep 2018; 8:13690. [PMID: 30209300 PMCID: PMC6135864 DOI: 10.1038/s41598-018-32106-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bilirubin neurotoxicity has been studied for decades and has been shown to affect various mechanisms via significant modulation of gene expression. This suggests that vital regulatory mechanisms of gene expression, such as epigenetic mechanisms, could play a role in bilirubin neurotoxicity. Histone acetylation has recently received attention in the CNS due to its role in gene modulation for numerous biological processes, such as synaptic plasticity, learning, memory, development and differentiation. Aberrant epigenetic regulation of gene expression in psychiatric and neurodegenerative disorders has also been described. In this work, we followed the levels of histone 3 lysine 14 acetylation (H3K14Ac) in the cerebellum (Cll) of the developing (2, 9, 17 days after the birth) and adult Gunn rat, the natural model for neonatal hyperbilirubinemia and kernicterus. We observed an age-specific alteration of the H3K14Ac in the hyperbilirubinemic animals. The GeneOntology analysis of the H3K14Ac linked chromatin revealed that almost 45% of H3K14Ac ChiP-Seq TSS-promoter genes were involved in CNS development including maturation and differentiation, morphogenesis, dendritogenesis, and migration. These data suggest that the hallmark Cll hypoplasia in the Gunn rat occurs also via epigenetically controlled mechanisms during the maturation of this brain structure, unraveling a novel aspect of the bilirubin-induced neurotoxicity.
Collapse
|
14
|
Mathioudakis L, Bourbouli M, Daklada E, Kargatzi S, Michaelidou K, Zaganas I. Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes. Neurochem Res 2018; 44:170-187. [PMID: 29943084 DOI: 10.1007/s11064-018-2575-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Glutamate dehydrogenase (GDH) catalyzes the reversible deamination of L-glutamate to α-ketoglutarate and ammonia. In mammals, GDH contributes to important processes such as amino acid and carbohydrate metabolism, energy production, ammonia management, neurotransmitter recycling and insulin secretion. In humans, two isoforms of GDH are found, namely hGDH1 and hGDH2, with the former being ubiquitously expressed and the latter found mainly in brain, testis and kidney. These two iso-enzymes display highly divergent allosteric properties, especially concerning their basal activity, ADP activation and GTP inhibition. On the other hand, both enzymes are thought to predominantly localize in the mitochondrial matrix, even though alternative localizations have been proposed. To further study the subcellular localization of the two human iso-enzymes, we created HEK293 cell lines stably over-expressing hGDH1 and hGDH2. In these cell lines, immunofluorescence and enzymatic analyses verified the overexpression of both hGDH1 and hGDH2 iso-enzymes, whereas subcellular fractionation followed by immunoblotting showed their predominantly mitochondrial localization. Given that previous studies have only indirectly compared the subcellular localization of the two iso-enzymes, we co-expressed them tagged with different fluorescent dyes (green and red fluorescent protein for hGDH1 and hGDH2, respectively) and found them to co-localize. Despite the wealth of information related to the functional properties of hGDH1 and hGDH2 and the availability of the hGDH1 structure, there is still an ongoing debate concerning their metabolic role and their involvement in disease processes. Data on the localization of hGDHs, as the ones presented here, could contribute to better understanding of the function of these important human enzymes.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Mara Bourbouli
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Elisavet Daklada
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sofia Kargatzi
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece. .,Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| |
Collapse
|
15
|
