1
|
Turella S, He C, Zhao L, Banerjee S, Plouhinec L, Assiah Yao R, Nørgaard Kejlstrup MC, Grisel S, So Y, Annic B, Fanuel M, Haddad Momeni M, Bissaro B, Meier S, Morth JP, Dong S, Berrin JG, Abou Hachem M. Enzymatic oxidation of galacturonides from pectin breakdown contributes to stealth infection by Oomycota phytopathogens. Nat Commun 2025; 16:3467. [PMID: 40216756 PMCID: PMC11992081 DOI: 10.1038/s41467-025-58668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Phytophthora phytopathogens from Oomycota cause devastating crop losses and threaten food security. However, Phytophthora secreted proteins that interact with plant-hosts remain underexplored. Here, auxiliary activity family 7 (AA7) enzymes from Ascomycota and Oomycota phytopathogens were shown to oxidise pectin-derived galacturonic acid and/or oligogalacturonides (OGs). Unique mono-cysteinyl-FAD oxidases with positively-charged active sites, suited to oxidise OGs, were discovered in Phytophthora sojae. The P. sojae OG oxidase genes, prevalent in this genus, were co-transcribed with pectin-degradation counterparts during early infection of soybean. Single OG oxidase knockouts significantly decreased P. sojae biomass in planta, potentially linking OG oxidases to virulence. We propose that oxidation by AA7 enzymes impairs the elicitor activity of OGs, potentially contributing to stealth Oomycota infection. Oxidation of OGs unravels a previously unknown microbial mechanism that contributes to evade plant immune-response against pathogens. Our findings highlight a unique oxidase architecture and hitherto unexplored targets for bioprotection from major plant pathogens.
Collapse
Affiliation(s)
- Simone Turella
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Cheng He
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sanchari Banerjee
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lauriane Plouhinec
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | | | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Yunjeong So
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bastien Annic
- INRAE, UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
- INRAE, PROBE research infrastructure, BIBS Facility, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
- INRAE, PROBE research infrastructure, BIBS Facility, Nantes, France
| | - Majid Haddad Momeni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Suomeng Dong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Lin L, Wang Y, Qian H, Wu J, Lin Y, Xia Y, Dong S, Ye W, Wang Y. Specific Transcriptional Regulation Controls Plant Organ-Specific Infection by the Oomycete Pathogen Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2024; 25:e70042. [PMID: 39673080 PMCID: PMC11645254 DOI: 10.1111/mpp.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
The organs of a plant species vary in cell structure, metabolism and defence responses. However, the mechanisms that enable a single pathogen to colonise different plant organs remain unclear. Here we compared the transcriptome of the oomycete pathogen Phytophthora sojae during infection of roots versus leaves of soybeans. We found differences in the transcript levels of hundreds of pathogenicity-related genes, particularly genes encoding carbohydrate-active enzymes, secreted (effector) proteins, oxidoreductase-related proteins and transporters. To identify the key regulator for root-specific infection, we knocked out root-specific transcription factors (TFs) and found the mutants of PsBZPc29, which encodes a member of an oomycete-specific class of basic leucine zipper (bZIP) TFs, displayed reduced virulence on soybean roots but not on leaves. More than 60% of the root-specific genes showed reduced expression in the mutants during root infection. The results suggest that transcriptional regulation underlies the organ-specific infection by P. sojae, and that a bZIP TF plays a key role in root-specific transcriptional regulation.
Collapse
Affiliation(s)
- Long Lin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yang Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Qian
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jiawei Wu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yachun Lin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yeqiang Xia
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Suomeng Dong
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Lee Erickson J, Schuster M. Extracellular proteases from microbial plant pathogens as virulence factors. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102621. [PMID: 39232347 DOI: 10.1016/j.pbi.2024.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Plant pathogens deploy specialized proteins to aid disease progression, some of these proteins function in the apoplast and constitute proteases. Extracellular virulence proteases have been described to play roles in plant cell wall manipulation and immune evasion. In this review, we discuss the evidence for the hypothesized virulence functions of bacterial, fungal, and oomycete extracellular proteases. We highlight the contrast between the low number of elucidated functions for these proteins and the size of extracellular protease repertoires among pathogens. Finally, we suggest that the refinement of in planta 'omics' approaches, combined with recent advances in modeling and mechanism-based methods for trapping substrates finally make it possible to address this knowledge gap.
Collapse
Affiliation(s)
| | - Mariana Schuster
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany.
| |
Collapse
|
4
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Agho CA, Śliwka J, Nassar H, Niinemets Ü, Runno-Paurson E. Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers. Microorganisms 2024; 12:982. [PMID: 38792811 PMCID: PMC11124124 DOI: 10.3390/microorganisms12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Phytophthora infestans is the causal agent of late blight in potato. The occurrence of P. infestans with both A1 and A2 mating types in the field may result in sexual reproduction and the generation of recombinant strains. Such strains with new combinations of traits can be highly aggressive, resistant to fungicides, and can make the disease difficult to control in the field. Metalaxyl-resistant isolates are now more prevalent in potato fields. Understanding the genetic structure and rapid identification of mating types and metalaxyl response of P. infestans in the field is a prerequisite for effective late blight disease monitoring and management. Molecular and phenotypic assays involving molecular and phenotypic markers such as mating types and metalaxyl response are typically conducted separately in the studies of the genotypic and phenotypic diversity of P. infestans. As a result, there is a pressing need to reduce the experimental workload and more efficiently assess the aggressiveness of different strains. We think that employing genetic markers to not only estimate genotypic diversity but also to identify the mating type and fungicide response using machine learning techniques can guide and speed up the decision-making process in late blight disease management, especially when the mating type and metalaxyl resistance data are not available. This technique can also be applied to determine these phenotypic traits for dead isolates. In this study, over 600 P. infestans isolates from different populations-Estonia, Pskov region, and Poland-were classified for mating types and metalaxyl response using machine learning techniques based on simple sequence repeat (SSR) markers. For both traits, random forest and the support vector machine demonstrated good accuracy of over 70%, compared to the decision tree and artificial neural network models whose accuracy was lower. There were also associations (p < 0.05) between the traits and some of the alleles detected, but machine learning prediction techniques based on multilocus SSR genotypes offered better prediction accuracy.
