1
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
2
|
Lin C, Wang W, Zhang D, Huang K, Zhang Y, Li X, Zhao Y, Zhao L, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhang X, Zheng W. Analysis of liver miRNA in Hu sheep with different residual feed intake. Front Genet 2023; 14:1113411. [PMID: 37928243 PMCID: PMC10620975 DOI: 10.3389/fgene.2023.1113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Feed efficiency (FE), an important economic trait in sheep production, is indirectly assessed by residual feed intake (RFI). However, RFI in sheep is varied, and the molecular processes that regulate RFI are unclear. It is thus vital to investigate the molecular mechanism of RFI to developing a feed-efficient sheep. The miRNA-sequencing (RNA-Seq) was utilized to investigate miRNAs in liver tissue of 6 out of 137 sheep with extreme RFI phenotypic values. In these animals, as a typical metric of FE, RFI was used to distinguish differentially expressed miRNAs (DE_miRNAs) between animals with high (n = 3) and low (n = 3) phenotypic values. A total of 247 miRNAs were discovered in sheep, with four differentially expressed miRNAs (DE_miRNAs) detected. Among these DE_miRNAs, three were found to be upregulated and one was downregulated in animals with low residual feed intake (Low_RFI) compared to those with high residual feed intake (High_RFI). The target genes of DE_miRNAs were primarily associated with metabolic processes and biosynthetic process regulation. Furthermore, they were also considerably enriched in the FE related to glycolysis, protein synthesis and degradation, and amino acid biosynthesis pathways. Six genes were identified by co-expression analysis of DE_miRNAs target with DE_mRNAs. These results provide a theoretical basis for us to understand the sheep liver miRNAs in RFI molecular regulation.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Palumbo MC, Gautam M, Sonneborn A, Kim K, Wilmarth PA, Reddy AP, Shi X, Marks DL, Sahay G, Abbas AI, Janowsky A. MicroRNA137-loaded lipid nanoparticles regulate synaptic proteins in the prefrontal cortex. Mol Ther 2023; 31:2975-2990. [PMID: 37644723 PMCID: PMC10556225 DOI: 10.1016/j.ymthe.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.
Collapse
Affiliation(s)
- Michelle C Palumbo
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kilsun Kim
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xiao Shi
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Portland, OR 97239, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Aaron Janowsky
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Fan C, Ma X, Wang Y, Lv L, Zhu Y, Liu H, Liu Y. A NOTCH1/LSD1/BMP2 co-regulatory network mediated by miR-137 negatively regulates osteogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2021; 12:417. [PMID: 34294143 PMCID: PMC8296522 DOI: 10.1186/s13287-021-02495-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. Methods Dual-luciferase reporter assay was performed to validate the binding to the 3′ untranslated region (3′ UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. Results We confirmed that miR-137 directly targeted the 3′ UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. Conclusions Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02495-3.
Collapse
Affiliation(s)
- Cong Fan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China. .,National Center of Stomatology, Beijing, China. .,National Clinical Research Center for Oral Diseases, Beijing, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China. .,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China. .,NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Prosthodontics, Beijing Stomatological Hospital Capital Medical University, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
6
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
7
|
Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021; 43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.
Collapse
Affiliation(s)
- Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Virginia Fernández
- Neurobiology of miRNA, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Kaviya Chinnappa
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
8
|
Eyles DW. How do established developmental risk-factors for schizophrenia change the way the brain develops? Transl Psychiatry 2021; 11:158. [PMID: 33686066 PMCID: PMC7940420 DOI: 10.1038/s41398-021-01273-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
The recognition that schizophrenia is a disorder of neurodevelopment is widely accepted. The original hypothesis was coined more than 30 years ago and the wealth of supportive epidemiologically data continues to grow. A number of proposals have been put forward to suggest how adverse early exposures in utero alter the way the adult brain functions, eventually producing the symptoms of schizophrenia. This of course is extremely difficult to study in developing human brains, so the bulk of what we know comes from animal models of such exposures. In this review, I will summarise the more salient features of how the major epidemiologically validated exposures change the way the brain is formed leading to abnormal function in ways that are informative for schizophrenia symptomology. Surprisingly few studies have examined brain ontogeny from embryo to adult in such models. However, where there is longitudinal data, various convergent mechanisms are beginning to emerge involving stress and immune pathways. There is also a surprisingly consistent alteration in how very early dopamine neurons develop in these models. Understanding how disparate epidemiologically-validated exposures may produce similar developmental brain abnormalities may unlock convergent early disease-related pathways/processes.
