1
|
Yee KT, Macrander J, Vasieva O, Rojnuckarin P. Exploring Toxin Genes of Myanmar Russell's Viper, Daboia siamensis, through De Novo Venom Gland Transcriptomics. Toxins (Basel) 2023; 15:toxins15050309. [PMID: 37235344 DOI: 10.3390/toxins15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Russell's viper (Daboia siamensis) is a medically important venomous snake in Myanmar. Next-generation sequencing (NGS) shows potential to investigate the venom complexity, giving deeper insights into snakebite pathogenesis and possible drug discoveries. mRNA from venom gland tissue was extracted and sequenced on the Illumina HiSeq platform and de novo assembled by Trinity. The candidate toxin genes were identified via the Venomix pipeline. Protein sequences of identified toxin candidates were compared with the previously described venom proteins using Clustal Omega to assess the positional homology among candidates. Candidate venom transcripts were classified into 23 toxin gene families including 53 unique full-length transcripts. C-type lectins (CTLs) were the most highly expressed, followed by Kunitz-type serine protease inhibitors, disintegrins and Bradykinin potentiating peptide/C-type natriuretic peptide (BPP-CNP) precursors. Phospholipase A2, snake venom serine proteases, metalloproteinases, vascular endothelial growth factors, L-amino acid oxidases and cysteine-rich secretory proteins were under-represented within the transcriptomes. Several isoforms of transcripts which had not been previously reported in this species were discovered and described. Myanmar Russell's viper venom glands displayed unique sex-specific transcriptome profiles which were correlated with clinical manifestation of envenoming. Our results show that NGS is a useful tool to comprehensively examine understudied venomous snakes.
Collapse
Affiliation(s)
- Khin Than Yee
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33801, USA
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- BioSynthetic Machines, Inc., Chicago, IL 60062, USA
| | - Ponlapat Rojnuckarin
- Excellence Center in Translational Hematology, Division of Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Rao WQ, Kalogeropoulos K, Allentoft ME, Gopalakrishnan S, Zhao WN, Workman CT, Knudsen C, Jiménez-Mena B, Seneci L, Mousavi-Derazmahalleh M, Jenkins TP, Rivera-de-Torre E, Liu SQ, Laustsen AH. The rise of genomics in snake venom research: recent advances and future perspectives. Gigascience 2022; 11:giac024. [PMID: 35365832 PMCID: PMC8975721 DOI: 10.1093/gigascience/giac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.
Collapse
Affiliation(s)
- Wei-qiao Rao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Konstantinos Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Wei-ning Zhao
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Belén Jiménez-Mena
- DTU Aqua, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Lorenzo Seneci
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Si-qi Liu
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Gangloff EJ, Manes MB, Schwartz TS, Robert KA, Huebschman N, Bronikowski AM. Multiple Paternity in Garter Snakes With Evolutionarily Divergent Life Histories. J Hered 2021; 112:508-518. [PMID: 34351393 PMCID: PMC8558580 DOI: 10.1093/jhered/esab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Many animal species exhibit multiple paternity, defined as multiple males genetically contributing to a single female reproductive event, such as a clutch or litter. Although this phenomenon is well documented across a broad range of taxa, the underlying causes and consequences remain poorly understood. For example, it is unclear how multiple paternity correlates with life-history strategies. Furthermore, males and females may differ in mating strategies and these patterns may shift with ecological context and life-history variation. Here, we take advantage of natural life-history variation in garter snakes (Thamnophis elegans) to address these questions in a robust field setting where populations have diverged along a slow-to-fast life-history continuum. We determine both female (observed) and male (using molecular markers) reproductive success in replicate populations of 2 life-history strategies. We find that despite dramatic differences in annual female reproductive output: 1) females of both life-history ecotypes average 1.5 sires per litter and equivalent proportions of multiply-sired litters, whereas 2) males from the slow-living ecotype experience greater reproductive skew and greater variance in reproductive success relative to males from the fast-living ecotype males despite having equivalent average reproductive success. Together, these results indicate strong intrasexual competition among males, particularly in the fast-paced life-history ecotype. We discuss these results in the context of competing hypotheses for multiple paternity related to population density, resource variability, and life-history strategy.
Collapse
Affiliation(s)
- Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, Ohio Wesleyan University, Delaware, OH, USA
| | - Megan B Manes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Tonia S Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Kylie A Robert
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, Australia
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Perera OP, Shelby KS, Pierce CA, Snodgrass GL. Expression Profiles of Digestive Genes in the Gut and Salivary Glands of Tarnished Plant Bug (Hemiptera: Miridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6273620. [PMID: 33974083 PMCID: PMC8112305 DOI: 10.1093/jisesa/ieab028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 06/12/2023]
Abstract
Host plant preference of agricultural pests may shift throughout the growing season, allowing the pests to persist on wild hosts when crops are not available. Lygus Hahn (Hemiptera: Miridae) bugs are severe pests of cotton during flowering and fruiting stages, but can persist on alternative crops, or on weed species. Diversity of digestive enzymes produced by salivary glands and gut tissues play a pivotal role in an organism's ability to utilize various food sources. Polyphagous insects produce an array of enzymes that can process carbohydrates, lipids, and proteins. In this study, the digestive enzyme repertoire of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), was identified by high-throughput sequencing followed by cDNA cloning and sequencing. This study identified 87 digestive genes, including 30 polygalacturonases (PG), one β-galactosidase, three α-glucosidases, six β-glucosidases, 28 trypsin-like proteases, three serine proteases, one apyrase-like protease, one cysteine protease, 12 lipases, and two transcripts with low similarity to a xylanase A-like genes. RNA-Seq expression profiles of these digestive genes in adult tarnished plant bugs revealed that 57 and 12 genes were differentially expressed in the salivary gland and gut (≥5-fold, P ≤ 0.01), respectively. All polygalacturonase genes, most proteases, and two xylanase-like genes were differentially expressed in salivary glands, while most of the carbohydrate and lipid processing enzymes were differentially expressed in the gut. Seven of the proteases (KF208689, KF208697, KF208698, KF208699, KF208700, KF208701, and KF208702) were not detected in either the gut or salivary glands.
Collapse
Affiliation(s)
- Omaththage P Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776
| | - Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203
| | - Calvin A Pierce
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776
| | - Gordon L Snodgrass
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776
| |
Collapse
|
5
|
Yanqing C, Bo W, Ping W, Bisheng H, Hegang L, Chao X, Mingli W, Nili W, Di L, Zhigang H, Shilin C. Rapid identification of common medicinal snakes and their adulterants using the Bar-HRM analysis method. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:367-374. [PMID: 30686100 DOI: 10.1080/24701394.2018.1532417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective identification methods for snake species are lacking, exacerbating the extermination of medicinal and commercially valuable snake species. Hence, it is imperative to find fast and reliable methods to distinguish snake samples available on the market. Seventy-three samples from four families belonging to 13 genera were collected in China and found to contain common medicinal snakes and their adulterants. Cytochrome oxidase I (COI) was utilized as a DNA barcode to analyse these common snakes, and a DNA mini-barcode was employed for fast detection. Then, the DNA mini-barcode assays were coupled with a high-resolution melting (HRM) analysis (Bar-HRM) to realize the rapid discrimination of these snake species. The results showed the power of DNA barcoding with COI, which was capable of distinguishing all collected snake samples, and the combined Bar-HRM method can successfully identify the adulterants and different snake species. In particular, Bar-HRM revealed Bungarus fasciatus adulterants in B. multicinctus at concentrations as low as 1.6%. Moreover, the results of the study confirmed the effectiveness of the technique in terms of the rapid identification of snakes, which has great potential for ensuring the safety of commercially valuable snake species.