Collapse
Affiliation(s)
- Collins A. Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Department of Potato Genetics and Parental Lines, Platanowa Str. 19, 05-831 Młochów, Poland
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
6
|
Parada-Rojas CH, Stahr M, Childs KL, Quesada-Ocampo LM. Effector Repertoire of the Sweetpotato Black Rot Fungal Pathogen Ceratocystis fimbriata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:315-326. [PMID: 38353601 DOI: 10.1094/mpmi-09-23-0146-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In 2015, sweetpotato producers in the United States experienced one of the worst outbreaks of black rot recorded in history, with up to 60% losses reported in the field and packing houses and at shipping ports. Host resistance remains the ideal management tool to decrease crop losses. Lack of knowledge of Ceratocystis fimbriata biology represents a critical barrier for the deployment of resistance to black rot in sweetpotato. In this study, we scanned the recent near chromosomal-level assembly for putative secreted effectors in the sweetpotato C. fimbriata isolate AS236 using a custom fungal effector annotation pipeline. We identified a set of 188 putative effectors on the basis of secretion signal and in silico prediction in EffectorP. We conducted a deep RNA time-course sequencing experiment to determine whether C. fimbriata modulates effectors in planta and to define a candidate list of effectors expressed during infection. We examined the expression profile of two C. fimbriata isolates, a pre-epidemic (1990s) isolate and a post-epidemic (2015) isolate. Our in planta expression profiling revealed clusters of co-expressed secreted effector candidates. Based on fold-change differences of putative effectors in both isolates and over the course of infection, we suggested prioritization of 31 effectors for functional characterization. Among this set, we identified several effectors that provide evidence for a marked biotrophic phase in C. fimbriata during infection of sweetpotato storage roots. Our study revealed a catalog of effector proteins that provide insight into C. fimbriata infection mechanisms and represent a core catalog to implement effector-assisted breeding in sweetpotato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Camilo H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Madison Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| |
Collapse
|
7
|
Zheng H, You L, Meng S, Wang D, Fu Z. Unraveling the mysteries of (L)WY-domain oomycete effectors. Sci Bull (Beijing) 2023; 68:2898-2901. [PMID: 37973468 DOI: 10.1016/j.scib.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyuan You
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuaijie Meng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhengqing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
8
|
Zhu Z, Xiong Z, Zou W, Shi Z, Li S, Zhang X, Liu S, Liu Y, Luo X, Ren J, Zhu Z, Dong P. Anti-oomycete ability of scopolamine against Phytophthora infestans, a terrible pathogen of potato late blight. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6416-6428. [PMID: 37209269 DOI: 10.1002/jsfa.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phytophthora infestans causes late blight, threatening potato production. The tropane alkaloid scopolamine from some industrial plants (Datura, Atropa, etc.) has a broad-spectrum bacteriostatic effect, but its effect on P. infestans is unknown. RESULTS In the present study, scopolamine inhibited the mycelial growth of phytopathogenic oomycete P. infestans, and the half-maximal inhibitory concentration (IC50 ) was 4.25 g L-1 . The sporangia germination rates were 61.43%, 16.16%, and 3.99% at concentrations of zero (control), 0.5 IC50 , and IC50 , respectively. The sporangia viability of P. infestans was significantly reduced after scopolamine treatment through propidium iodide and fluorescein diacetate staining, speculating that scopolamine destroyed cell membrane integrity. The detached potato tuber experiment demonstrated that scopolamine lessened the pathogenicity of P. infestans in potato tubers. Under stress conditions, scopolamine showed good inhibition of P. infestans, indicating that scopolamine could be used in multiple adverse conditions. The combination effect of scopolamine and the chemical pesticide Infinito on P. infestans was more effective than the use of scopolamine or Infinito alone. Moreover, transcriptome analysis suggested that scopolamine leaded to a downregulation of most P. infestans genes, functioning in cell growth, cell metabolism, and pathogenicity. CONCLUSION To our knowledge, this is the first study to detect scopolamine inhibitory activity against P. infestans. Also, our findings highlight the potential of scopolamine as an eco-friendly option for controlling late blight in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Ziwen Xiong
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Wenjin Zou
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Zhiwen Shi
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Shanying Li
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Xinze Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shicheng Liu
- School of Life Sciences, Chongqing University, Chongqing, China
- Hongshen Honors School, Chongqing University, Chongqing, China
| | - Yi Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xunguang Luo
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| |
Collapse
|
9
|
Xiong Y, Zhao D, Chen S, Yuan L, Zhang D, Wang H. Deciphering the underlying immune network of the potato defense response inhibition by Phytophthora infestans nuclear effector Pi07586 through transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1269959. [PMID: 37810389 PMCID: PMC10556245 DOI: 10.3389/fpls.2023.1269959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Phytophthora infestans, a highly destructive plant oomycete pathogen, is responsible for causing late blight in potatoes worldwide. To successfully infect host cells and evade immunity, P. infestans secretes various effectors into host cells and exclusively targets the host nucleus. However, the precise mechanisms by which these effectors manipulate host gene expression and reprogram defenses remain poorly understood. In this study, we focused on a nuclear-targeted effector, Pi07586, which has been implicated in immune suppression. Quantitative real-time PCR (qRT-PCR) analysis showed Pi07586 was significant up-regulation during the early stages of infection. Agrobacterium-induced transient expression revealed that Pi07586 localized in the nucleus of leaf cells. Overexpression of Pi07586 resulted in increased leaf colonization by P. infestans. RNA-seq analysis revealed that Pi07586 effectively suppressed the expression of PR-1C-like and photosynthetic antenna protein genes. Furthermore, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis indicated that Pi07586 overexpression led to a substantial decrease in abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) levels, while not affecting salicylic acid (SA) and indole-3-acetic acid (IAA) production. These findings shed new light on the modulation of plant immunity by Pi07586 and enhance our understanding of the intricate relationship between P. infestans and host plants.
Collapse
Affiliation(s)
- Yumeng Xiong
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Di Zhao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Lan Yuan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Die Zhang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| |
Collapse
|
10
|
Duan H, Moresco P, Champouret N. Characterization of host-effector transcription dynamics during pathogen infection in engineered late blight resistant potato. Transgenic Res 2023; 32:95-107. [PMID: 36870023 DOI: 10.1007/s11248-023-00340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.
Collapse
Affiliation(s)
- Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA.
- Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, USDA-ARS, U.S. National Arboretum, Beltsville, MD, 20705, USA.
| | - Paul Moresco
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA
- , Chicago, IL, 60610, USA
| | - Nicolas Champouret
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA
- , Naperville, IL, 60540, USA
| |
Collapse
|
11
|
Emir M, Ozketen AC, Andac Ozketen A, Çelik Oğuz A, Huang M, Karakaya A, Rampitsch C, Gunel A. Increased levels of cell wall degrading enzymes and peptidases are associated with aggressiveness in a virulent isolate of Pyrenophora teres f. maculata. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153839. [PMID: 36370615 DOI: 10.1016/j.jplph.2022.153839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Pyrenophora teres f. maculata (Ptm) is a fungal pathogen that causes the spot form of net blotch on barley and leads to economic losses in many of the world's barley-growing regions. Isolates of Ptm exhibit varying levels of aggressiveness that result in quantifiable changes in the severity of the disease. Previous research on plant-pathogen interactions has shown that such divergence is reflected in the proteome and secretome of the pathogen, with certain classes of proteins more prominent in aggressive isolates. Here we have made a detailed comparative analysis of the secretomes of two Ptm isolates, GPS79 and E35 (highly and mildly aggressive, respectively) using a proteomics-based approach. The secretomes were obtained in vitro using media amended with barley leaf sections. Secreted proteins therein were harvested, digested with trypsin, and fractionated offline by HPLC prior to LC-MS in a high-resolution instrument to obtain deep coverage of the proteome. The subsequent analysis used a label-free quantitative proteomics approach with relative quantification of proteins based on precursor ion intensities. A total of 1175 proteins were identified, 931 from Ptm and 244 from barley. Further analysis revealed 160 differentially abundant proteins with at least a two-fold abundance difference between the isolates, with the most enriched in the aggressive GPS79 secretome. These proteins were mainly cell-wall (carbohydrate) degrading enzymes and peptidases, with some oxidoreductases and other pathogenesis-related proteins also identified, suggesting that aggressiveness is associated with an improved ability of GPS79 to overcome cell wall barriers and neutralize host defense responses.
Collapse
Affiliation(s)
- Mahmut Emir
- Kirsehir-Ahi Evran University, Faculty of Arts and Sciences, Department of Chemistry, Kirsehir, Turkey
| | | | | | - Arzu Çelik Oğuz
- Ankara University Faculty of Agriculture, Department of Plant Protection, Dışkapı, Ankara, Turkey
| | - Mei Huang
- Agriculture and Agrifood Canada, Morden Research and Development Centre, Morden MB, Canada
| | - Aziz Karakaya
- Ankara University Faculty of Agriculture, Department of Plant Protection, Dışkapı, Ankara, Turkey
| | - Christof Rampitsch
- Agriculture and Agrifood Canada, Morden Research and Development Centre, Morden MB, Canada.
| | - Aslihan Gunel
- Kirsehir-Ahi Evran University, Faculty of Arts and Sciences, Department of Chemistry, Kirsehir, Turkey.
| |
Collapse
|
12
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
13
|
Matson MEH, Liang Q, Lonardi S, Judelson HS. Karyotype variation, spontaneous genome rearrangements affecting chemical insensitivity, and expression level polymorphisms in the plant pathogen Phytophthora infestans revealed using its first chromosome-scale assembly. PLoS Pathog 2022; 18:e1010869. [PMID: 36215336 PMCID: PMC9584435 DOI: 10.1371/journal.ppat.1010869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/20/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Natural isolates of the potato and tomato pathogen Phytophthora infestans exhibit substantial variation in virulence, chemical sensitivity, ploidy, and other traits. A chromosome-scale assembly was developed to expand genomic resources for this oomyceteous microbe, and used to explore the basis of variation. Using PacBio and Illumina data, a long-range linking library, and an optical map, an assembly was created and coalesced into 15 pseudochromosomes spanning 219 Mb using SNP-based genetic linkage data. De novo gene prediction combined with transcript evidence identified 19,981 protein-coding genes, plus about eight thousand tRNA genes. The chromosomes were comprised of a mosaic of gene-rich and gene-sparse regions plus very long centromeres. Genes exhibited a biased distribution across chromosomes, especially members of families encoding RXLR and CRN effectors which clustered on certain chromosomes. Strikingly, half of F1 progeny of diploid parents were polyploid or aneuploid. Substantial expression level polymorphisms between strains were identified, much of which could be attributed to differences in chromosome dosage, transposable element insertions, and adjacency to repetitive DNA. QTL analysis identified a locus on the right arm of chromosome 3 governing sensitivity to the crop protection chemical metalaxyl. Strains heterozygous for resistance often experienced megabase-sized deletions of that part of the chromosome when cultured on metalaxyl, increasing resistance due to loss of the sensitive allele. This study sheds light on diverse phenomena affecting variation in P. infestans and relatives, helps explain the prevalence of polyploidy in natural populations, and provides a new foundation for biologic and genetic investigations.