Genis-Mendoza A, Gallegos-Silva I, Tovilla-Zarate CA, López-Narvaez L, González-Castro TB, Hernández-Díaz Y, López-Casamichana M, Nicolini H, Morales-Mulia S. Comparative Analysis of Gene Expression Profiles Involved in Calcium Signaling Pathways Using the NLVH Animal Model of Schizophrenia. J Mol Neurosci 2017; 64:111-116. [PMID: 29214423 DOI: 10.1007/s12031-017-1013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the expression profile changes of genes that intervene in the calcium signaling pathway, in young and adult Wistar rats, using the animal model of neonatal lesion in ventral hippocampus (NLVH) (a recognized animal model for schizophrenia) and compared to the group of control animals (Sham). Through microarray technology, gene expression profiles were obtained from the three brain areas (nucleus accumbens, prefrontal cortex, and hippocampus) of young male Wistar rats (45 days) and adults (90 days) whether or not subjected to NLVH. The calcium signaling pathway reported a greater number of differentially expressed genes with z-score two values, > 2 (over-expression) and < - 2 (under-expression), in the three evaluated areas. The comparative analyses of this approach were performed in juvenile and adult rats with ventral hippocampal lesion in neonate rats (NLVH). NLVH influenced change expressions in various genes involved in Ca2+ homeostasis, including Cacna1d, Atp2a2, Adcy2, Ppp3cb, and Ptk2b. The expression of Adcy2, Ppp3cb, and Ptk2b genes changed in both age groups; therefore, the study of gene expression profiles between juvenile and adult rats may help to understand the molecular mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Alma Genis-Mendoza
- Secretaria de Salud, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Ileana Gallegos-Silva
- Secretaria de Salud, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Carlos Alfonso Tovilla-Zarate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur, Cuarta Sección, C.P., 86650, Comalcalco, Tabasco, Mexico.
| | | | | | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | | | - Humberto Nicolini
- Secretaria de Salud, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Sandra Morales-Mulia
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
16
|
Kim JM, Lim KS, Byun M, Lee KT, Yang YR, Park M, Lim D, Chai HH, Bang HT, Hwangbo J, Choi YH, Cho YM, Park JE. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck. Cell Stress Chaperones 2017; 22:787-797. [PMID: 28634817 PMCID: PMC5655367 DOI: 10.1007/s12192-017-0809-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
White Pekin duck is an important meat resource in the livestock industries. However, the temperature increase due to global warming has become a serious environmental factor in duck production, because of hyperthermia. Therefore, identifying the gene regulations and understanding the molecular mechanism for adaptation to the warmer environment will provide insightful information on the acclimation system of ducks. This study examined transcriptomic responses to heat stress treatments (3 and 6 h at 35 °C) and control (C, 25 °C) using RNA-sequencing analysis of genes from the breast muscle tissue. Based on three distinct differentially expressed gene (DEG) sets (3H/C, 6H/C, and 6H/3H), the expression patterns of significant DEGs (absolute log2 > 1.0 and false discovery rate < 0.05) were clustered into three responsive gene groups divided into upregulated and downregulated genes. Next, we analyzed the clusters that showed relatively higher expression levels in 3H/C and lower levels in 6H/C with much lower or opposite levels in 6H/3H; we referred to these clusters as the adaptable responsive gene group. These genes were significantly enriched in the ErbB signaling pathway, neuroactive ligand-receptor interaction and type II diabetes mellitus in the KEGG pathways (P < 0.01). From the functional enrichment analysis and significantly regulated genes observed in the enriched pathways, we think that the adaptable responsive genes are responsible for the acclimation mechanism of ducks and suggest that the regulation of phosphoinositide 3-kinase genes including PIK3R6, PIK3R5, and PIK3C2B has an important relationship with the mechanisms of adaptation to heat stress in ducks.