Collapse
Affiliation(s)
- Chen Yanqing
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wang Bo
- b Hubei Institute for Drug Control , Wuhan , China
| | - Wang Ping
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Huang Bisheng
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Liu Hegang
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Xiong Chao
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wu Mingli
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wang Nili
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Liu Di
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Hu Zhigang
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Chen Shilin
- d Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| |
Collapse
|
6
|
Domínguez-Pérez D, Durban J, Agüero-Chapin G, López JT, Molina-Ruiz R, Almeida D, Calvete JJ, Vasconcelos V, Antunes A. The Harderian gland transcriptomes of Caraiba andreae, Cubophis cantherigerus and Tretanorhinus variabilis, three colubroid snakes from Cuba. Genomics 2018; 111:1720-1727. [PMID: 30508561 DOI: 10.1016/j.ygeno.2018.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
The Harderian gland is a cephalic structure, widely distributed among vertebrates. In snakes, the Harderian gland is anatomically connected to the vomeronasal organ via the nasolacrimal duct, and in some species can be larger than the eyes. The function of the Harderian gland remains elusive, but it has been proposed to play a role in the production of saliva, pheromones, thermoregulatory lipids and growth factors, among others. Here, we have profiled the transcriptomes of the Harderian glands of three non-front-fanged colubroid snakes from Cuba: Caraiba andreae (Cuban Lesser Racer); Cubophis cantherigerus (Cuban Racer); and Tretanorhinus variabilis (Caribbean Water Snake), using Illumina HiSeq2000 100 bp paired-end. In addition to ribosomal and non-characterized proteins, the most abundant transcripts encode putative transport/binding, lipocalin/lipocalin-like, and bactericidal/permeability-increasing-like proteins. Transcripts coding for putative canonical toxins described in venomous snakes were also identified. This transcriptional profile suggests a more complex function than previously recognized for this enigmatic organ.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Jordi Durban
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Javier Torres López
- Department of Ecology and Evolutionary Biology, The University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045, USA; Faculty of Biology, University of Havana, 25 St. 455, La Habana 10400, Cuba.
| | - Reinaldo Molina-Ruiz
- Centro de Bioactivos Químicos, Universidad Central "Marta Abreu" de Las Villas, 54830 Santa Clara, Cuba.
| | - Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| |
Collapse
|
7
|
von Reumont BM. Studying Smaller and Neglected Organisms in Modern Evolutionary Venomics Implementing RNASeq (Transcriptomics)-A Critical Guide. Toxins (Basel) 2018; 10:toxins10070292. [PMID: 30012955 PMCID: PMC6070909 DOI: 10.3390/toxins10070292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Venoms are evolutionary key adaptations that species employ for defense, predation or competition. However, the processes and forces that drive the evolution of venoms and their toxin components remain in many aspects understudied. In particular, the venoms of many smaller, neglected (mostly invertebrate) organisms are not characterized in detail, especially with modern methods. For the majority of these taxa, even their biology is only vaguely known. Modern evolutionary venomics addresses the question of how venoms evolve by applying a plethora of -omics methods. These recently became so sensitive and enhanced that smaller, neglected organisms are now more easily accessible to comparatively study their venoms. More knowledge about these taxa is essential to better understand venom evolution in general. The methodological core pillars of integrative evolutionary venomics are genomics, transcriptomics and proteomics, which are complemented by functional morphology and the field of protein synthesis and activity tests. This manuscript focuses on transcriptomics (or RNASeq) as one toolbox to describe venom evolution in smaller, neglected taxa. It provides a hands-on guide that discusses a generalized RNASeq workflow, which can be adapted, accordingly, to respective projects. For neglected and small taxa, generalized recommendations are difficult to give and conclusions need to be made individually from case to case. In the context of evolutionary venomics, this overview highlights critical points, but also promises of RNASeq analyses. Methodologically, these concern the impact of read processing, possible improvements by perfoming multiple and merged assemblies, and adequate quantification of expressed transcripts. Readers are guided to reappraise their hypotheses on venom evolution in smaller organisms and how robustly these are testable with the current transcriptomics toolbox. The complementary approach that combines particular proteomics but also genomics with transcriptomics is discussed as well. As recently shown, comparative proteomics is, for example, most important in preventing false positive identifications of possible toxin transcripts. Finally, future directions in transcriptomics, such as applying 3rd generation sequencing strategies to overcome difficulties by short read assemblies, are briefly addressed.
Collapse
Affiliation(s)
- Björn Marcus von Reumont
- Justus Liebig University of Giessen, Institute for Insect Biotechnology, Heinrich Buff Ring 58, 35392 Giessen, Germany.
- Natural History Museum, Department of Life Sciences, Cromwell Rd, London SW75BD, UK.
| |
Collapse
|
8
|
Gomes CM, de Morais-Zani K, Lu S, Buarque DDS, Braz GRC, Grego KF, Tanaka AS, Tanaka-Azevedo AM. Differential transcript profile of inhibitors with potential anti-venom role in the liver of juvenile and adult Bothrops jararaca snake. PeerJ 2017; 5:e3203. [PMID: 28462021 PMCID: PMC5410159 DOI: 10.7717/peerj.3203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/20/2017] [Indexed: 02/05/2023] Open
Abstract
Background Snakes belonging to the Bothrops genus are vastly distributed in Central and South America and are responsible for most cases of reported snake bites in Latin America. The clinical manifestations of the envenomation caused by this genus are due to three major activities—proteolytic, hemorrhagic and coagulant—mediated by metalloproteinases, serine proteinases, phospholipases A2 and other toxic compounds present in snake venom. Interestingly, it was observed that snakes are resistant to the toxic effects of its own and other snake’s venoms. This natural immunity may occur due the absence of toxin target or the presence of molecules in the snake plasma able to neutralize such toxins. Methods In order to identify anti-venom molecules, we construct a cDNA library from the liver of B. jararaca snakes. Moreover, we analyzed the expression profile of four molecules—the already known anti-hemorrhagic factor Bj46a, one gamma-phospholipase A2 inhibitor, one inter-alpha inhibitor and one C1 plasma protease inhibitor—in the liver of juvenile and adult snakes by qPCR. Results The results revealed a 30-fold increase of gamma-phospholipase A2 inhibitor and a minor increase of the inter-alpha inhibitor (5-fold) and of the C1 inhibitor (3-fold) in adults. However, the Bj46a factor seems to be equally transcribed in adults and juveniles. Discussion The results suggest the up-regulation of different inhibitors observed in the adult snakes might be a physiological adaptation to the recurrent contact with their own and even other snake’s venoms throughout its lifespan. This is the first comparative analysis of ontogenetic variation of expression profiles of plasmatic proteins with potential anti-venom activities of the venomous snake B. jararaca. Furthermore, the present data contributes to the understanding of the natural resistance described in these snakes.