Collapse
Affiliation(s)
- Michael E. H. Matson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Qihua Liang
- Department of Computer Science and Engineering, University of California, Riverside, California, United States of America
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Unveiling the Secretome of the Fungal Plant Pathogen Neofusicoccum parvum Induced by In Vitro Host Mimicry. J Fungi (Basel) 2022; 8:jof8090971. [PMID: 36135697 PMCID: PMC9505667 DOI: 10.3390/jof8090971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum is a fungal plant pathogen of a wide range of hosts but knowledge about the virulence factors of N. parvum and host-pathogen interactions is rather limited. The molecules involved in the interaction between N. parvum and Eucalyptus are mostly unknown, so we used a multi-omics approach to understand pathogen-host interactions. We present the first comprehensive characterization of the in vitro secretome of N. parvum and a prediction of protein-protein interactions using a dry-lab non-targeted interactomics strategy. We used LC-MS to identify N. parvum protein profiles, resulting in the identification of over 400 proteins, from which 117 had a different abundance in the presence of the Eucalyptus stem. Most of the more abundant proteins under host mimicry are involved in plant cell wall degradation (targeting pectin and hemicellulose) consistent with pathogen growth on a plant host. Other proteins identified are involved in adhesion to host tissues, penetration, pathogenesis, or reactive oxygen species generation, involving ribonuclease/ribotoxin domains, putative ricin B lectins, and necrosis elicitors. The overexpression of chitosan synthesis proteins during interaction with the Eucalyptus stem reinforces the hypothesis of an infection strategy involving pathogen masking to avoid host defenses. Neofusicoccum parvum has the molecular apparatus to colonize the host but also actively feed on its living cells and induce necrosis suggesting that this species has a hemibiotrophic lifestyle.
Collapse
|
15
|
Andronis CE, Jacques S, Lipscombe R, Tan KC. Comparative sub-cellular proteome analyses reveals metabolic differentiation and production of effector-like molecules in the dieback phytopathogen Phytophthora cinnamomi. J Proteomics 2022; 269:104725. [PMID: 36096432 DOI: 10.1016/j.jprot.2022.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Phytopathogenic oomycetes pose a significant threat to global biodiversity and food security. The proteomes of these oomycetes likely contain important factors that contribute to their pathogenic success, making their discovery crucial for elucidating pathogenicity. Phytophthora cinnamomi is a root pathogen that causes dieback in a wide variety of crops and native vegetation world-wide. Virulence proteins produced by P. cinnamomi are not well defined and a large-scale approach to understand the biochemistry of this pathogen has not been documented. Soluble mycelial, zoospore and secreted proteomes were obtained and label-free quantitative proteomics was used to compare the composition of the three sub-proteomes. A total of 4635 proteins were identified, validating 17.7% of the predicted gene set. The mycelia were abundant in transporters for nutrient acquisition, metabolism and cellular proliferation. The zoospores had less metabolic related ontologies but were abundant in energy generating, motility and signalling associated proteins. Virulence-associated proteins were identified in the secretome such as candidate effector and effector-like proteins, which interfere with the host immune system. These include hydrolases, cell wall degrading enzymes, putative necrosis-inducing proteins and elicitins. The secretome elicited a hypersensitive response on the roots of a model host and thus suggests evidence of effector activity. SIGNIFICANCE: Phytophthora cinnamomi is a phytopathogenic oomycete that causes dieback disease in native vegetation and several horticultural crops such as avocado, pineapple and macadamia. Whilst this pathogen has significance world-wide, its pathogenicity and virulence have not been described in depth. We carried out comparative label-free proteomics of the mycelia, zoospores and secretome of P. cinnamomi. This study highlights the differential metabolism and cellular processes between the sub-proteomes. Proteins associated with metabolism, nutrient transport and cellular proliferation were over represented in the mycelia. The zoospores have a specialised proteome showing increased energy generation geared towards motility. Candidate effectors and effector-like secreted proteins were also identified, which can be exploited for genetic resistance. This demonstrates a better understanding of the biology and pathogenicity of P. cinnamomi infection that can subsequently be used to develop effective methods of disease management.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
16
|
Kobayashi M, Utsushi H, Fujisaki K, Takeda T, Yamashita T, Terauchi R. A jacalin-like lectin domain-containing protein of Sclerospora graminicola acts as an apoplastic virulence effector in plant-oomycete interactions. MOLECULAR PLANT PATHOLOGY 2022; 23:845-854. [PMID: 35257477 PMCID: PMC9104248 DOI: 10.1111/mpp.13197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The plant extracellular space, including the apoplast and plasma membrane, is the initial site of plant-pathogen interactions. Pathogens deliver numerous secreted proteins, called effectors, into this region to suppress plant immunity and establish infection. Downy mildew caused by the oomycete pathogen Sclerospora graminicola (Sg) is an economically important disease of Poaceae crops including foxtail millet (Setaria italica). We previously reported the genome sequence of Sg and showed that the jacalin-related lectin (JRL) gene family has significantly expanded in this lineage. However, the biological functions of JRL proteins remained unknown. Here, we show that JRL from Sg (SgJRL) functions as an apoplastic virulence effector. We identified eight SgJRLs by protein mass spectrometry analysis of extracellular fluid from Sg-inoculated foxtail millet leaves. SgJRLs consist of a jacalin-like lectin domain and an N-terminal putative secretion signal; SgJRL expression is induced by Sg infection. Heterologous expression of three SgJRLs with N-terminal secretion signal peptides in Nicotiana benthamiana enhanced the virulence of the pathogen Phytophthora palmivora inoculated onto the same leaves. Of the three SgJRLs, SG06536 fused with green fluorescent protein (GFP) localized to the apoplastic space in N. benthamiana leaves. INF1-mediated induction of defence-related genes was suppressed by co-expression of SG06536-GFP. These findings suggest that JRLs are novel apoplastic effectors that contribute to pathogenicity by suppressing plant defence responses.