Collapse
Affiliation(s)
- Jun-Mo Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyu-Sang Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Mijeong Byun
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Young-Rok Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mina Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han-Tae Bang
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jong Hwangbo
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Yang-Ho Choi
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yong-Min Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| |
Collapse
|
17
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
18
|
Yagishita S, Suzuki S, Yoshikawa K, Iida K, Hirata A, Suzuki M, Takashima A, Maruyama K, Hirasawa A, Awaji T. Treatment of intermittent hypoxia increases phosphorylated tau in the hippocampus via biological processes common to aging. Mol Brain 2017; 10:2. [PMID: 28057021 PMCID: PMC5217192 DOI: 10.1186/s13041-016-0282-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022] Open
Abstract
Sleep-disordered breathing produces cognitive impairments, and is possibly associated with Alzheimer disease (AD). Intermittent hypoxia treatment (IHT), an experimental model for sleep-disordered breathing, results in cognitive impairments in animals via unknown mechanisms. Here, we exposed mice to IHT protocols, and performed biochemical analyses and microarray analyses regarding their hippocampal samples. In particular, we performed gene ontology (GO)-based microarray analysis to elucidate effects of IHT on hippocampal functioning, which were compared with the effects of various previously-reported experimental conditions on that (ref. Gene Expression Omnibus, The National Center for Biotechnology Information). Our microarray analyses revealed that IHT and aging shared alterations in some common GO, which were also observed with kainic acid treatment, Dicer ablation, or moderate glutamate excess. Mapping the altered genes using the Kyoto Encyclopedia of Genes and Genomes PATHWAY database indicated that IHT and aging affected several pathways including “MAPK signaling pathway”, “PI3K-Akt signaling pathway”, and “glutamatergic synapse”. Consistent with the gene analyses, in vivo analyses revealed that IHT increased phosphorylated tau, reflecting an imbalance of kinases and/or phosphatases, and reduced proteins relevant to glutamatergic synapses. In addition, IHT increased phosphorylated p70 S6 kinase, indicating involvement of the mammalian target of rapamycin signaling pathway. Furthermore, IHT mice demonstrated hyperactivity in Y-maze tests, which was also observed in AD models. We obtained important data or something from the massive amount of microarray data, and confirmed the validity by in vivo analyses: the IHT-induced cognitive impairment may be partially explained by the fact that IHT increases phosphorylated tau via biological processes common to aging. Moreover, as aging is a major risk factor for AD, IHT is a novel model for investigating the pathological processes contributing to AD onset.
Collapse
Affiliation(s)
- Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan. .,Present address: Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Seiya Suzuki
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Keiko Iida
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ayako Hirata
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiko Suzuki
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Akihiko Takashima
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| |
Collapse
|
19
|
Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. BIOLOGY 2016; 5:biology5040053. [PMID: 27983623 PMCID: PMC5192433 DOI: 10.3390/biology5040053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
Collapse
|
20
|
Tao Y, Gao H, Ackerman B, Guo W, Saffen D, Shugart YY. Evidence for contribution of common genetic variants within chromosome 8p21.2-8p21.1 to restricted and repetitive behaviors in autism spectrum disorders. BMC Genomics 2016; 17:163. [PMID: 26931105 PMCID: PMC4774106 DOI: 10.1186/s12864-016-2475-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Restricted and Repetitive Behaviors (RRB), one of the core symptom categories for Autism Spectrum Disorders (ASD), comprises heterogeneous groups of behaviors. Previous research indicates that there are two or more factors (subcategories) within the RRB domain. In an effort to identify common variants associated with RRB, we have carried out a genome-wide association study (GWAS) using the Autism Genetic Resource Exchange (AGRE) dataset (n = 1,335, all ASD probands of European ancestry) for each identified RRB subcategory, while allowing for comparisons of associated single nucleotide polymorphisms (SNPs) with associated SNPs in the same set of probands analyzed using all the RRB