Collapse
Affiliation(s)
- Darryl W Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, QLD, Australia.
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, 4076, QLD, Australia.
| |
Collapse
|
9
|
Zandi E, Ayatollahi Mehrgardi A, Esmailizadeh A. Mammary tissue transcriptomic analysis for construction of integrated regulatory networks involved in lactogenesis of Ovis aries. Genomics 2020; 112:4277-4287. [PMID: 32693106 DOI: 10.1016/j.ygeno.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The mammary gland experiences vast changes between the onset of lactation and pregnancy. This remodeling involves different functions such as lactation that is controlled by innumerable regulators and various gene networks which are still not completely understood. MicroRNAs (miRNAs) are one of the important non-coding gene regulators which control an extensive range of biological processes. Thus, exploring miRNAs functions is important for solving gene regulation complexity. The main purpose in the present study is to identify the various gene regulative integrated networks involved in lactation progress in mammary gland. We analyzed ovine mammary tissue data sets which included expression profiles of mRNA (genes) and miRNAs related to six ewes in different days of lactation and nutritional treatments. We combined two different types of information: the network that is module inference by mRNAs (RNA-seq data), miRNAs and transcription factors (TFs) expression matrix and prediction of targets via computational methods. To discover the miRNAs regulatory function, 134 modules were predicted by using gene expression data and 14 TFs and 20 miRNAs were allocated to these predicted modules. By applying this integrated computation-based method, 38 miRNA-modules and 35 TF-module interactions were identified from ovine mammary tissue data during lactogenesis. A lot of these modules were involved in lipid and protein metabolism, as well as steroids and vitamin biosynthesis, which would play key roles in mammary tissue and lactation development. These results present new information about the regulatory procedures at the miRNAs and TF levels throughout lactation.
Collapse
Affiliation(s)
- Elmira Zandi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran; Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran.
| |
Collapse
|
10
|
Mukhopadhyay P, Greene RM, Pisano MM. MicroRNA targeting of the non-canonical planar cell polarity pathway in the developing neural tube. Cell Biochem Funct 2020; 38:905-920. [PMID: 32129905 DOI: 10.1002/cbf.3512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 11/05/2022]
Abstract
MicroRNAs (miRNAs) provide context-dependent transcriptional regulation of genes comprising signalling networks throughout the developing organism including morphogenesis of the embryonic neural tube (NT). Using a high-sensitivity, high-coverage microarray analysis platform, miRNA expression in the murine embryonic NT during the critical stages of its formation was examined. Analysis of a number of differentially expressed (DE) miRNAs enabled identification of several gene targets associated with cellular processes essential for normal NT development. Using computational pathway analysis, interactive biologic networks and functional relationships connecting DE miRNAs with their targeted messenger RNAs (mRNAs) were identified. Potential mRNA targets and a key signal transduction pathway governing critical cellular processes indispensable for normal mammalian neurulation were also identified. RNA preparations were also used to hybridize both miRNA arrays and mRNA arrays allowing miRNA-mRNA target analysis using data of DE miRNAs and DE mRNAs - co-expressed in the same developing NT tissue samples. Identification of these miRNA targets provides key insight into the epigenetic regulation of NT development as well as into potential mechanistic underpinning of NT defects. SIGNIFICANCE OF THE STUDY: This study underscores the premise that microRNAs are potential coordinators of normal neural tube (NT) formation, via regulation of the crucial, planar cell polarity pathway. Any alteration in their expression during neurulation would result in abnormal NT development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Robert M Greene
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - M Michele Pisano
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
MicroRNA-137 Drives Epigenetic Reprogramming in the Adult Amygdala and Behavioral Changes after Adolescent Alcohol Exposure. eNeuro 2019; 6:ENEURO.0401-19.2019. [PMID: 31740576 PMCID: PMC6917896 DOI: 10.1523/eneuro.0401-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Adolescent binge drinking is a serious public health concern and a risk factor for alcohol use disorder (AUD) and comorbid anxiety in adulthood. Chromatin remodeling mediated by epigenetic enzymes including lysine-specific demethylase 1 (LSD1) due to adolescent alcohol exposure may play a role in adult psychopathology. The mechanism by which adolescent alcohol exposure mechanistically regulates epigenetic reprogramming and behavioral changes in adulthood is unknown. We investigated the role of microRNA-137 (miR-137), which is crucial for normal neurodevelopment and targets LSD1, in adolescent intermittent ethanol (AIE) exposure-induced anxiety-like and alcohol-drinking behaviors and related epigenetic reprogramming in the amygdala in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 d on/off; AIE) or adolescent intermittent saline (AIS) during postnatal days (PND)28-PND41 and allowed to grow to adulthood for analysis of behavior, miRNA expression, and epigenetic measures in the amygdala. Interestingly, miR-137 was increased and its target genes Lsd1 and Lsd1 + 8a were decreased in the AIE adult amygdala. Infusion of miR-137 antagomir directly into the central nucleus of the amygdala (CeA) rescues AIE-induced alcohol-drinking and anxiety-like behaviors via normalization of decreased Lsd1 expression, decreased LSD1 occupancy, and decreased Bdnf IV expression due to increased H3K9 dimethylation in AIE adult rats. Further, concomitant Lsd1 small interfering RNA (siRNA) infusion into the CeA prevents the miR-137-mediated reversal of AIE-induced adult anxiety and chromatin remodeling at the Bdnf IV promoter. These novel results highlight miR-137 as a potential therapeutic target for anxiety and AUD susceptibility after adolescent alcohol exposure in adulthood.