Collapse
Affiliation(s)
- Michie Kobayashi
- Iwate Biotechnology Research CenterKitakamiIwateJapan
- Present address:
Institute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - Hiroe Utsushi
- Iwate Biotechnology Research CenterKitakamiIwateJapan
| | - Koki Fujisaki
- Iwate Biotechnology Research CenterKitakamiIwateJapan
| | - Takumi Takeda
- Iwate Biotechnology Research CenterKitakamiIwateJapan
| | | | - Ryohei Terauchi
- Iwate Biotechnology Research CenterKitakamiIwateJapan
- Laboratory of Crop EvolutionGraduate School of AgricultureKyoto UniversityMukoKyotoJapan
| |
Collapse
|
17
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
18
|
Zhu J, Tang X, Sun Y, Li Y, Wang Y, Jiang Y, Shao H, Yong B, Li H, Tao X. Comparative Metabolomic Profiling of Compatible and Incompatible Interactions Between Potato and Phytophthora infestans. Front Microbiol 2022; 13:857160. [PMID: 35464908 PMCID: PMC9024415 DOI: 10.3389/fmicb.2022.857160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Late blight is one of the main biological stresses limiting the potato yield; however, the biochemical mechanisms underlying the infection process of Phytophthora infestans remain unrevealed. In this study, the late blight-resistant potato cultivar Ziyun No.1 (R) and the susceptible cultivar Favorita (S) were inoculated with P. infestans. Untargeted metabolomics was used to study the changes of metabolites in the compatible and incompatible interactions of the two cultivars and the pathogen at 0, 48, and 96 h postinoculation (hpi). A total of 819 metabolites were identified, and the metabolic differences mainly emerged after 48 hpi. There were 198 and 115 differentially expressed metabolites (DEMs) in the compatible and incompatible interactions. These included 147 and 100 upregulated metabolites during the compatible and incompatible interactions, respectively. Among them, 73 metabolites were identified as the P. infestans-responsive DEMs. Furthermore, the comparisons between the two cultivars identified 57 resistance-related metabolites. Resistant potato cultivar had higher levels of salicylic acid and several upstream phenylpropanoid biosynthesis metabolites, triterpenoids, and hydroxycinnamic acids and their derivatives, such as sakuranetin, ferulic acid, ganoderic acid Mi, lucidenic acid D2, and caffeoylmalic acid. These metabolites play crucial roles in cell wall thickening and have antibacterial and antifungal activities. This study reports the time-course metabolomic responses of potatoes to P. infestans. The findings reveal the responses involved in the compatible and incompatible interactions of potatoes and P. infestans.
Collapse
Affiliation(s)
- Jingyu Zhu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xue Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yining Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yajie Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Honghao Li
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Ministry of Agriculture, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Honghao Li,
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Xiang Tao,
| |
Collapse
|
19
|
Li H, Hu R, Fan Z, Chen Q, Jiang Y, Huang W, Tao X. Dual RNA Sequencing Reveals the Genome-Wide Expression Profiles During the Compatible and Incompatible Interactions Between Solanum tuberosum and Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 13:817199. [PMID: 35401650 PMCID: PMC8993506 DOI: 10.3389/fpls.2022.817199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is a devastating plant disease. P. infestans genome encodes hundreds of effectors, complicating the interaction between the pathogen and its host and making it difficult to understand the interaction mechanisms. In this study, the late blight-resistant potato cultivar Ziyun No.1 and the susceptible potato cultivar Favorita were infected with P. infestans isolate SCPZ16-3-1 to investigate the global expression profiles during the compatible and incompatible interactions using dual RNA sequencing (RNA-seq). Most of the expressed Arg-X-Leu-Arg (RXLR) effector genes were suppressed during the first 24 h of infection, but upregulated after 24 h. Moreover, P. infestans induced more specifically expressed genes (SEGs), including RXLR effectors and cell wall-degrading enzymes (CWDEs)-encoding genes, in the compatible interaction. The resistant potato activated a set of biotic stimulus responses and phenylpropanoid biosynthesis SEGs, including kirola-like protein, nucleotide-binding site-leucine-rich repeat (NBS-LRR), disease resistance, and kinase genes. Conversely, the susceptible potato cultivar upregulated more kinase, pathogenesis-related genes than the resistant cultivar. This study is the first study to characterize the compatible and incompatible interactions between P. infestans and different potato cultivars and provides the genome-wide expression profiles for RXLR effector, CWDEs, NBS-LRR protein, and kinase-encoding genes.
Collapse
Affiliation(s)
- Honghao Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Rongping Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhonghan Fan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qinghua Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
20
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
21
|
Ayala-Usma DA, Cárdenas M, Guyot R, Mares MCD, Bernal A, Muñoz AR, Restrepo S. A whole genome duplication drives the genome evolution of Phytophthora betacei, a closely related species to Phytophthora infestans. BMC Genomics 2021; 22:795. [PMID: 34740326 PMCID: PMC8571832 DOI: 10.1186/s12864-021-08079-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pathogens of the genus Phytophthora are the etiological agents of many devastating diseases in several high-value crops and forestry species such as potato, tomato, cocoa, and oak, among many others. Phytophthora betacei is a recently described species that causes late blight almost exclusively in tree tomatoes, and it is closely related to Phytophthora infestans that causes the disease in potato crops and other Solanaceae. This study reports the assembly and annotation of the genomes of P. betacei P8084, the first of its species, and P. infestans RC1-10, a Colombian strain from the EC-1 lineage, using long-read SMRT sequencing technology. RESULTS Our results show that P. betacei has the largest sequenced genome size of the Phytophthora genus so far with 270 Mb. A moderate transposable element invasion and a whole genome duplication likely explain its genome size expansion when compared to P. infestans, whereas P. infestans RC1-10 has expanded its genome under the activity of transposable elements. The high diversity and abundance (in terms of copy number) of classified and unclassified transposable elements in P. infestans RC1-10 relative to P. betacei bears testimony of the power of long-read technologies to discover novel repetitive elements in the genomes of organisms. Our data also provides support for the phylogenetic placement of P. betacei as a standalone species and as a sister group of P. infestans. Finally, we found no evidence to support the idea that the genome of P. betacei P8084 follows the same gene-dense/gense-sparse architecture proposed for P. infestans and other filamentous plant pathogens. CONCLUSIONS This study provides the first genome-wide picture of P. betacei and expands the genomic resources available for P. infestans. This is a contribution towards the understanding of the genome biology and evolutionary history of Phytophthora species belonging to the subclade 1c.
Collapse
Affiliation(s)
- David A Ayala-Usma
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Martha Cárdenas
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, CIRAD, Université de Montpellier, 34394, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Maryam Chaib De Mares
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes (LIMMA), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes Muñoz
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, MO, 63108, St Louis, USA.
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia.
| |
Collapse
|
22
|
Bentham AR, Petit-Houdenot Y, Win J, Chuma I, Terauchi R, Banfield MJ, Kamoun S, Langner T. A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum. PLoS Pathog 2021; 17:e1009957. [PMID: 34758051 PMCID: PMC8608293 DOI: 10.1371/journal.ppat.1009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/22/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.
Collapse
Affiliation(s)
- Adam R. Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohann Petit-Houdenot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryohei Terauchi
- Kyoto University, Kyoto, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
23
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Multiple Mechanisms Drive the Evolutionary Adaptation of Phytophthora infestans Effector Avr1 to Host Resistance. J Fungi (Basel) 2021; 7:jof7100789. [PMID: 34682211 PMCID: PMC8538934 DOI: 10.3390/jof7100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Abdul Waheed
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China;
| | - Oswald Nkurikiyimfura
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| |
Collapse
|
24
|
Xue D, Liu H, Wang D, Gao Y, Jia Z. Comparative transcriptome analysis of R3a and Avr3a-mediated defense responses in transgenic tomato. PeerJ 2021; 9:e11965. [PMID: 34434667 PMCID: PMC8359799 DOI: 10.7717/peerj.11965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Late blight caused by Phytophthora infestans is one of the most devastating diseases in potatoes and tomatoes. At present, several late blight resistance genes have been mapped and cloned. To better understand the transcriptome changes during the incompatible interaction process between R3a and Avr3a, in this study, after spraying DEX, the leaves of MM-R3a-Avr3a and MM-Avr3a transgenic plants at different time points were used for comparative transcriptome analysis. A total of 7,324 repeated DEGs were detected in MM-R3a-Avr3a plants at 2-h and 6-h, and 729 genes were differentially expressed at 6-h compared with 2-h. Only 1,319 repeated DEGs were found in MM-Avr3a at 2-h and 6-h, of which 330 genes have the same expression pattern. Based on GO, KEGG and WCGNA analysis of DEGs, the phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly up-regulated. Parts of the down-regulated DEGs were enriched in carbon metabolism and the photosynthesis process. Among these DEGs, most of the transcription factors, such as WRKY, MYB, and NAC, related to disease resistance or endogenous hormones SA and ET pathways, as well as PR, CML, SGT1 gene were also significantly induced. Our results provide transcriptome-wide insights into R3a and Avr3a-mediated incompatibility interaction.