subcategories as phenotypes in a multivariate linear mixed model. The top ranked SNPs were then explored in an independent dataset. RESULTS Using principal component analysis of item scores obtained from Autism Diagnostic Interview-Revised (ADI-R), two distinct subcategories within Restricted and Repetitive Behaviors were identified: Repetitive Sensory Motor (RSM) and Insistence on Sameness (IS). Quantitative RSM and IS scores were subsequently used as phenotypes in a GWAS using the AGRE ASD cohort. Although no associated SNPs with genome-wide significance (P < 5.0E-08) were detected when RSM or IS were analyzed independently, three SNPs approached genome-wide significance when RSM and IS were considered together using multivariate association analysis. These included the top IS-associated SNP, rs62503729 (P-value = 6.48E-08), which is located within chromosome 8p21.2-8p21.1, a locus previously linked to schizophrenia. Notably, all of the most significantly associated SNPs are located in close proximity to STMN4 and PTK2B, genes previously shown to function in neuron development. In addition, several of the top-ranked SNPs showed correlations with STMN4 mRNA expression in adult CEU (Caucasian and European descent) human prefrontal cortex. However, the association signals within chromosome 8p21.2-8p21.1 failed to replicate in an independent sample of 2,588 ASD probands; the insufficient sample size and between-study heterogeneity are possible explanations for the non-replication. CONCLUSIONS Our analysis indicates that RRB in ASD can be represented by two distinct subcategories: RSM and IS. Subsequent univariate and multivariate genome-wide association studies of these RRB subcategories enabled the detection of associated SNPs at 8p21.2-8p21.1. Although these results did not replicate in an independent ASD dataset, genomic features of this region and pathway analysis suggest that common variants in 8p21.2-8p21.1 may contribute to RRB, particularly IS. Together, these observations warrant future studies to elucidate the possible contributions of common variants in 8p21.2-8p21.1 to the etiology of RSM and IS in ASD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Hui Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Benjamin Ackerman
- JohnsHopkins University, Baltimore, MD, USA. .,Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| | - Wei Guo
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| | - David Saffen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
22
|
Badawi Y, Pal R, Hui D, Michaelis EK, Shi H. Ischemic tolerance in an in vivo model of glutamate preconditioning. J Neurosci Res 2014; 93:623-32. [PMID: 25421886 DOI: 10.1002/jnr.23517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022]
Abstract
Ischemia initiates a complicated biochemical cascade of events that triggers neuronal death. This study focuses on glutamate-mediated neuronal tolerance to ischemia-reperfusion. We employed an animal model of lifelong excess release of glutamate, the glutamate dehydrogenase 1 transgenic (Tg) mouse, as a model of in vivo glutamate preconditioning. Nine- and twenty-two-month-old Tg and wild-type (wt) mice were subjected to 90 min of middle cerebral artery occlusion, followed by 24 hr of reperfusion. The Tg mice suffered significantly reduced infarction and edema volume compared with their wt counterparts. We further analyzed proteasomal activity, level of ubiquitin immunostaining, and microtubule-associated protein-2A (MAP2A) expression to understand the mechanism of neuroprotection observed in the Tg mice. We found that, in the absence of ischemia, the Tg mice exhibited higher activity of the 20S and 26S proteasomes, whereas there was no significant difference in the level of hippocampal ubiquitin immunostaining between wt and Tg mice. A surprising, significant increase was observed in MAP2A expression in neurons of the Tg hippocampus following ischemia-reperfusion compared with that in wt hippocampus. The results suggest that increased proteasome activity and MAP2A synthesis and transport might account for the effectiveness of glutamate preconditioning against ischemia-reperfusion.
Collapse
Affiliation(s)
- Yomna Badawi
- Neuroscience Program, University of Kansas, Lawrence, Kansas; Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas
| | | | | | | | | |
Collapse
|
23
|
Hiolski EM, Kendrick PS, Frame ER, Myers MS, Bammler TK, Beyer RP, Farin FM, Wilkerson HW, Smith DR, Marcinek DJ, Lefebvre KA. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:151-9. [PMID: 25033243 PMCID: PMC4139102 DOI: 10.1016/j.aquatox.2014.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 05/10/2023]
Abstract
Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: (1) identify transcriptional biomarkers of exposure; and (2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences.