Collapse
Affiliation(s)
- Cícera Maria Gomes
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Stephen Lu
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Glória Regina Cardoso Braz
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, São Paulo, Brazil
| | | | - Aparecida Sadae Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, São Paulo, Brazil.,Escola Paulista de Medicina / Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Sakai C, Iwano S, Shimizu M, Onodera J, Uchida M, Sakurada E, Yamazaki Y, Asaoka Y, Imura N, Uno Y, Murayama N, Hayashi R, Yamazaki H, Miyamoto Y. Analysis of gene expression for microminipig liver transcriptomes using parallel long-read technology and short-read sequencing. Biopharm Drug Dispos 2017; 37:220-32. [PMID: 27214158 DOI: 10.1002/bdd.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 11/10/2022]
Abstract
The microminipig is one of the smallest minipigs that has emerged as a possible experimental animal model, because it shares many anatomical and/or physiological similarities with humans, including the coronary artery distribution in the heart, the digestive physiology, the kidney size and its structure, and so on. However, information on gene expression profiles, including those on drug-metabolizing phase I and II enzymes, in the microminipig is limited. Therefore, the aim of the present study was to identify transcripts in microminipig livers and to determine gene expression profiles. De novo assembly and expression analyses of microminipig transcripts were conducted with liver samples from three male and three female microminipigs using parallel long-read and short-read sequencing technologies. After unique sequences had been automatically aligned by assembling software, the mean contig length of 50843 transcripts was 707 bp. The expression profiles of cytochrome P450 (P450) 1A2, 2C, 2E1 and 3A genes in livers in microminipigs were similar to those in humans. Liver carboxylesterase (CES) precursor, liver CES-like, UDP-glucuronosyltransferase (UGT) 2C1-like, amine sulfotransferase (SULT)-like, N-acetyltransferases (NAT8) and glutathione S-transferase (GST) A2 genes, which are relatively unknown genes in pigs and/or humans, were expressed strongly. Furthermore, no significant gender differences were observed in the gene expression profiles of phase I enzymes, whereas UGT2B17, SULT1E1, SULT2A1, amine SULT-like, NAT8 and GSTT4 genes were different between males and females among phase II enzyme genes under the present sample conditions. These results provide a foundation for mechanistic studies and the use of microminipigs as model animals for drug development in the future. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chizuka Sakai
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Shunsuke Iwano
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan.,Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Jun Onodera
- Eurofins Genomics K.K., Ohta-ku, Tokyo, 143-0003, Japan
| | - Masashi Uchida
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Eri Sakurada
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Yuri Yamazaki
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Yoshiji Asaoka
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Naoko Imura
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Ryoji Hayashi
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, 248-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yohei Miyamoto
- Pharmaceutical Clinical Research Department, Toray Industries, Inc., 1-1, Nihonbashi-muromachi 2-chome, Chuo-ku, Tokyo, 103-8666, Japan
| |
Collapse
|
10
|
Liu T, Yang P, Chen H, Huang Y, Liu Y, Waqas Y, Ahmed N, Chu X, Chen Q. Global analysis of differential gene expression related to long-term sperm storage in oviduct of Chinese Soft-Shelled Turtle Pelodiscus sinensis. Sci Rep 2016; 6:33296. [PMID: 27628424 PMCID: PMC5024102 DOI: 10.1038/srep33296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Important evolutionary and ecological consequences arise from the ability of female turtles to store viable spermatozoa for an extended period. Although previous morphological studies have observed the localization of spermatozoa in Pelodiscus sinensis oviduct, no systematic study on the identification of genes that are involved in long-term sperm storage has been performed. In this study, the oviduct of P. sinensis at different phases (reproductive and hibernation seasons) was prepared for RNA-Seq and gene expression profiling. In total, 2,662 differentially expressed genes (DEGs) including 1,224 up- and 1,438 down-regulated genes were identified from two cDNA libraries. Functional enrichment analysis indicated that many genes were predominantly involved in the immune response, apoptosis pathway and regulation of autophagy. RT-qPCR, ELISA, western blot and IHC analyses showed that the expression profiles of mRNA and protein in selected DEGs were in consistent with results from RNA-Seq analysis. Remarkably, TUNEL analysis revealed the reduced number of apoptotic cells during sperm storage. IHC and TEM analyses found that autophagy occurred in the oviduct epithelial cells, where the spermatozoa were closely attached. The outcomes of this study provide fundamental insights into the complex sperm storage regulatory process and facilitate elucidating the mechanism of sperm storage in P. sinensis.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xiaoya Chu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|
11
|
Reding DM, Addis EA, Palacios MG, Schwartz TS, Bronikowski AM. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories. Gen Comp Endocrinol 2016; 233:88-99. [PMID: 27181752 DOI: 10.1016/j.ygcen.2016.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023]
Abstract
The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs.
Collapse
Affiliation(s)
- Dawn M Reding
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | - Elizabeth A Addis
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Tonia S Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Priyam M, Tripathy M, Rai U, Ghorai SM. Tracing the evolutionary lineage of pattern recognition receptor homologues in vertebrates: An insight into reptilian immunity via de novo sequencing of the wall lizard splenic transcriptome. Vet Immunol Immunopathol 2016; 172:26-37. [DOI: 10.1016/j.vetimm.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
|
13
|
Mitochondrial divergence between slow- and fast-aging garter snakes. Exp Gerontol 2015; 71:135-46. [PMID: 26403677 DOI: 10.1016/j.exger.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023]
Abstract
Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences).