Collapse
Affiliation(s)
- Dongqi Xue
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Han Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanna Gao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiqi Jia
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Wang S, Vetukuri RR, Kushwaha SK, Hedley PE, Morris J, Studholme DJ, Welsh LRJ, Boevink PC, Birch PRJ, Whisson SC. Haustorium formation and a distinct biotrophic transcriptome characterize infection of Nicotiana benthamiana by the tree pathogen Phytophthora kernoviae. MOLECULAR PLANT PATHOLOGY 2021; 22:954-968. [PMID: 34018655 PMCID: PMC8295517 DOI: 10.1111/mpp.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 05/29/2023]
Abstract
Phytophthora species cause some of the most serious diseases of trees and threaten forests in many parts of the world. Despite the generation of genome sequence assemblies for over 10 tree-pathogenic Phytophthora species and improved detection methods, there are many gaps in our knowledge of how these pathogens interact with their hosts. To facilitate cell biology studies of the infection cycle we examined whether the tree pathogen Phytophthora kernoviae could infect the model plant Nicotiana benthamiana. We transformed P. kernoviae to express green fluorescent protein (GFP) and demonstrated that it forms haustoria within infected N. benthamiana cells. Haustoria were also formed in infected cells of natural hosts, Rhododendron ponticum and European beech (Fagus sylvatica). We analysed the transcriptome of P. kernoviae in cultured mycelia, spores, and during infection of N. benthamiana, and detected 12,559 transcripts. Of these, 1,052 were predicted to encode secreted proteins, some of which may function as effectors to facilitate disease development. From these, we identified 87 expressed candidate RXLR (Arg-any amino acid-Leu-Arg) effectors. We transiently expressed 12 of these as GFP fusions in N. benthamiana leaves and demonstrated that nine significantly enhanced P. kernoviae disease progression and diversely localized to the cytoplasm, nucleus, nucleolus, and plasma membrane. Our results show that N. benthamiana can be used as a model host plant for studying this tree pathogen, and that the interaction likely involves suppression of host immune responses by RXLR effectors. These results establish a platform to expand the understanding of Phytophthora tree diseases.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
| | - Ramesh R. Vetukuri
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Sandeep K. Kushwaha
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
- National Institute of Animal BiotechnologyHyderabadIndia
| | - Pete E. Hedley
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Jenny Morris
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Lydia R. J. Welsh
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Petra C. Boevink
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | | |
Collapse
|
26
|
Gómez-Pérez D, Kemen E. Predicting Lifestyle from Positive Selection Data and Genome Properties in Oomycetes. Pathogens 2021; 10:807. [PMID: 34202069 PMCID: PMC8308905 DOI: 10.3390/pathogens10070807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
As evidenced in parasitism, host and niche shifts are a source of genomic and phenotypic diversification. Exemplary is a reduction in the core metabolism as parasites adapt to a particular host, while the accessory genome often maintains a high degree of diversification. However, selective pressures acting on the genome of organisms that have undergone recent lifestyle or host changes have not been fully investigated. Here, we developed a comparative genomics approach to study underlying adaptive trends in oomycetes, a eukaryotic phylum with a wide and diverse range of economically important plant and animal parasitic lifestyles. Our analysis reveals converging evolution on biological processes for oomycetes that have similar lifestyles. Moreover, we find that certain functions, in particular carbohydrate metabolism, transport, and signaling, are important for host and environmental adaptation in oomycetes. Given the high correlation between lifestyle and genome properties in our oomycete dataset, together with the known convergent evolution of fungal and oomycete genomes, we developed a model that predicts plant pathogenic lifestyles with high accuracy based on functional annotations. These insights into how selective pressures correlate with lifestyle may be crucial to better understand host/lifestyle shifts and their impact on the genome.
Collapse
Affiliation(s)
| | - Eric Kemen
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
27
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
28
|
Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2021; 230:720-736. [PMID: 33423301 PMCID: PMC8048681 DOI: 10.1111/nph.17181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 05/03/2023]
Abstract
Plant pathogens exploit the extracellular matrix (ECM) to inhibit host immunity during their interactions with the host. The formation of ECM involves a series of continuous steps of vesicular transport events. To understand how such vesicle trafficking impacts ECM and virulence in the rice blast fungus Magnaporthe oryzae, we characterised MoSwa2, a previously identified actin-regulating kinase MoArk1 interacting protein, as an orthologue of the auxilin-like clathrin uncoating factor Swa2 of the budding yeast Saccharomyces cerevisiae. We found that MoSwa2 functions as an uncoating factor of the coat protein complex II (COPII) via an interaction with the COPII subunit MoSec24-2. Loss of MoSwa2 led to a deficiency in the secretion of extracellular proteins, resulting in both restricted growth of invasive hyphae and reduced inhibition of host immunity. Additionally, extracellular fluid (ECF) proteome analysis revealed that MoSwa2-regulated extracellular proteins include many redox proteins such as the berberine bridge enzyme-like (BBE-like) protein MoSef1. We further found that MoSef1 functions as an apoplastic virulent factor that inhibits the host immune response. Our studies revealed a novel function of a COPII uncoating factor in vesicular transport that is critical in the suppression of host immunity and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Jiexiong Hu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ao Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ying Dai
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Weizhong Chen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Yanglan He
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
29
|
Liu JJ, Sniezko RA, Zamany A, Williams H, Omendja K, Kegley A, Savin DP. Comparative Transcriptomics and RNA-Seq-Based Bulked Segregant Analysis Reveals Genomic Basis Underlying Cronartium ribicola vcr2 Virulence. Front Microbiol 2021; 12:602812. [PMID: 33776951 PMCID: PMC7990074 DOI: 10.3389/fmicb.2021.602812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
Breeding programs of five-needle pines have documented both major gene resistance (MGR) and quantitative disease resistance (QDR) to Cronartium ribicola (Cri), a non-native, invasive fungal pathogen causing white pine blister rust (WPBR). WPBR is one of the most deadly forest diseases in North America. However, Cri virulent pathotypes have evolved and can successfully infect and kill trees carrying resistance (R) genes, including vcr2 that overcomes MGR conferred by the western white pine (WWP, Pinus monticola) R gene (Cr2). In the absence of a reference genome, the present study generated a vcr2 reference transcriptome, consisting of about 20,000 transcripts with 1,014 being predicted to encode secreted proteins (SPs). Comparative profiling of transcriptomes and secretomes revealed vcr2 was significantly enriched for several gene ontology (GO) terms relating to oxidation-reduction processes and detoxification, suggesting that multiple molecular mechanisms contribute to pathogenicity of the vcr2 pathotype for its overcoming Cr2. RNA-seq-based bulked segregant analysis (BSR-Seq) revealed genome-wide DNA variations, including about 65,617 single nucleotide polymorphism (SNP) loci in 7,749 polymorphic genes shared by vcr2 and avirulent (Avcr2) pathotypes. An examination of the distribution of minor allele frequency (MAF) uncovered a high level of genomic divergence between vcr2 and Avcr2 pathotypes. By integration of extreme-phenotypic genome-wide association (XP-GWAS) analysis and allele frequency directional difference (AFDD) mapping, we identified a set of vcr2-associated SNPs within functional genes, involved in fungal virulence and other molecular functions. These included six SPs that were top candidate effectors with putative activities of reticuline oxidase, proteins with common in several fungal extracellular membrane (CFEM) domain or ferritin-like domain, polysaccharide lyase, rds1p-like stress responsive protein, and two Cri-specific proteins without annotation. Candidate effectors and vcr2-associated genes provide valuable resources for further deciphering molecular mechanisms of virulence and pathogenicity by functional analysis and the subsequent development of diagnostic tools for monitoring the virulence landscape in the WPBR pathosystems.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Kangakola Omendja
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Douglas P Savin
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
30
|
Wang S, Xing R, Wang Y, Shu H, Fu S, Huang J, Paulus JK, Schuster M, Saunders DGO, Win J, Vleeshouwers V, Wang Y, Zheng X, van der Hoorn RAL, Dong S. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. THE NEW PHYTOLOGIST 2021; 229:3424-3439. [PMID: 33251609 DOI: 10.1111/nph.17120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongkang Xing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenggui Fu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Diane G O Saunders
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Vivianne Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS Genet 2021; 17:e1009386. [PMID: 33591993 PMCID: PMC7909708 DOI: 10.1371/journal.pgen.1009386] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus. The genomes of plant pathogens often exhibit an architecture that facilitates high rates of dynamic rearrangements and genetic diversification in virulence associated regions. These regions, which tend to be gene sparse and repeat rich, are thought to serve as a cradle for adaptive evolution. Supernumerary chromosomes, i.e. chromosomes that are only present in some but not all individuals of a species, are a special type of structural variation that have been observed in plants, animals, and fungi. Here we identified and studied supernumerary mini-chromosomes in the blast fungus Magnaporthe oryzae, a pathogen that causes some of the most destructive plant diseases. We found that rice, foxtail millet and goosegrass isolates of this pathogen contain mini-chromosomes with distinct sequence composition. All mini-chromosomes are rich in repetitive genetic elements and have lower gene densities than core-chromosomes. Further, we identified virulence-related genes on the mini-chromosome of the rice isolate. We observed large-scale genomic rearrangements around these loci, indicative of a role of mini-chromosomes in facilitating genome dynamics. Taken together, our results indicate that mini-chromosomes contribute to genome rearrangements and possibly adaptive evolution of the blast fungus.