Collapse
Affiliation(s)
- Emma M Hiolski
- University of California, Santa Cruz, CA 95064, United States.
| | | | - Elizabeth R Frame
- NOAA Northwest Fisheries Science Center, Seattle, WA 98112, United States.
| | - Mark S Myers
- University of Washington, Seattle, WA 98112, United States.
| | - Theo K Bammler
- University of Washington, Seattle, WA 98112, United States.
| | | | | | | | - Donald R Smith
- University of California, Santa Cruz, CA 95064, United States.
| | | | - Kathi A Lefebvre
- NOAA Northwest Fisheries Science Center, Seattle, WA 98112, United States.
| |
Collapse
|
24
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|
25
|
Wang X, Patel ND, Hui D, Pal R, Hafez MM, Sayed-Ahmed MM, Al-Yahya AA, Michaelis EK. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice. BMC Neurosci 2014; 15:37. [PMID: 24593767 PMCID: PMC3973933 DOI: 10.1186/1471-2202-15-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. Results During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Conclusions Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center, University of Kansas, 2099 Constant Ave,, Lawrence, KS 66047, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Plaitakis A, Zaganas I, Spanaki C. Deregulation of glutamate dehydrogenase in human neurologic disorders. J Neurosci Res 2013; 91:1007-17. [PMID: 23463419 DOI: 10.1002/jnr.23176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 11/09/2022]
Abstract
Mammalian glutamate dehydrogenase is an allosterically regulated enzyme that is central to glutamate metabolism. It contributes to important cellular processes, including Krebs cycle anaplerotic mechanisms, energy production, and ammonia homeostasis. In addition to this housekeeping hGDH1, humans have acquired through duplication an hGDH2 isoenzyme expressed in neural tissues with distinct regulatory properties. There is increasing evidence that deregulation of human GDHs leads to human disorders. Thus, in hGDH1, regulatory mutations that attenuate GTP inhibition can result in the hyperinsulinism/hyperammonemia syndrome, which is often associated with epileptic seizures, mental retardation, and generalized dystonia. Also, transgenic overexpression of GLUD1 in neurons has resulted in age-dependent degeneration of the CA1 behippocampal region, associated with upregulation of α-synuclein and other proteins linked to major human movement disorders. With regard to hGDH2, a rare T1492G variation in the GLUD2 gene, resulting in substitution of Ala for Ser445 in the regulatory domain of hGDH2, interacts significantly with Parkinson's disease (PD) onset. In two independent Greek and one North American PD cohorts, Ser445Ala hemizygous males, but not heterozygous females, developed PD 6-13 years earlier than subjects with other genotypes. The Ala445-hGDH2 variant displays increased catalytic activity that is amenable to inhibition by estrogens. Enhanced glutamate oxidation by Ala445-hGDH2 is thought to accelerate nigral cell degeneration in hemizygous males, and inhibition of the overactive variant by estrogens may protect heterozygous females. Hence, deregulation of hGDH1 and hGDH2 may play a role in degenerative processes, so these observations identify novel targets for therapeutic intervention in human disorders.
Collapse
Affiliation(s)
- Andreas Plaitakis
- Department of Neurology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
27
|
GIT2 acts as a potential keystone protein in functional hypothalamic networks associated with age-related phenotypic changes in rats. PLoS One 2012; 7:e36975. [PMID: 22606319 PMCID: PMC3351446 DOI: 10.1371/journal.pone.0036975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/10/2012] [Indexed: 01/08/2023] Open
Abstract
The aging process affects every tissue in the body and represents one of the most complicated and highly integrated inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has demonstrated that the optimal regulation of energy usage in both these systems facilitates healthy aging. However, the proteomic effects of aging in regions of the brain vital for integrating energy balance and neuronal activity are not well understood. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity. Therefore, a greater understanding of the effects of aging in the hypothalamus may reveal important aspects of overall organismal aging and may potentially reveal the most crucial protein factors supporting this vital signaling integration. In this study, we examined alterations in protein expression in the hypothalami of young, middle-aged, and old rats. Using novel combinatorial bioinformatics analyses, we were able to gain a better understanding of the proteomic and phenotypic changes that occur during the aging process and have potentially identified the G protein-coupled receptor/cytoskeletal-associated protein GIT2 as a vital integrator and modulator of the normal aging process.