Collapse
|
14
|
Fasting for 21days leads to changes in adipose tissue and liver physiology in juvenile checkered garter snakes (Thamnophis marcianus). Comp Biochem Physiol A Mol Integr Physiol 2015; 190:68-74. [PMID: 26358832 DOI: 10.1016/j.cbpa.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022]
Abstract
Snakes often undergo periods of prolonged fasting and, under certain conditions, can survive years without food. Despite this unique phenomenon, there are relatively few reports of the physiological adaptations to fasting in snakes. At post-prandial day 1 (fed) or 21 (fasting), brain, liver, and adipose tissues were collected from juvenile checkered garter snakes (Thamnophis marcianus). There was greater glycerol-3-phosphate dehydrogenase (G3PDH)-specific activity in the liver of fasted than fed snakes (P=0.01). The mRNA abundance of various fat metabolism-associated factors was measured in brain, liver, and adipose tissue. Lipoprotein lipase (LPL) mRNA was greater in fasted than fed snakes in the brain (P=0.04). Adipose triglyceride lipase (ATGL; P=0.006) mRNA was greater in the liver of fasted than fed snakes. In adipose tissue, expression of peroxisome proliferator-activated receptor (PPAR)γ (P=0.01), and fatty acid binding protein 4 (P=0.03) was greater in fed than fasted snakes. Analysis of adipocyte morphology revealed that cross-sectional area (P=0.095) and diameter (P=0.27) were not significantly different between fed and fasted snakes. Results suggest that mean adipocyte area can be preserved during fasting by dampening lipid biosynthesis while not changing rates of lipid hydrolysis. In the liver, however, extensive lipid remodeling may provide energy and lipoproteins to maintain lipid structural integrity during energy restriction. Because the duration of fasting was not sufficient to change adipocyte size, results suggest that the liver is important as a short-term provider of energy in the snake.
Collapse
|
15
|
Tzika AC, Ullate-Agote A, Grbic D, Milinkovitch MC. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics. Genome Biol Evol 2015; 7:1827-41. [PMID: 26133641 PMCID: PMC4494049 DOI: 10.1093/gbe/evv106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Switzerland SIB Swiss Institute of Bioinformatics, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Switzerland SIB Swiss Institute of Bioinformatics, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| | - Djordje Grbic
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Switzerland SIB Swiss Institute of Bioinformatics, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Switzerland SIB Swiss Institute of Bioinformatics, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| |
Collapse
|
16
|
Figuet E, Ballenghien M, Romiguier J, Galtier N. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol 2014; 7:240-50. [PMID: 25527834 PMCID: PMC4316630 DOI: 10.1093/gbe/evu277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Collapse
Affiliation(s)
- Emeric Figuet
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Marion Ballenghien
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Jonathan Romiguier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - Nicolas Galtier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| |
Collapse
|
17
|
Hargreaves AD, Swain MT, Logan DW, Mulley JF. Testing the Toxicofera: comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon 2014; 92:140-56. [PMID: 25449103 DOI: 10.1016/j.toxicon.2014.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis - the single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some putative Toxicoferan toxins in some species. We set out to examine the distribution of these proposed venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species, shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or "housekeeping" genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. We therefore conclude that venom has evolved multiple times in reptiles.
Collapse
Affiliation(s)
- Adam D Hargreaves
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, United Kingdom.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom.
| | - John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| |
Collapse
|
18
|
Junqueira-de-Azevedo ILM, Bastos CMV, Ho PL, Luna MS, Yamanouye N, Casewell NR. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol Biol Evol 2014; 32:754-66. [PMID: 25502939 PMCID: PMC4327157 DOI: 10.1093/molbev/msu337] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins.
Collapse
Affiliation(s)
- Inácio L M Junqueira-de-Azevedo
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Mancini Val Bastos
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| | | | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo-SP, Brazil
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
19
|
Brahma RK, McCleary RJR, Kini RM, Doley R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 2014; 93:1-10. [PMID: 25448392 DOI: 10.1016/j.toxicon.2014.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 01/13/2023]
Abstract
Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.
Collapse
Affiliation(s)
- Rajeev Kungur Brahma
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA; University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, South Australia 5001, Australia
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India.
| |
Collapse
|
20
|
Finseth FR, Harrison RG. A comparison of next generation sequencing technologies for transcriptome assembly and utility for RNA-Seq in a non-model bird. PLoS One 2014; 9:e108550. [PMID: 25279728 PMCID: PMC4184788 DOI: 10.1371/journal.pone.0108550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/30/2014] [Indexed: 12/21/2022] Open
Abstract
De novo assembled transcriptomes, in combination with RNA-Seq, are powerful tools to explore gene sequence and expression level in organisms without reference genomes. Investigators must first choose which high throughput sequencing platforms will provide data most suitable for their experimental goals. In this study, we explore the utility of 454 and Illumina sequences for de novo transcriptome assembly and downstream RNA-Seq applications in a reproductive gland from a non-model bird species, the Japanese quail (Coturnix japonica). Four transcriptomes composed of either pure 454 or Illumina reads or mixtures of read types were assembled and evaluated for the same cost. Illumina assemblies performed best for de novo transcriptome characterization in terms of contig length, transcriptome coverage, and complete assembly of gene transcripts. Improvements over the Hybrid assembly were marginal, with the exception that the addition of 454 data significantly increased the number of genes annotated. The Illumina assembly provided the best reference to align an independent set of RNA-Seq data as ∼84% of reads mapped to single genes in the transcriptome. Contigs constructed solely from 454 data may impose problems for RNA-Seq as our 454 transcriptome revealed a high number of indels and many ambiguously mapped reads. Correcting the 454 transcriptome with Illumina reads was an effective strategy to deal with indel and frameshift errors inherent to the 454 transcriptome, but at the cost of transcriptome coverage. In the absence of a reference genome, we find that Illumina reads alone produced a high quality transcriptome appropriate for RNA-Seq gene expression analyses.
Collapse
Affiliation(s)
- Findley R. Finseth
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Richard G. Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
21
|
Dilly GF, Gaitán-Espitia JD, Hofmann GE. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology. Mol Ecol Resour 2014; 15:425-36. [DOI: 10.1111/1755-0998.12316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 06/24/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- G. F. Dilly
- Marine Science Institute; Department of Ecology, Evolution and Marine Biology; University of California; Santa Barbara CA USA
| | - J. D. Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Valdivia Chile
| | - G. E. Hofmann
- Marine Science Institute; Department of Ecology, Evolution and Marine Biology; University of California; Santa Barbara CA USA
| |
Collapse
|
22
|
McGlothlin JW, Chuckalovcak JP, Janes DE, Edwards SV, Feldman CR, Brodie ED, Pfrender ME, Brodie ED. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis. Mol Biol Evol 2014; 31:2836-46. [PMID: 25135948 PMCID: PMC4209135 DOI: 10.1093/molbev/msu237] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA Department of Biology, University of Virginia
| | - John P Chuckalovcak
- Department of Biology, University of Virginia Bio-Rad Laboratories, Hercules, CA
| | - Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University Division of Genetics and Developmental Biology, National Institutes of Health, Bethesda, MD
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
| | | | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Edmund D Brodie
- Department of Biology, University of Virginia Mountain Lake Biological Station, University of Virginia
| |
Collapse
|
23
|
Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol 2014; 6:2088-95. [PMID: 25079342 PMCID: PMC4231632 DOI: 10.1093/gbe/evu166] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/23/2022] Open
Abstract
Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive "just-so story" in evolutionary biology.