Collapse
|
32
|
Zhang F, Chen H, Zhang X, Gao C, Huang J, Lü L, Shen D, Wang L, Huang C, Ye W, Zheng X, Wang Y, Vossen JH, Dong S. Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. PHYTOPATHOLOGY 2021; 111:96-107. [PMID: 33026300 DOI: 10.1094/phyto-05-20-0208-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Li Lü
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518120, China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Maizidian Street, No. 20, Beijing, 100125, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
33
|
Anupriya C, Shradha N, Prasun B, Abha A, Pankaj S, Abdin MZ, Neeraj S. Genomic and Molecular Perspectives of Host-pathogen Interaction and Resistance Strategies against White Rust in Oilseed Mustard. Curr Genomics 2020; 21:179-193. [PMID: 33071612 PMCID: PMC7521032 DOI: 10.2174/1389202921999200508075410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 11/29/2022] Open
Abstract
Oilseed brassicas stand as the second most valuable source of vegetable oil and the third most traded one across the globe. However, the yield can be severely affected by infections caused by phytopathogens. White rust is a major oomycete disease of oilseed brassicas resulting in up to 60% yield loss globally. So far, success in the development of oomycete resistant Brassicas through conventional breeding has been limited. Hence, there is an imperative need to blend conventional and frontier biotechnological means to breed for improved crop protection and yield. This review provides a deep insight into the white rust disease and explains the oomycete-plant molecular events with special reference to Albugo candida describing the role of effector molecules, A. candida secretome, and disease response mechanism along with nucleotide-binding leucine-rich repeat receptor (NLR) signaling. Based on these facts, we further discussed the recent progress and future scopes of genomic approaches to transfer white rust resistance in the susceptible varieties of oilseed brassicas, while elucidating the role of resistance and susceptibility genes. Novel genomic technologies have been widely used in crop sustainability by deploying resistance in the host. Enrichment of NLR repertoire, over-expression of R genes, silencing of avirulent and disease susceptibility genes through RNA interference and CRSPR-Cas are technologies which have been successfully applied against pathogen-resistance mechanism. The article provides new insight into Albugo and Brassica genomics which could be useful for producing high yielding and WR resistant oilseed cultivars across the globe.
Collapse
Affiliation(s)
- Chatterjee Anupriya
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Nirwan Shradha
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Bandyopadhyay Prasun
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Agnihotri Abha
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Sharma Pankaj
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Malik Zainul Abdin
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Shrivastava Neeraj
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| |
Collapse
|
34
|
Pottinger SE, Innes RW. RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:139-160. [PMID: 32284014 DOI: 10.1146/annurev-phyto-010820-012733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Focusing on the discovery and characterization of the Arabidopsis disease resistance protein RPS5 and its guardee PBS1, this review discusses work done in the Innes laboratory from the initial identification of the RPS5 gene in 1995 to the recent deployment of the PBS1 decoy system in crops. This is done through discussion of the structure, function, and signaling environment of RPS5 and PBS1, highlighting collaborations and influential ideas along the way. RPS5, a nucleotide-binding leucine-rich repeat (NLR) protein, is activated by the proteolytic cleavage of PBS1. We have shown that the cleavage site within PBS1 can be altered to contain cleavage sites for other proteases, enabling RPS5 activation by these proteases, thereby conferring resistance to different pathogens. This decoy approach has since been translated into crop species using endogenous PBS1 orthologs and holds strong potential for GMO-free development of new genetic resistance against important crop pathogens.
Collapse
Affiliation(s)
- Sarah E Pottinger
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
35
|
Pottinger SE, Bak A, Margets A, Helm M, Tang L, Casteel C, Innes RW. Optimizing the PBS1 Decoy System to Confer Resistance to Potyvirus Infection in Arabidopsis and Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:932-944. [PMID: 32267815 DOI: 10.1094/mpmi-07-19-0190-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Arabidopsis resistance protein RPS5 is activated by proteolytic cleavage of the protein kinase PBS1 by the Pseudomonas syringae effector protease AvrPphB. We have previously shown that replacing seven amino acids at the cleavage site of PBS1 with a motif cleaved by the NIa protease of turnip mosaic virus (TuMV) enables RPS5 activation upon TuMV infection. However, this engineered resistance conferred a trailing necrosis phenotype indicative of a cell-death response too slow to contain the virus. We theorized this could result from a positional mismatch within the cell between PBS1TuMV, RPS5, and the NIa protease. To test this, we relocalized PBS1TuMV and RPS5 to cellular sites of NIa accumulation. These experiments revealed that relocation of RPS5 away from the plasma membrane compromised RPS5-dependent cell death in Nicotiana benthamiana, even though PBS1 was efficiently cleaved. As an alternative approach, we tested whether overexpression of plasma membrane-localized PBS1TuMV could enhance RPS5 activation by TuMV. Significantly, overexpressing the PBS1TuMV decoy protein conferred complete resistance to TuMV when delivered by either agrobacterium or by aphid transmission, showing that RPS5-mediated defense responses are effective against bacterial and viral pathogens. Lastly, we have now extended this PBS1 decoy approach to soybean by modifying a soybean PBS1 ortholog to be cleaved by the NIa protease of soybean mosaic virus (SMV). Transgenic overexpression of this soybean PBS1 decoy conferred immunity to SMV, demonstrating that we can use endogenous PBS1 proteins in crop plants to engineer economically relevant disease resistant traits.
Collapse
Affiliation(s)
- Sarah E Pottinger
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| | - Aurelie Bak
- University of California, Department of Plant Pathology, Davis, CA 95616, U.S.A
| | - Alexandra Margets
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| | - Matthew Helm
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, U.S.A
| | - Lucas Tang
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| | - Clare Casteel
- University of California, Department of Plant Pathology, Davis, CA 95616, U.S.A
| | - Roger W Innes
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| |
Collapse
|
36
|
Rojas-Estevez P, Urbina-Gómez DA, Ayala-Usma DA, Guayazan-Palacios N, Mideros MF, Bernal AJ, Cardenas M, Restrepo S. Effector Repertoire of Phytophthora betacei: In Search of Possible Virulence Factors Responsible for Its Host Specificity. Front Genet 2020; 11:579. [PMID: 32582295 PMCID: PMC7295944 DOI: 10.3389/fgene.2020.00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Phytophthora betacei is an oomycete plant pathogen closely related to Phytophthora infestans. It infects tree tomato (Solanum betaceum) in northern South America, but is, under natural conditions, unable to infect potatoes or tomatoes, the main hosts of its sister species P. infestans. We characterized, and compared the effector repertoires of P. betacei and other Phytophthora species. To this end, we used in silico approaches to predict and describe the repertoire of secreted proteins in Phytophthora species and determine unique and core effectors. P. betacei has the largest proteome and secretome of all Phytophthora species evaluated. We identified between 450 and 1933 candidate effector genes in Phytophthora ramorum, Phytophthora sojae, Phytophthora cactorum, Phytophthora parasitica, Phytophthora palmivora, P. infestans, and P. betacei genomes. The P. betacei predicted secretome contains 5653 proteins, 1126 of which are apoplastic effectors and 807cytoplasmic effectors. Genes encoding cytoplasmic effectors include 791 genes with an RxLR domain (the largest number known so far in a Phytophthora species) and 16 with a Crinkler (CRN) domain. We detected homologs of previously described avirulence gene (Avr) present in Phytophthora spp., such as Avr1, Avr3b, Avr4, and Avrblb1, suggesting a high level of effector gene conservation among Phytophthora species. Nonetheless, fewer CRN effectors were obtained in P. betacei compared to all other Phytophthora species analyzed. The comparison between P. infestans and P. betacei effector profiles shows unique features in P. betacei that might be involved in pathogenesis and host preference. Indeed, 402 unique predicted effector genes were detected in P. betacei, corresponding to 197 apoplastic effector genes, 203 RxLR cytoplasmic effector genes, and 2 effector genes with CRN domain. This is the first characterization of the effector profile of P. betacei and the broadest comparison of predicted effector repertoires in the genus Phytophthora following a standardized prediction pipeline. The resultant P. betacei putative effector repertoire provides a reasonable set of proteins whose experimental validation could lead to understand the specific virulence factors responsible for the host specificity of this species.