Collapse
|
28
|
Petrik D, Jiang Y, Birnbaum SG, Powell CM, Kim MS, Hsieh J, Eisch AJ. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. FASEB J 2012; 26:3148-62. [PMID: 22542682 DOI: 10.1096/fj.11-201426] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs throughout life in the mammalian hippocampus and is essential for memory and mood control. There is significant interest in identifying ways to promote neurogenesis and ensure maintenance of these hippocampal functions. Previous work with a synthetic small molecule, isoxazole 9 (Isx-9), highlighted its neuronal-differentiating properties in vitro. However, the ability of Isx-9 to drive neurogenesis in vivo or improve hippocampal function was unknown. Here we show that Isx-9 promotes neurogenesis in vivo, enhancing the proliferation and differentiation of hippocampal subgranular zone (SGZ) neuroblasts, and the dendritic arborization of adult-generated dentate gyrus neurons. Isx-9 also improves hippocampal function, enhancing memory in the Morris water maze. Notably, Isx-9 enhances neurogenesis and memory without detectable increases in cellular or animal activity or vascularization. Molecular exploration of Isx-9-induced regulation of neurogenesis (via FACS and microarray of SGZ stem and progenitor cells) suggested the involvement of the myocyte-enhancer family of proteins (Mef2). Indeed, transgenic-mediated inducible knockout of all brain-enriched Mef2 isoforms (Mef2a/c/d) specifically from neural stem cells and their progeny confirmed Mef2's requirement for Isx-9-induced increase in hippocampal neurogenesis. Thus, Isx-9 enhances hippocampal neurogenesis and memory in vivo, and its effects are reliant on Mef2, revealing a novel cell-intrinsic molecular pathway regulating adult neurogenesis.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gaisler-Salomon I, Wang Y, Chuhma N, Zhang H, Golumbic YN, Mihali A, Arancio O, Sibille E, Rayport S. Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation. Hippocampus 2012; 22:1027-39. [PMID: 22431402 DOI: 10.1002/hipo.22014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Glutaminase-deficient mice (GLS1 hets), with reduced glutamate recycling, have a focal reduction in hippocampal activity, mainly in CA1, and manifest behavioral and neurochemical phenotypes suggestive of schizophrenia resilience. To address the basis for the hippocampal hypoactivity, we examined synaptic plastic mechanisms and glutamate receptor expression. Although baseline synaptic strength was unaffected in Schaffer collateral inputs to CA1, we found that long-term potentiation was attenuated. In wild-type (WT) mice, GLS1 gene expression was highest in the hippocampus and cortex, where it was reduced by about 50% in GLS1 hets. In other brain regions with lower WT GLS1 gene expression, there were no genotypic reductions. In adult GLS1 hets, NMDA receptor NR1 subunit gene expression was reduced, but not AMPA receptor GluR1 subunit gene expression. In contrast, juvenile GLS1 hets showed no reductions in NR1 gene expression. In concert with this, adult GLS1 hets showed a deficit in hippocampal-dependent contextual fear conditioning, whereas juvenile GLS1 hets did not. These alterations in glutamatergic synaptic function may partly explain the hippocampal hypoactivity seen in the GLS1 hets. The maturity-onset reduction in NR1 gene expression and in contextual learning supports the premise that glutaminase inhibition in adulthood should prove therapeutic in schizophrenia.