Collapse
Affiliation(s)
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Matthew J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - John F Mulley
- School of Biological Sciences, Bangor University, United Kingdom
| |
Collapse
|
24
|
Qualitative de novo analysis of full length cDNA and quantitative analysis of gene expression for common marmoset (Callithrix jacchus) transcriptomes using parallel long-read technology and short-read sequencing. PLoS One 2014; 9:e100936. [PMID: 24977701 PMCID: PMC4076266 DOI: 10.1371/journal.pone.0100936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a non-human primate that could prove useful as human pharmacokinetic and biomedical research models. The cytochromes P450 (P450s) are a superfamily of enzymes that have critical roles in drug metabolism and disposition via monooxygenation of a broad range of xenobiotics; however, information on some marmoset P450s is currently limited. Therefore, identification and quantitative analysis of tissue-specific mRNA transcripts, including those of P450s and flavin-containing monooxygenases (FMO, another monooxygenase family), need to be carried out in detail before the marmoset can be used as an animal model in drug development. De novo assembly and expression analysis of marmoset transcripts were conducted with pooled liver, intestine, kidney, and brain samples from three male and three female marmosets. After unique sequences were automatically aligned by assembling software, the mean contig length was 718 bp (with a standard deviation of 457 bp) among a total of 47,883 transcripts. Approximately 30% of the total transcripts were matched to known marmoset sequences. Gene expression in 18 marmoset P450- and 4 FMO-like genes displayed some tissue-specific patterns. Of these, the three most highly expressed in marmoset liver were P450 2D-, 2E-, and 3A-like genes. In extrahepatic tissues, including brain, gene expressions of these monooxygenases were lower than those in liver, although P450 3A4 (previously P450 3A21) in intestine and P450 4A11- and FMO1-like genes in kidney were relatively highly expressed. By means of massive parallel long-read sequencing and short-read technology applied to marmoset liver, intestine, kidney, and brain, the combined next-generation sequencing analyses reported here were able to identify novel marmoset drug-metabolizing P450 transcripts that have until now been little reported. These results provide a foundation for mechanistic studies and pave the way for the use of marmosets as model animals for drug development in the future.
Collapse
|
25
|
Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar Genomics 2014; 15:65-73. [DOI: 10.1016/j.margen.2014.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/25/2022]
|
26
|
Bar-Yaacov D, Bouskila A, Mishmar D. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards. Genome Biol Evol 2014; 5:1792-9. [PMID: 24009133 PMCID: PMC3814190 DOI: 10.1093/gbe/evt131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.
Collapse
Affiliation(s)
- Dan Bar-Yaacov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
27
|
Melicher D, Torson AS, Dworkin I, Bowsher JH. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach. BMC Genomics 2014; 15:188. [PMID: 24621177 PMCID: PMC4008362 DOI: 10.1186/1471-2164-15-188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. RESULTS Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. CONCLUSIONS The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.
Collapse
Affiliation(s)
- Dacotah Melicher
- />Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND 58102 USA
| | - Alex S Torson
- />Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND 58102 USA
| | - Ian Dworkin
- />Department of Zoology, Michigan State University, 328 Giltner Hall, East Lansing, MI 48823 USA
| | - Julia H Bowsher
- />Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND 58102 USA
| |
Collapse
|
28
|
Kawakami T, Darby BJ, Ungerer MC. Transcriptome resources for the perennial sunflowerHelianthus maximilianiobtained from ecologically divergent populations. Mol Ecol Resour 2014; 14:812-9. [DOI: 10.1111/1755-0998.12227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Takeshi Kawakami
- Division of Biology; Kansas State University; Manhattan KS 66506 USA
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Brian J. Darby
- Department of Biology; University of North Dakota; Grand Forks ND 58202 USA
| | - Mark C. Ungerer
- Division of Biology; Kansas State University; Manhattan KS 66506 USA
| |
Collapse
|
29
|
Brykczynska U, Tzika AC, Rodriguez I, Milinkovitch MC. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles. Genome Biol Evol 2013; 5:389-401. [PMID: 23348039 PMCID: PMC3590772 DOI: 10.1093/gbe/evt013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment.
Collapse
Affiliation(s)
- Urszula Brykczynska
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | | | | | | |
Collapse
|
30
|
Badouin H, Belkhir K, Gregson E, Galindo J, Sundström L, Martin SJ, Butlin RK, Smadja CM. Transcriptome characterisation of the ant Formica exsecta with new insights into the evolution of desaturase genes in social hymenoptera. PLoS One 2013; 8:e68200. [PMID: 23874539 PMCID: PMC3709892 DOI: 10.1371/journal.pone.0068200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite the recent sequencing of seven ant genomes, no genomic data are available for the genus Formica, an important group for the study of eusocial traits. We sequenced the transcriptome of the ant Formica exsecta with the 454 FLX Titanium technology from a pooled sample of workers from 70 Finnish colonies. RESULTS About 1,000,000 reads were obtained from a normalised cDNA library. We compared the assemblers MIRA3.0 and Newbler2.6 and showed that the latter performed better on this dataset due to a new option which is dedicated to improve contig formation in low depth portions of the assemblies. The 29,579 contigs represent 27 Mb. 50% showed similarity with known proteins and 25% could be assigned a category of gene ontology. We found more than 13,000 high-quality single nucleotide polymorphisms. The Δ9 desaturase gene family is an important multigene family involved in chemical communication in insects. We found six Δ9 desaturases in this Formica exsecta transcriptome dataset that were used to reconstruct a maximum-likelihood phylogeny of insect desaturases and to test for signatures of positive selection in this multigene family in ant lineages. We found differences with previous phylogenies of this gene family in ants, and found two clades potentially under positive selection. CONCLUSION This first transcriptome reference sequence of Formica exsecta provided sequence and polymorphism data that will allow researchers working on Formica ants to develop studies to tackle the genetic basis of eusocial phenotypes. In addition, this study provided some general guidelines for de novo transcriptome assembly that should be useful for future transcriptome sequencing projects. Finally, we found potential signatures of positive selection in some clades of the Δ9 desaturase gene family in ants, which suggest the potential role of sequence divergence and adaptive evolution in shaping the large diversity of chemical cues in social insects.