Collapse
Affiliation(s)
- Paola Rojas-Estevez
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota
| | - David A Urbina-Gómez
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota
| | - David A Ayala-Usma
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota.,Laboratorio de Biología Computacional y Ecología Microbiana, Universidad de los Andes, Colombia, Bogota
| | - Natalia Guayazan-Palacios
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota
| | - Maria Fernanda Mideros
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota
| | - Adriana J Bernal
- Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura, Universidad de los Andes, Colombia, Bogota
| | - Martha Cardenas
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología, Facultad de Ingeniería, Universidad de los Andes, Colombia, Bogota
| |
Collapse
|
37
|
McGowan J, O’Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms 2020; 8:E653. [PMID: 32365808 PMCID: PMC7285336 DOI: 10.3390/microorganisms8050653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The Phytophthora genus includes some of the most devastating plant pathogens. Here we report draft genome sequences for three ubiquitous Phytophthora species-Phytophthora chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally widespread species often associated with aquatic habitats. They are both regarded as opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 61 Mb. Similar to other oomycete species, tandem gene duplication appears to have played an important role in the expansion of effector arsenals. Comparative analysis of carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome sequence of each species was also determined, and their gene content and genome structure were compared. Using mass spectrometry, we characterised the extracellular proteome of each species and identified large numbers of proteins putatively involved in pathogenicity and osmotrophy. The mycelial proteome of each species was also characterised using mass spectrometry. In total, the expression of approximately 3000 genes per species was validated at the protein level. These genome resources will be valuable for future studies to understand the behaviour of these three widespread Phytophthora species.
Collapse
Affiliation(s)
- Jamie McGowan
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | | | - Rebecca A. Owens
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| |
Collapse
|
38
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
39
|
Ochola S, Huang J, Ali H, Shu H, Shen D, Qiu M, Wang L, Li X, Chen H, Kange A, Qutob D, Dong S. Editing of an effector gene promoter sequence impacts plant-Phytophthora interaction. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:378-392. [PMID: 31691466 DOI: 10.1111/jipb.12883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Pathogen avirulence (Avr) effectors interplay with corresponding plant resistance (R) proteins and activate robust plant immune responses. Although the expression pattern of Avr genes has been tied to their functions for a long time, it is still not clear how Avr gene expression patterns impact plant-microbe interactions. Here, we selected PsAvr3b, which shows a typical effector gene expression pattern from a soybean root pathogen Phytophthora sojae. To modulate gene expression, we engineered PsAvr3b promoter sequences by in situ substitution with promoter sequences from Actin (constitutive expression), PsXEG1 (early expression), and PsNLP1 (later expression) using the CRISPR/Cas9. PsAvr3b driven by different promoters resulted in distinct expression levels across all the tested infection time points. Importantly, those mutants with low PsAvr3b expression successfully colonized soybean plants carrying the cognate R gene Rps3b. To dissect the difference in plant responses to the PsAvr3b expression level, we conducted RNA-sequencing of different infection samples at 24 h postinfection and found soybean immune genes, including a few previously unknown genes that are associated with resistance. Our study highlights that fine-tuning in Avr gene expression impacts the compatibility of plant disease and provides clues to improve crop resistance in disease control management.
Collapse
Affiliation(s)
- Sylvans Ochola
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Haider Ali
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Alex Kange
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dinah Qutob
- Department of Math and Science, Walsh University, North Canton, OH, 44720, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
40
|
Arafa RA, Kamel SM, Rakha MT, Soliman NEK, Moussa OM, Shirasawa K. Analysis of the lineage of Phytophthora infestans isolates using mating type assay, traditional markers, and next generation sequencing technologies. PLoS One 2020; 15:e0221604. [PMID: 31961875 PMCID: PMC6974037 DOI: 10.1371/journal.pone.0221604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary, a hemibiotrophic oomycete, has caused severe epidemics of late blight in tomato and potato crops around the world since the Irish Potato Famine in the 1840s. Breeding of late blight resistant cultivars is one of the most effective strategies to overcome this disruptive disease. However, P. infestans is able to break down host resistance and acquire resistance to various fungicides, possibly because of the existence of high genetic variability among P. infestans isolates via sexual and asexual reproduction. Therefore, to manage this disease, it is important to understand the genetic divergence of P. infestans isolates. In this study, we analyzed the genomes of P. infestans isolates collected from Egypt and Japan using various molecular approaches including the mating type assay and genotyping simple sequence repeats, mitochondria DNA, and effector genes. We also analyzed genome-wide single nucleotide polymorphisms using double-digest restriction-site associated DNA sequencing and whole genome resequencing (WGRS). The isolates were classified adequately using high-resolution genome-wide approaches. Moreover, these analyses revealed new clusters of P. infestans isolates in the Egyptian population. Monitoring the genetic divergence of P. infestans isolates as well as breeding of resistant cultivars would facilitate the elimination of the late blight disease.
Collapse
Affiliation(s)
- Ramadan A. Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Said M. Kamel
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mohamed T. Rakha
- Department of Horticulture, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Nour Elden K. Soliman
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Olfat M. Moussa
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
- * E-mail:
| |
Collapse
|
41
|
Chinchilla D, Bruisson S, Meyer S, Zühlke D, Hirschfeld C, Joller C, L'Haridon F, Mène-Saffrané L, Riedel K, Weisskopf L. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Sci Rep 2019; 9:18778. [PMID: 31889050 PMCID: PMC6937334 DOI: 10.1038/s41598-019-55218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host’s health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS’s protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome.
Collapse
Affiliation(s)
- Delphine Chinchilla
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sébastien Bruisson
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Silvan Meyer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Charlotte Joller
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
42
|
Maximo HJ, Dalio RJD, Dias RO, Litholdo CG, Felizatti HL, Machado MA. PpCRN7 and PpCRN20 of Phythophthora parasitica regulate plant cell death leading to enhancement of host susceptibility. BMC PLANT BIOLOGY 2019; 19:544. [PMID: 31810451 PMCID: PMC6896422 DOI: 10.1186/s12870-019-2129-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phytophthora species secrete cytoplasmic effectors from a family named Crinkler (CRN), which are characterised by the presence of conserved specific domains in the N- and C-terminal regions. P. parasitica causes disease in a wide range of host plants, however the role of CRN effectors in these interactions remains unclear. Here, we aimed to: (i) identify candidate CRN encoding genes in P. parasitica genomes; (ii) evaluate the transcriptional expression of PpCRN (Phytophthora parasitica Crinkler candidate) during the P. parasitica interaction with Citrus sunki (high susceptible) and Poncirus trifoliata (resistant); and (iii) functionally characterize two PpCRNs in the model plant Nicotiana benthamiana. RESULTS Our in silico analyses identified 80 putative PpCRN effectors in the genome of P. parasitica isolate 'IAC 01/95.1'. Transcriptional analysis revealed differential gene expression of 20 PpCRN candidates during the interaction with the susceptible Citrus sunki and the resistant Poncirus trifoliata. We have also found that P. parasitica is able to recognize different citrus hosts and accordingly modulates PpCRNs expression. Additionally, two PpCRN effectors, namely PpCRN7 and PpCRN20, were further characterized via transient gene expression in N. benthamiana leaves. The elicitin INF-1-induced Hypersensitivity Response (HR) was increased by an additive effect driven by PpCRN7 expression, whereas PpCRN20 expression suppressed HR response in N. benthamiana leaves. Despite contrasting functions related to HR, both effectors increased the susceptibility of plants to P. parasitica. CONCLUSIONS PpCRN7 and PpCRN20 have the ability to increase P. parasitica pathogenicity and may play important roles at different stages of infection. These PpCRN-associated mechanisms are now targets of biotechnological studies aiming to break pathogen's virulence and to promote plant resistance.