Collapse
|
30
|
Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, Sleiman PMA, Zhang H, Kim CE, Robison R, Lyon GJ, Flory JH, Bradfield JP, Imielinski M, Hou C, Frackelton EC, Chiavacci RM, Sakurai T, Rabin C, Middleton FA, Thomas KA, Garris M, Mentch F, Freitag CM, Steinhausen HC, Todorov AA, Reif A, Rothenberger A, Franke B, Mick EO, Roeyers H, Buitelaar J, Lesch KP, Banaschewski T, Ebstein RP, Mulas F, Oades RD, Sergeant J, Sonuga-Barke E, Renner TJ, Romanos M, Romanos J, Warnke A, Walitza S, Meyer J, Pálmason H, Seitz C, Loo SK, Smalley SL, Biederman J, Kent L, Asherson P, Anney RJL, Gaynor JW, Shaw P, Devoto M, White PS, Grant SFA, Buxbaum JD, Rapoport JL, Williams NM, Nelson SF, Faraone SV, Hakonarson H. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 2011; 44:78-84. [PMID: 22138692 PMCID: PMC4310555 DOI: 10.1038/ng.1013] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10(-9)). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10(-6)). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ∼10% of the cases (P = 4.38 × 10(-10)) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
Collapse
Affiliation(s)
- Josephine Elia
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Michaelis ML, Michaelis EK. Functional genomics of brain aging and Alzheimer's disease: focus on selective neuronal vulnerability. Curr Genomics 2011; 11:618-33. [PMID: 21629439 PMCID: PMC3078686 DOI: 10.2174/138920210793360943] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 01/02/2023] Open
Abstract
Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer’s disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Genomic data generated using both human brain tissue and brains from animal models of aging and AD were analyzed in this review. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center and Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66047, USA
| | | | | |
Collapse
|
32
|
Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 2011; 59:473-81. [PMID: 21397652 DOI: 10.1016/j.neuint.2011.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 11/24/2022]
Abstract
Glutamate dehydrogenase 1 (GLUD1) is a mitochondrial enzyme expressed in all tissues, including brain. Although this enzyme is expressed in glutamatergic pathways, its function as a regulator of glutamate neurotransmitter levels is still not well defined. In order to gain an understanding of the role of GLUD1 in the control of glutamate levels and synaptic release in mammalian brain, we generated transgenic (Tg) mice that over-express this enzyme in neurons of the central nervous system. The Tg mice have increased activity of GLUD, as well as elevated levels and increased synaptic and depolarization-induced release of glutamate. These mice suffer age-associated losses of dendritic spines, nerve terminals, and neurons. The neuronal losses and dendrite structural changes occur in select regions of the brain. At the transcriptional level in the hippocampus, cells respond by increasing the expression of genes related to neurite growth and synapse formation, indications of adaptive or compensatory responses to the effects of increases in the release and action of glutamate at synapses. Because these Tg mice live to a relatively old age they are a good model of the effects of a "hyperglutamatergic" state on the aging process in the nervous system. The mice are also useful in defining the molecular pathways affected by the over-activation of GLUD in glutamatergic neurons of the brain and spinal cord.
Collapse
|
33
|
Konopka G. Functional genomics of the brain: uncovering networks in the CNS using a systems approach. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:628-48. [PMID: 21197665 DOI: 10.1002/wsbm.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is undoubtedly the most complex human organ system in terms of its diverse functions, cellular composition, and connections. Attempts to capture this diversity experimentally were the foundation on which the field of neurobiology was built. Until now though, techniques were either painstakingly slow or insufficient in capturing this heterogeneity. In addition, the combination of multiple layers of information needed for a complete picture of neuronal diversity from the epigenome to the proteome requires an even more complex compilation of data. In this era of high-throughput genomics though, the ability to isolate and profile neurons and brain tissue has increased tremendously and now requires less effort. Both microarrays and next-generation sequencing have identified neuronal transcriptomes and signaling networks involved in normal brain development, as well as in disease. However, the expertise needed to organize and prioritize the resultant data remains substantial. A combination of supervised organization and unsupervised analyses are needed to fully appreciate the underlying structure in these datasets. When utilized effectively, these analyses have yielded striking insights into a number of fundamental questions in neuroscience on topics ranging from the evolution of the human brain to neuropsychiatric and neurodegenerative disorders. Future studies will incorporate these analyses with behavioral and physiological data from patients to more efficiently move toward personalized therapeutics.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|