Collapse
Affiliation(s)
- Hélène Badouin
- Centre National de la Recherche Scientifique CNRS - Institut des Sciences de l'Evolution UMR 5554, Université Montpellier 2, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genomics 2013; 14:407. [PMID: 23773438 PMCID: PMC3691660 DOI: 10.1186/1471-2164-14-407] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/04/2013] [Indexed: 12/14/2022] Open
Abstract
Background Sturgeons are a group of Condrostean fish with very high evolutionary, economical and conservation interest. The eggs of these living fossils represent one of the most high prized foods of animal origin. The intense fishing pressure on wild stocks to harvest caviar has caused in the last decades a dramatic decline of their distribution and abundance leading the International Union for Conservation of Nature to list them as the more endangered group of species. As a direct consequence, world-wide efforts have been made to develop sturgeon aquaculture programmes for caviar production. In this context, the characterization of the genes involved in sex determination could provide relevant information for the selective farming of the more profitable females. Results The 454 sequencing of two cDNA libraries from the gonads and brain of one male and one female full-sib A. naccarii, yielded 182,066 and 167,776 reads respectively, which, after strict quality control, were iterative assembled into more than 55,000 high quality ESTs. The average per-base coverage reached by assembling the two libraries was 4X. The multi-step annotation process resulted in 16% successfully annotated sequences with GO terms. We screened the transcriptome for 32 sex-related genes and highlighted 7 genes that are potentially specifically expressed, 5 in male and 2 in females, at the first life stage at which sex is histologically identifiable. In addition we identified 21,791 putative EST-linked SNPs and 5,295 SSRs. Conclusions This study represents the first large massive release of sturgeon transcriptome information that we organized into the public database AnaccariiBase, which is freely available at http://compgen.bio.unipd.it/anaccariibase/. This transcriptomic data represents an important source of information for further studies on sturgeon species. The hundreds of putative EST-linked molecular makers discovered in this study will be invaluable for sturgeon reintroduction and breeding programs.
Collapse
|
33
|
Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 2013; 8:e63604. [PMID: 23658843 PMCID: PMC3643912 DOI: 10.1371/journal.pone.0063604] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/06/2013] [Indexed: 12/12/2022] Open
Abstract
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina Hiseq(TM) technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Shijie Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Baofeng Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| |
Collapse
|
34
|
Freter S, Muta Y, O'Neill P, Vassilev VS, Kuraku S, Ladher RK. Pax2 modulates proliferation during specification of the otic and epibranchial placodes. Dev Dyn 2012; 241:1716-28. [PMID: 22972769 DOI: 10.1002/dvdy.23856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The inner ear and epibranchial ganglia of vertebrates arise from a shared progenitor domain that is induced by FGF signalling, the posterior placodal area (PPA), before being segregated by Wnt signalling. One of the first genes activated in the PPA is the transcription factor Pax2. Loss-of- and gain-of function studies have defined a role for Pax2 in placodal morphogenesis and later inner ear development, but have not addressed the role Pax2 plays during the formation and maintenance of the PPA. RESULTS To understand the role of Pax2 during the development of the PPA, we used over-expression and repression of Pax2. Both gave rise to a smaller otocyst and repressed the formation of epibranchial placodes. In addition, cell cycle analysis revealed that Pax2 suppression reduced proliferation of the PPA. CONCLUSIONS Our results suggest that Pax2 functions in the maintenance but not the induction of the PPA. One role of Pax2 is to maintain proper cell cycle proliferation in the PPA.
Collapse
Affiliation(s)
- Sabine Freter
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Casewell NR, Huttley GA, Wüster W. Dynamic evolution of venom proteins in squamate reptiles. Nat Commun 2012; 3:1066. [DOI: 10.1038/ncomms2065] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
|
36
|
Schwartz TS, Bronikowski AM. Dissecting molecular stress networks: identifying nodes of divergence between life-history phenotypes. Mol Ecol 2012; 22:739-56. [DOI: 10.1111/j.1365-294x.2012.05750.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/08/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Tonia S. Schwartz
- Ecology, Evolution and Organismal Biology Department; 251 Bessey Hall Iowa State, University; Ames; Iowa; 50011
| | - Anne M. Bronikowski
- Ecology, Evolution and Organismal Biology Department; 251 Bessey Hall Iowa State, University; Ames; Iowa; 50011
| |
Collapse
|
37
|
Gambón-Deza F, Sánchez-Espinel C, Mirete-Bachiller S, Magadán-Mompó S. Snakes antibodies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:1-9. [PMID: 22426516 DOI: 10.1016/j.dci.2012.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 05/31/2023]
Abstract
Immunoglobulins are basic molecules of the immune system of vertebrates. In previous studies we described the immunoglobulins found in two squamata reptiles, Anolis carolinensis and Eublepharis macularius. Snakes are squamata reptiles too but they have undergone an extreme evolutionary process. We therefore wanted to know how these changes affected their immunoglobulin coding genes. To perform this analysis we studied five snake transcriptomes and two genome draft sequences. Sequences coding for immunoglobulin M (IgM), immunoglobulin D (IgD) and two classes of immunoglobulin Y (IgY - named IgYa and IgYb-) were found in all of them. Moreover, the Thamnophis elegans transcriptome and Python molurus genome draft sequences showed a third class of IgY, the IgYc, whose constant region only presents three domains and lacks the CH2. All data suggest that the IgYb is the evolutionary origin of this IgYc. An exhaustive search of the light chains were carried out, being lambda the only light chain found in snakes. The results provide a clear picture of the immunoglobulins present in the suborder Serpentes.
Collapse
Affiliation(s)
- Francisco Gambón-Deza
- Servicio Gallego de Salud (SERGAS) Unidad de Inmunología, Hospital do Meixoeiro, Carretera de Madrid s/n, Vigo, Pontevedra, Spain.
| | | | | | | |
Collapse
|
38
|
Miller HC, Biggs PJ, Voelckel C, Nelson NJ. De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus). BMC Genomics 2012; 13:439. [PMID: 22938396 PMCID: PMC3478169 DOI: 10.1186/1471-2164-13-439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/24/2012] [Indexed: 02/08/2023] Open
Abstract
Background The tuatara (Sphenodon punctatus) is a species of extraordinary zoological interest, being the only surviving member of an entire order of reptiles which diverged early in amniote evolution. In addition to their unique phylogenetic placement, many aspects of tuatara biology, including temperature-dependent sex determination, cold adaptation and extreme longevity have the potential to inform studies of genome evolution and development. Despite increasing interest in the tuatara genome, genomic resources for the species are still very limited. We aimed to address this by assembling a transcriptome for tuatara from an early-stage embryo, which will provide a resource for genome annotation, molecular marker development and studies of development and adaptation in tuatara. Results We obtained 30 million paired-end 50 bp reads from an Illumina Genome Analyzer and assembled them with Velvet and Oases using a range of kmers. After removing redundancy and filtering out low quality transcripts, our transcriptome dataset contained 32911 transcripts, with an N50 of 675 and a mean length of 451 bp. Almost 50% (15965) of these transcripts could be annotated by comparison with the NCBI non-redundant (NR) protein database or the chicken, green anole and zebrafish UniGene sets. A scan of candidate genes and repetitive elements revealed genes involved in immune function, sex differentiation and temperature-sensitivity, as well as over 200 microsatellite markers. Conclusions This dataset represents a major increase in genomic resources for the tuatara, increasing the number of annotated gene sequences from just 60 to almost 16,000. This will facilitate future research in sex determination, genome evolution, local adaptation and population genetics of tuatara, as well as inform studies on amniote evolution.