Collapse
|
12
|
Yan HL, Sun XW, Wang ZM, Liu PP, Mi TW, Liu C, Wang YY, He XC, Du HZ, Liu CM, Teng ZQ. MiR-137 Deficiency Causes Anxiety-Like Behaviors in Mice. Front Mol Neurosci 2019; 12:260. [PMID: 31736707 PMCID: PMC6831983 DOI: 10.3389/fnmol.2019.00260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Anxiety and depression are major public health concerns worldwide. Although genome-wide association studies have identified several genes robustly associated with susceptibility for these disorders, the molecular and cellular mechanisms associated with anxiety and depression is largely unknown. Reduction of microRNA-137 (miR-137) level has been implicated in the etiology of major depressive disorder. However, little is known about the in vivo impact of the loss of miR-137 on the biology of anxiety and depression. Here, we generated a forebrain-specific miR-137 knockout mouse line, and showed that miR-137 is critical for dendritic and synaptic growth in the forebrain. Mice with miR-137 loss-of-function exhibit anxiety-like behavior, and impaired spatial learning and memory. We then observe an elevated expression of EZH2 in the forebrain of miR-137 knockout mice, and provide direct evidence that knockdown of EZH2 can rescue anxious phenotypes associated with the loss of miR-137. Together our results suggest that loss of miR-137 contributes to the etiology of anxiety, and EZH2 might be a potential therapeutic target for anxiety and depressive phenotypes associated with the dysfunction of miR-137.
Collapse
Affiliation(s)
- Hai-Liang Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Meng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ting-Wei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Gibbons A, Udawela M, Dean B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Noncoding RNA 2018; 4:E11. [PMID: 29657307 PMCID: PMC6027250 DOI: 10.3390/ncrna4020011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Department of Psychiatry, the University of Melbourne, Parkville, Victoria, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
14
|
Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:242-256. [PMID: 29442441 PMCID: PMC5815396 DOI: 10.1002/ajmg.b.32554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
Since it was first associated with schizophrenia (SCZ) in a 2011 genome-wide association study (GWAS), there have been over 100 publications focused on MIR137, the gene encoding microRNA-137. These studies have examined everything from its fundamental role in the development of mice, flies, and fish to the intriguing enrichment of its target gene network in SCZ. Indeed, much of the excitement surrounding MIR137 is due to the distinct possibility that it could regulate a gene network involved in SCZ etiology, a disease which we now recognize is highly polygenic. Here we comprehensively review, to the best of our ability, all published genetic and biological evidence that could support or refute a role for MIR137 in the etiology of SCZ. Through a careful consideration of the literature, we conclude that the data gathered to date continues to strongly support the involvement of MIR137 and its target gene network in neuropsychiatric traits, including SCZ risk. There remain, however, more unanswered than answered questions regarding the mechanisms linking MIR137 genetic variation with behavior. These questions need answers before we can determine whether there are opportunities for diagnostic or therapeutic interventions based on MIR137. We conclude with a number of suggestions for future research on MIR137 that could help to provide answers and hope for a greater understanding of this devastating disorder.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ji H, Xu L, Wang Z, Fan X, Wu L. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation. Exp Ther Med 2017; 15:2457-2467. [PMID: 29467848 PMCID: PMC5792815 DOI: 10.3892/etm.2017.5669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
Glyphosate is the active ingredient in numerous herbicide formulations. The role of glyphosate in neurotoxicity has been reported in human and animal models. However, the detailed mechanism of the role of glyphosate in neuronal development remains unknown. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. The current group previously identified microRNAs (miRNAs) that are associated with the etiology of NDDs, but their expression levels in the developing brain following glyphosate exposure have not been characterized. In the present study, miRNA expression patterns were evaluated in the prefrontal cortex (PFC) of 28 postnatal day mouse offspring following glyphosate exposure during pregnancy and lactation. An miRNA microarray detected 55 upregulated and 19 downregulated miRNAs in the PFC of mouse offspring, and 20 selected deregulated miRNAs were further evaluated by quantitative polymerase chain reaction (PCR). A total of 11 targets of these selected deregulated miRNAs were analyzed using bioinformatics. Gene Ontology (GO) terms associated with the relevant miRNAs included neurogenesis (GO:0050769), neuron differentiation (GO:0030182) and brain development (GO:0007420). The genes Cdkn1a, Numbl, Notch1, Fosl1 and Lef1 are involved in the Wnt and Notch signaling pathways, which are closely associated with neural development. PCR arrays for the mouse Wnt and Notch signaling pathways were used to validate the effects of glyphosate on the expression pattern of genes involved in the Wnt and Notch pathways. Nr4a2 and Wnt7b were downregulated, while Dkk1, Dixdc1, Runx1, Shh, Lef-1 and Axin2 were upregulated in the PFC of mice offspring following glyphosate exposure during pregnancy and lactation. These results indicated abnormalities of the Wnt/β-catenin and Notch pathways. These findings may be of particular interest for understanding the mechanism of glyphosate-induced neurotoxicity, as well as helping to clarify the association between glyphosate and NDDs.
Collapse
Affiliation(s)
- Hua Ji
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Linhao Xu
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Zheng Wang
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xinli Fan
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Lihui Wu
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
16
|
Screening of miRNA profiles and construction of regulation networks in early and late lactation of dairy goat mammary glands. Sci Rep 2017; 7:11933. [PMID: 28931951 PMCID: PMC5607250 DOI: 10.1038/s41598-017-12297-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
In recent years, studies related to the expression profiles of miRNAs in the dairy goat mammary gland were performed, but regulatory mechanisms in the physiological environment and the dynamic homeostasis of mammary gland development and lactation are not clear. In the present study, sequencing data analysis of early and late lactation uncovered a total of 1,487 unique miRNAs, including 45 novel miRNA candidates and 1,442 known and conserved miRNAs, of which 758 miRNAs were co-expressed and 378 differentially expressed with P < 0.05. Moreover, 76 non-redundant target genes were annotated in 347 GO consortiums, with 3,143 candidate target genes grouped into 33 pathways. Additionally, 18 predicted target genes of 214 miRNAs were directly annotated in mammary gland development and used to construct regulatory networks based on GO annotation and the KEGG pathway. The expression levels of seven known miRNAs and three novel miRNAs were examined using quantitative real-time PCR. The results showed that miRNAs might play important roles in early and late lactation during dairy goat mammary gland development, which will be helpful to obtain a better understanding of the genetic control of mammary gland lactation and development.
Collapse
|
17
|
Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry 2017; 22:44-55. [PMID: 27620842 PMCID: PMC5414082 DOI: 10.1038/mp.2016.150] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) represent an important class of small regulatory RNAs that control gene expression posttranscriptionally by targeting mRNAs for degradation or translation inhibition. Early studies have revealed a complex role for miRNAs in major biological processes such as development, differentiation, growth and metabolism. MiR-137 in particular, has been of great interest due to its critical role in brain function and putative involvement in the etiology of both neuropsychiatric disorders and cancer. Several lines of evidence suggest that development, differentiation and maturation of the nervous system is strongly linked to the expression of miR-137 and its regulation of a large number of downstream target genes in various pathways. Dysregulation of this molecule has also been implicated in major mental illnesses through its position in a variant allele highly associated with schizophrenia in the largest mega genome-wide association studies. Interestingly, miR-137 has also been shown to act as a tumor suppressor, with numerous studies finding reduced expression in neoplasia including brain tumor. Restoration of miR-137 expression has also been shown to inhibit cell proliferation, migration and metastasis, and induce cell cycle arrest, differentiation and apoptosis. These properties of miR-137 propose its potential for prognosis, diagnosis and as a therapeutic target for treatment of several human neurological and neoplastic disorders. In this review, we provide details on the discovery, targets, function, regulation and disease involvement of miR-137 with a broad look at recent discovery in this area.