Collapse
Affiliation(s)
- Heros J. Maximo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Ronaldo J. D. Dalio
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Renata O. Dias
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Celso G. Litholdo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Henrique L. Felizatti
- Instituto de Matemática, Física e Computação Científica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Marcos A. Machado
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| |
Collapse
|
43
|
Dale AL, Feau N, Everhart SE, Dhillon B, Wong B, Sheppard J, Bilodeau GJ, Brar A, Tabima JF, Shen D, Brasier CM, Tyler BM, Grünwald NJ, Hamelin RC. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum. mBio 2019; 10:e02452-18. [PMID: 30862749 PMCID: PMC6414701 DOI: 10.1128/mbio.02452-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.
Collapse
Affiliation(s)
- Angela L Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- GC-New Construction Materials, FPInnovations, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Wong
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Julie Sheppard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Avneet Brar
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Javier F Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Clive M Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, United Kingdom
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|
44
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
45
|
Thilliez GJA, Armstrong MR, Lim T, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. THE NEW PHYTOLOGIST 2019; 221:1634-1648. [PMID: 30288743 PMCID: PMC6492278 DOI: 10.1111/nph.15441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
The oomycete pathogens Phytophthora infestans and P. capsici cause significant crop losses world-wide, threatening food security. In each case, pathogenicity factors, called RXLR effectors, contribute to virulence. Some RXLRs are perceived by resistance proteins to trigger host immunity, but our understanding of the demographic processes and adaptive evolution of pathogen virulence remains poor. Here, we describe PenSeq, a highly efficient enrichment sequencing approach for genes encoding pathogenicity determinants which, as shown for the infamous potato blight pathogen Phytophthora infestans, make up < 1% of the entire genome. PenSeq facilitates the characterization of allelic diversity in pathogen effectors, enabling evolutionary and population genomic analyses of Phytophthora species. Furthermore, PenSeq enables the massively parallel identification of presence/absence variations and sequence polymorphisms in key pathogen genes, which is a prerequisite for the efficient deployment of host resistance genes. PenSeq represents a cost-effective alternative to whole-genome sequencing and addresses crucial limitations of current plant pathogen population studies, which are often based on selectively neutral markers and consequently have limited utility in the analysis of adaptive evolution. The approach can be adapted to diverse microbes and pathogens.
Collapse
Affiliation(s)
- Gaetan J. A. Thilliez
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Miles R. Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Tze‐Yin Lim
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Agathe Jouet
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7GJUK
| | - Ben Ward
- The Earlham InstituteNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - Edgar Huitema
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|
46
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
47
|
Hess J, Skrede I, Chaib De Mares M, Hainaut M, Henrissat B, Pringle A. Rapid Divergence of Genome Architectures Following the Origin of an Ectomycorrhizal Symbiosis in the Genus Amanita. Mol Biol Evol 2018; 35:2786-2804. [PMID: 30239843 PMCID: PMC6231487 DOI: 10.1093/molbev/msy179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fungi are evolutionary shape shifters and adapt quickly to new environments. Ectomycorrhizal (EM) symbioses are mutualistic associations between fungi and plants and have evolved repeatedly and independently across the fungal tree of life, suggesting lineages frequently reconfigure genome content to take advantage of open ecological niches. To date analyses of genomic mechanisms facilitating EM symbioses have involved comparisons of distantly related species, but here, we use the genomes of three EM and two asymbiotic (AS) fungi from the genus Amanita as well as an AS outgroup to study genome evolution following a single origin of symbiosis. Our aim was to identify the defining features of EM genomes, but our analyses suggest no clear differentiation of genome size, gene repertoire size, or transposable element content between EM and AS species. Phylogenetic inference of gene gains and losses suggests the transition to symbiosis was dominated by the loss of plant cell wall decomposition genes, a confirmation of previous findings. However, the same dynamic defines the AS species A. inopinata, suggesting loss is not strictly associated with origin of symbiosis. Gene expansions in the common ancestor of EM Amanita were modest, but lineage specific and large gene family expansions are found in two of the three EM extant species. Even closely related EM genomes appear to share few common features. The genetic toolkit required for symbiosis appears already encoded in the genomes of saprotrophic species, and this dynamic may explain the pervasive, recurrent evolution of ectomycorrhizal associations.
Collapse
Affiliation(s)
- Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Maryam Chaib De Mares
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, Madison, WI
| |
Collapse
|
48
|
Chen H, Shu H, Wang L, Zhang F, Li X, Ochola SO, Mao F, Ma H, Ye W, Gu T, Jiang L, Wu Y, Wang Y, Kamoun S, Dong S. Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biol 2018; 19:181. [PMID: 30382931 PMCID: PMC6211444 DOI: 10.1186/s13059-018-1564-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. RESULTS We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. CONCLUSIONS Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
Collapse
Affiliation(s)
- Han Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Fei Mao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lubin Jiang
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
50
|
The Phytophthora infestans Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins. mBio 2018; 9:mBio.01216-18. [PMID: 30154258 PMCID: PMC6113627 DOI: 10.1128/mbio.01216-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There are many different classes of proteins secreted from Phytophthora infestans that may influence or facilitate infection. Elucidating where and how they are secreted during infection is an important step toward developing methods to control their delivery processes. We used an inhibitor of conventional secretion to identify the following different classes of infection-associated extracellular proteins: cell wall-degrading and cell wall-modifying enzymes, microbe-associated molecular pattern-like proteins that may elicit immune responses, and apoplastic effectors that are predicted to suppress immunity. In contrast, secretion of a cytoplasmic effector that is translocated into host cells is nonconventional, as it is insensitive to inhibitor treatment. This evidence further supports the finding that proteins that are active in the apoplast and effector proteins that are active in the host cytoplasm are differentially secreted by P. infestans. Critically, it demonstrates that a disease-specific developmental structure, the haustorium, is a major secretion site for diverse protein classes during infection. The oomycete potato blight pathogen Phytophthora infestans secretes a diverse set of proteins to manipulate host plant immunity. However, there is limited knowledge about how and where they are secreted during infection. Here we used the endoplasmic reticulum (ER)-to-Golgi secretion pathway inhibitor brefeldin A (BFA) in combination with liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) to identify extracellular proteins from P. infestans that were conventionally secreted from in vitro-cultured hyphae. We identified 19 proteins with predicted signal peptides that potentially influence plant interactions for which secretion was attenuated by BFA. In addition to inhibition by the apoplastic effector EPIC1, a cysteine protease inhibitor, we show that secretion of the cell wall-degrading pectinesterase enzyme PE1 and the microbe-associated molecular pattern (MAMP)-like elicitin INF4 was inhibited by BFA in vitro and in planta, demonstrating that these proteins are secreted by the conventional, Golgi-mediated pathway. For comparison, secretion of a cytoplasmic RXLR (Arg-[any amino acid]-Leu-Arg) effector, Pi22926, was not inhibited by BFA. During infection, whereas INF4 accumulated outside the plant cell, RXLR effector Pi22926 entered the plant cell and accumulated in the nucleus. The P. infestans effectors, the PE1 enzyme, and INF4 were all secreted from haustoria, pathogen structures that penetrate the plant cell wall to form an intimate interaction with the host plasma membrane. Our findings show the haustorium to be a major site of both conventional and nonconventional secretion of proteins with diverse functions during infection.
Collapse
|