Collapse
Affiliation(s)
- Hilary C Miller
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | | | | | | |
Collapse
|
39
|
Peterson MP, Whittaker DJ, Ambreth S, Sureshchandra S, Buechlein A, Podicheti R, Choi JH, Lai Z, Mockatis K, Colbourne J, Tang H, Ketterson ED. De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system. BMC Genomics 2012; 13:305. [PMID: 22776250 PMCID: PMC3476391 DOI: 10.1186/1471-2164-13-305] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/09/2012] [Indexed: 11/25/2022] Open
Abstract
Background Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior. Results From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified. Conclusions The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations – extending the historic work on natural history and hormone-mediated phenotypes in this system.
Collapse
Affiliation(s)
- Mark P Peterson
- Dept. of Biology, Center for Integrated Study of Animal Behavior, Indiana University, Bloomington, IN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
De-novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets. PLoS One 2012; 7:e37104. [PMID: 22606336 PMCID: PMC3350496 DOI: 10.1371/journal.pone.0037104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/16/2012] [Indexed: 01/01/2023] Open
Abstract
The ferret is commonly used as a model for studies of infectious diseases. The genomic sequence of this animal model is not yet characterized, and only a limited number of fully annotated cDNAs are currently available in GenBank. The majority of genes involved in innate or adaptive immune response are still lacking, restricting molecular genetic analysis of host response in the ferret model. To enable de novo identification of transcriptionally active ferret genes in response to infection, we performed de-novo transcriptome sequencing of animals infected with H1N1 A/California/07/2009. We also included splenocytes induced with bacterial lipopolysaccharide to allow for identification of transcripts specifically induced by gram-negative bacteria. We pooled and normalized the cDNA library in order to delimit the risk of sequencing only highly expressed genes. While normalization of the cDNA library removes the possibility of assessing expression changes between individual animals, it has been shown to increase identification of low abundant transcripts. In this study, we identified more than 19,000 partial ferret transcripts, including more than 1000 gene orthologs known to be involved in the innate and the adaptive immune response.
Collapse
|
41
|
Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, Chiari Y, Belkhir K, Ranwez V, Galtier N. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour 2012; 12:834-45. [PMID: 22540679 DOI: 10.1111/j.1755-0998.2012.03148.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Next-generation sequencing (NGS) technologies offer the opportunity for population genomic study of non-model organisms sampled in the wild. The transcriptome is a convenient and popular target for such purposes. However, designing genetic markers from NGS transcriptome data requires assembling gene-coding sequences out of short reads. This is a complex task owing to gene duplications, genetic polymorphism, alternative splicing and transcription noise. Typical assembling programmes return thousands of predicted contigs, whose connection to the species true gene content is unclear, and from which SNP definition is uneasy. Here, the transcriptomes of five diverse non-model animal species (hare, turtle, ant, oyster and tunicate) were assembled from newly generated 454 and Illumina sequence reads. In two species for which a reference genome is available, a new procedure was introduced to annotate each predicted contig as either a full-length cDNA, fragment, chimera, allele, paralogue, genomic sequence or other, based on the number of, and overlap between, blast hits to the appropriate reference. Analyses showed that (i) the highest quality assemblies are obtained when 454 and Illumina data are combined, (ii) typical de novo assemblies include a majority of irrelevant cDNA predictions and (iii) assemblies can be appropriately cleaned by filtering contigs based on length and coverage. We conclude that robust, reference-free assembly of thousands of genes from transcriptomic NGS data is possible, opening promising perspectives for transcriptome-based population genomics in animals. A Galaxy pipeline implementing our best-performing assembling strategy is provided.
Collapse
Affiliation(s)
- V Cahais
- CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Université Montpellier 2, Place E. Bataillon, 34095 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod 2012; 86:45. [PMID: 22011390 DOI: 10.1095/biolreprod.111.095752] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.
Collapse
|
43
|
Mundry M, Bornberg-Bauer E, Sammeth M, Feulner PGD. Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach. PLoS One 2012; 7:e31410. [PMID: 22384018 PMCID: PMC3288049 DOI: 10.1371/journal.pone.0031410] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/10/2012] [Indexed: 01/24/2023] Open
Abstract
Background The quantity of transcriptome data is rapidly increasing for non-model organisms. As sequencing technology advances, focus shifts towards solving bioinformatic challenges, of which sequence read assembly is the first task. Recent studies have compared the performance of different software to establish a best practice for transcriptome assembly. Here, we adapted a simulation approach to evaluate specific features of assembly programs on 454 data. The novelty of our study is that the simulation allows us to calculate a model assembly as reference point for comparison. Findings The simulation approach allows us to compare basic metrics of assemblies computed by different software applications (CAP3, MIRA, Newbler, and Oases) to a known optimal solution. We found MIRA and CAP3 are conservative in merging reads. This resulted in comparably high number of short contigs. In contrast, Newbler more readily merged reads into longer contigs, while Oases produced the overall shortest assembly. Due to the simulation approach, reads could be traced back to their correct placement within the transcriptome. Together with mapping reads onto the assembled contigs, we were able to evaluate ambiguity in the assemblies. This analysis further supported the conservative nature of MIRA and CAP3, which resulted in low proportions of chimeric contigs, but high redundancy. Newbler produced less redundancy, but the proportion of chimeric contigs was higher. Conclusion Our evaluation of four assemblers suggested that MIRA and Newbler slightly outperformed the other programs, while showing contrasting characteristics. Oases did not perform very well on the 454 reads. Our evaluation indicated that the software was either conservative (MIRA) or liberal (Newbler) about merging reads into contigs. This suggested that in choosing an assembly program researchers should carefully consider their follow up analysis and consequences of the chosen approach to gain an assembly.
Collapse
Affiliation(s)
- Marvin Mundry
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
| | - Michael Sammeth
- Functional Bioinformatics, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Philine G. D. Feulner
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
- * E-mail:
| |
Collapse
|
44
|
Brandley MC, Young RL, Warren DL, Thompson MB, Wagner GP. Uterine gene expression in the live-bearing lizard, Chalcides ocellatus, reveals convergence of squamate reptile and mammalian pregnancy mechanisms. Genome Biol Evol 2012; 4:394-411. [PMID: 22333490 PMCID: PMC3318437 DOI: 10.1093/gbe/evs013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Although the morphological and physiological changes involved in pregnancy in live-bearing reptiles are well studied, the genetic mechanisms that underlie these changes are not known. We used the viviparous African Ocellated Skink, Chalcides ocellatus, as a model to identify a near complete gene expression profile associated with pregnancy using RNA-Seq analyses of uterine transcriptomes. Pregnancy in C. ocellatus is associated with upregulation of uterine genes involved with metabolism, cell proliferation and death, and cellular transport. Moreover, there are clear parallels between the genetic processes associated with pregnancy in mammals and Chalcides in expression of genes related to tissue remodeling, angiogenesis, immune system regulation, and nutrient provisioning to the embryo. In particular, the pregnant uterine transcriptome is dominated by expression of proteolytic enzymes that we speculate are involved both with remodeling the chorioallantoic placenta and histotrophy in the omphaloplacenta. Elements of the maternal innate immune system are downregulated in the pregnant uterus, indicating a potential mechanism to avoid rejection of the embryo. We found a downregulation of major histocompatability complex loci and estrogen and progesterone receptors in the pregnant uterus. This pattern is similar to mammals but cannot be explained by the mammalian model. The latter finding provides evidence that pregnancy is controlled by different endocrinological mechanisms in mammals and reptiles. Finally, 88% of the identified genes are expressed in both the pregnant and the nonpregnant uterus, and thus, morphological and physiological changes associated with C. ocellatus pregnancy are likely a result of regulation of genes continually expressed in the uterus rather than the initiation of expression of unique genes.