Collapse
Affiliation(s)
- E Mahmoudi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia,Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - M J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia,Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia,School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia. E-mail:
| |
Collapse
|
18
|
Sun T, Li W, Li T, Ling S. microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development. PLoS One 2016; 11:e0153950. [PMID: 27166676 PMCID: PMC4864075 DOI: 10.1371/journal.pone.0153950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development.
Collapse
Affiliation(s)
- Tingting Sun
- Institute of Neuroscience and Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weiyun Li
- Institute of Neuroscience and Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tianpeng Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China
- * E-mail:
| |
Collapse
|
19
|
Wang J, Chen J, Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol 2016; 231:25-30. [PMID: 26031493 PMCID: PMC8776330 DOI: 10.1002/jcp.25056] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that are involved in regulating a range of developmental and physiological processes; their dysregulation has been associated with development of diseases including cancer. Circulating miRNAs and exosomal miRNAs have also been proposed as being useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, miRNAs are discussed as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics and provide some general perspectives on their use in clinical situations. The analytical challenges in using miRNAs in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics.
Collapse
Affiliation(s)
- Jin Wang
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jinyun Chen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Subrata Sen
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Program in Human and Molecular Genetics, The University of Texas Graduate school of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
20
|
Geaghan M, Cairns MJ. MicroRNA and Posttranscriptional Dysregulation in Psychiatry. Biol Psychiatry 2015; 78:231-9. [PMID: 25636176 DOI: 10.1016/j.biopsych.2014.12.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Psychiatric syndromes, including schizophrenia, mood disorders, and autism spectrum disorders, are characterized by a complex range of symptoms, including psychosis, depression, mania, and cognitive deficits. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their etiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as potential players in the pathophysiology of mental illness. These small RNAs regulate hundreds of target transcripts by modifying their stability and translation on a broad scale, influencing entire gene networks in the process. There is evidence to suggest that numerous miRNAs are dysregulated in postmortem neuropathology of neuropsychiatric disorders, and there is strong genetic support for association of miRNA genes and their targets with these conditions. This review presents the accumulated evidence linking miRNA dysregulation and dysfunction with schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorders and the potential of miRNAs as biomarkers or therapeutics for these disorders. We further assess the functional roles of some outstanding miRNAs associated with these conditions and how they may be influencing the development of psychiatric symptoms.
Collapse
Affiliation(s)
- Michael Geaghan
- School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.; Schizophrenia Research Institute, Sydney, Australia.; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, New South Wales, Australia..
| |
Collapse
|
21
|
Goldie BJ, Barnett MM, Cairns MJ. BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation. Front Cell Neurosci 2014; 8:325. [PMID: 25360083 PMCID: PMC4197648 DOI: 10.3389/fncel.2014.00325] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/26/2014] [Indexed: 12/31/2022] Open
Abstract
The SH-SY5Y culture system is a convenient neuronal model with the potential to elaborate human/primate-specific transcription networks and pathways related to human cognitive disorders. While this system allows for the exploration of specialized features in the human genome, there is still significant debate about how this model should be implemented, and its appropriateness for answering complex functional questions related to human neural architecture. In view of these questions we sought to characterize the posttranscriptional regulatory structure of the two-stage ATRA differentiation, BDNF maturation protocol proposed by Encinas et al. (2000) using integrative whole-genome gene and microRNA (miRNA) expression analysis. We report that ATRA-BDNF induced significant increases in expression of key synaptic genes, brain-specific miRNA and miRNA biogenesis machinery, and in AChE activity, compared with ATRA alone. Functional annotation clustering associated BDNF more significantly with neuronal terms, and with synaptic terms not found in ATRA-only clusters. While our results support use of SH-SY5Y as a neuronal model, we advocate considered selection of the differentiation agent/s relative to the system being modeled.
Collapse
Affiliation(s)
- Belinda J Goldie
- The Centre for Translational Neuroscience and Mental Health, School of Biomedical Sciences and Pharmacy, University of Newcastle Callaghan, NSW, Australia ; Schizophrenia Research Institute Sydney, NSW, Australia
| | - Michelle M Barnett
- The Centre for Translational Neuroscience and Mental Health, School of Biomedical Sciences and Pharmacy, University of Newcastle Callaghan, NSW, Australia
| | - Murray J Cairns
- The Centre for Translational Neuroscience and Mental Health, School of Biomedical Sciences and Pharmacy, University of Newcastle Callaghan, NSW, Australia ; Schizophrenia Research Institute Sydney, NSW, Australia
| |
Collapse
|