Collapse
|
45
|
Sánchez CC, Weber GM, Gao G, Cleveland BM, Yao J, Rexroad CE. Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics 2011; 12:626. [PMID: 22188770 PMCID: PMC3305546 DOI: 10.1186/1471-2164-12-626] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/21/2011] [Indexed: 01/13/2023] Open
Abstract
Background Fish under intensive culture conditions are exposed to a variety of acute and chronic stressors, including high rearing densities, sub-optimal water quality, and severe thermal fluctuations. Such stressors are inherent in aquaculture production and can induce physiological responses with adverse effects on traits important to producers and consumers, including those associated with growth, nutrition, reproduction, immune response, and fillet quality. Understanding and monitoring the biological mechanisms underlying stress responses will facilitate alleviating their negative effects through selective breeding and changes in management practices, resulting in improved animal welfare and production efficiency. Results Physiological responses to five treatments associated with stress were characterized by measuring plasma lysozyme activity, glucose, lactate, chloride, and cortisol concentrations, in addition to stress-associated transcripts by quantitative PCR. Results indicate that the fish had significant stressor-specific changes in their physiological conditions. Sequencing of a pooled normalized transcriptome library created from gill, brain, liver, spleen, kidney and muscle RNA of control and stressed fish produced 3,160,306 expressed sequence tags which were assembled and annotated. SNP discovery resulted in identification of ~58,000 putative single nucleotide polymorphisms including 24,479 which were predicted to fall within exons. Of these, 4907 were predicted to occupy the first position of a codon and 4110 the second, increasing the probability to impact amino acid sequence variation and potentially gene function. Conclusion We have generated and characterized a reference transcriptome for rainbow trout that represents multiple tissues responding to multiple stressors common to aquaculture production environments. This resource compliments existing public transcriptome data and will facilitate approaches aiming to evaluate gene expression associated with stress in this species.
Collapse
Affiliation(s)
- Cecilia C Sánchez
- Shepherd University, Institute of Environmental and Physical Sciences, Robert C. Byrd Science and Technology Center, Shepherdstown, WV 25443, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 2011; 12:333-43. [PMID: 21999839 DOI: 10.1111/j.1755-0998.2011.03079.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the angiosperm genus Silene are widely used in studies of ecology and evolution, but available genomic and population genetic resources within Silene remain limited. Deep transcriptome (i.e. expressed sequence tag or EST) sequencing has proven to be a rapid and cost-effective means to characterize gene content and identify polymorphic markers in non-model organisms. In this study, we report the results of 454 GS-FLX Titanium sequencing of a polyA-selected and normalized cDNA library from Silene vulgaris. The library was generated from a single pool of transcripts, combining RNA from leaf, root and floral tissue from three genetically divergent European subpopulations of S. vulgaris. A single full-plate 454 run produced 959,520 reads totalling 363.6 Mb of sequence data with an average read length of 379.0 bp after quality trimming and removal of custom library adaptors. We assembled 832,251 (86.7%) of these reads into 40,964 contigs, which have a total length of 25.4 Mb and can be organized into 18,178 graph-based clusters or 'isogroups'. Assembled sequences were annotated based on homology to genes in multiple public databases. Analysis of sequence variants identified 13,432 putative single-nucleotide polymorphisms (SNPs) and 1320 simple sequence repeats (SSRs) that are candidates for microsatellite analysis. Estimates of nucleotide diversity from 1577 contigs were used to generate genome-wide distributions that revealed several outliers with high diversity. All of these resources are publicly available through NCBI and/or our website (http://silenegenomics.biology.virginia.edu) and should provide valuable genomic and population genetic tools for the Silene research community.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kukekova AV, Johnson JL, Teiling C, Li L, Oskina IN, Kharlamova AV, Gulevich RG, Padte R, Dubreuil MM, Vladimirova AV, Shepeleva DV, Shikhevich SG, Sun Q, Ponnala L, Temnykh SV, Trut LN, Acland GM. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes). BMC Genomics 2011; 12:482. [PMID: 21967120 PMCID: PMC3199282 DOI: 10.1186/1471-2164-12-482] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022] Open
Abstract
Background Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.
Collapse
Affiliation(s)
- Anna V Kukekova
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tzika AC, Helaers R, Schramm G, Milinkovitch MC. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. EvoDevo 2011; 2:19. [PMID: 21943375 PMCID: PMC3192992 DOI: 10.1186/2041-9139-2-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/26/2011] [Indexed: 12/05/2022] Open
Abstract
Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Dept, of Genetics & Evolution, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
49
|
|
50
|
Castoe TA, Fox SE, Jason de Koning A, Poole AW, Daza JM, Smith EN, Mockler TC, Secor SM, Pollock DD. A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus). BMC Res Notes 2011; 4:310. [PMID: 21867488 PMCID: PMC3173347 DOI: 10.1186/1756-0500-4-310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/25/2011] [Indexed: 01/08/2023] Open
Abstract
Background Snakes provide a unique vertebrate system for studying a diversity of extreme adaptations, including those related to development, metabolism, physiology, and venom. Despite their importance as research models, genomic resources for snakes are few. Among snakes, the Burmese python is the premier model for studying extremes of metabolic fluctuation and physiological remodelling. In this species, the consumption of large infrequent meals can induce a 40-fold increase in metabolic rate and more than a doubling in size of some organs. To provide a foundation for research utilizing the python, our aim was to assemble and annotate a transcriptome reference from the heart and liver. To accomplish this aim, we used the 454-FLX sequencing platform to collect sequence data from multiple cDNA libraries. Results We collected nearly 1 million 454 sequence reads, and assembled these into 37,245 contigs with a combined length of 13,409,006 bp. To identify known genes, these contigs were compared to chicken and lizard gene sets, and to all Genbank sequences. A total of 13,286 of these contigs were annotated based on similarity to known genes or Genbank sequences. We used gene ontology (GO) assignments to characterize the types of genes in this transcriptome resource. The raw data, transcript contig assembly, and transcript annotations are made available online for use by the broader research community. Conclusion These data should facilitate future studies using pythons and snakes in general, helping to further contribute to the utilization of snakes as a model evolutionary and physiological system. This sequence collection represents a major genomic resource for the Burmese python, and the large number of transcript sequences characterized should contribute to future research in this and other snake species.
Collapse
Affiliation(s)
- Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA.
| | | | | | | | | | | | | | | | | |
Collapse
|