1
|
Liu C, Kogel K, Ladera‐Carmona M. Harnessing RNA interference for the control of Fusarium species: A critical review. MOLECULAR PLANT PATHOLOGY 2024; 25:e70011. [PMID: 39363756 PMCID: PMC11450251 DOI: 10.1111/mpp.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fusarium fungi are a pervasive threat to global agricultural productivity. They cause a spectrum of plant diseases that result in significant yield losses and threaten food safety by producing mycotoxins that are harmful to human and animal health. In recent years, the exploitation of the RNA interference (RNAi) mechanism has emerged as a promising avenue for the control of Fusarium-induced diseases, providing both a mechanistic understanding of Fusarium gene function and a potential strategy for environmentally sustainable disease management. However, despite significant progress in elucidating the presence and function of the RNAi pathway in different Fusarium species, a comprehensive understanding of its individual protein components and underlying silencing mechanisms remains elusive. Accordingly, while a considerable number of RNAi-based approaches to Fusarium control have been developed and many reports of RNAi applications in Fusarium control under laboratory conditions have been published, the applicability of this knowledge in agronomic settings remains an open question, and few convincing data on RNAi-based disease control under field conditions have been published. This review aims to consolidate the current knowledge on the role of RNAi in Fusarium disease control by evaluating current research and highlighting important avenues for future investigation.
Collapse
Affiliation(s)
- Caihong Liu
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Karl‐Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
- Institut de Biologie Moléculaire des Plantes, CNRSUniversité de StrasbourgStrasbourgFrance
| | - Maria Ladera‐Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| |
Collapse
|
2
|
Ullah S, Rahman W, Ullah F, Ullah A, Ahmad G, Ijaz M, Ullah H, Sharafmal DM. The HABD: Home of All Biological Databases Empowering Biological Research With Cutting-Edge Database Systems. Curr Protoc 2024; 4:e1063. [PMID: 38808697 DOI: 10.1002/cpz1.1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of computer technologies and computing power has led to the development of several database systems that provide standardized access to vast quantities of data, making it possible to collect, search, index, evaluate, and extract useful knowledge across various fields. The Home of All Biological Databases (HABD) has been established as a continually expanding platform that aims to store, organize, and distribute biological data in a searchable manner, removing all dead and non-accessible data. The platform meticulously categorizes data into various categories, such as COVID-19 Pandemic Database (CO-19PDB), Database relevant to Human Research (DBHR), Cancer Research Database (CRDB), Latest Database of Protein Research (LDBPR), Fungi Databases Collection (FDBC), and many other databases that are categorized based on biological phenomena. It currently provides a total of 22 databases, including 6 published, 5 submitted, and the remaining in various stages of development. These databases encompass a range of areas, including phytochemical-specific and plastic biodegradation databases. HABD is equipped with search engine optimization (SEO) analyzer and Neil Patel tools, which ensure excellent SEO and high-speed value. With timely updates, HABD aims to facilitate the processing and visualization of data for scientists, providing a one-stop-shop for all biological databases. Computer platforms, such as PhP, html, CSS, Java script and Biopython, are used to build all the databases. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Shahid Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | | | - Farhan Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Gulzar Ahmad
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | | | - Hameed Ullah
- S-Khan Lab, Mardan, Khyber Pakhtunkhwa, Pakistan
| | | |
Collapse
|
3
|
Bose I. Gene Silencing via RNA Interference in Cryptococcus. Methods Mol Biol 2024; 2775:91-106. [PMID: 38758313 DOI: 10.1007/978-1-0716-3722-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
RNA interference (RNAi) is a molecular biology technique for silencing specific eukaryotic genes without altering the DNA sequence in the genome. The silencing effect occurs because of decreased levels of mRNA that then result in decreased protein levels for the gene. The specificity of the silencing is dependent upon the presence of sequence-specific double-stranded RNA (dsRNA) that activates the cellular RNAi machinery. This chapter describes the process of silencing a specific target gene in Cryptococcus using a dual promoter vector. The plasmid, pIBB103, was designed with two convergent GAL7 promoters flanking a ura5 fragment that acts as a reporter for efficient RNAi. The target gene fragment is inserted between the promoters to be transcribed from both directions leading to the production of dsRNA in cells that activate the RNAi pathway.
Collapse
Affiliation(s)
- Indrani Bose
- Department of Biology, Western Carolina University, Cullowhee, NC, USA.
| |
Collapse
|
4
|
MicroRNA-like RNA Functions Are Required for the Biosynthesis of Active Compounds in the Medicinal Fungus Sanghuangporus vaninii. Microbiol Spectr 2022; 10:e0021922. [PMID: 36301126 PMCID: PMC9769868 DOI: 10.1128/spectrum.00219-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
miRNA-like RNAs (milRNAs) have been recognized as sequence-specific regulators of posttranscriptional regulation of gene expression in eukaryotes. However, the functions of hundreds of fungal milRNAs in the biosynthesis of metabolic components are obscure. Sanghuangporus produces diverse bioactive compounds and is widely used in Asian countries. Here, genes encoding two Dicers, four Argonautes, and four RdRPs were identified and characterized in Sanghuangporus vanini. Due to the lack of an efficient gene manipulation system, the efficacy of spray-induced gene silencing (SIGS) was determined in S. vanini, which showed efficient double-stranded RNA (dsRNA) uptake and gene silencing efficiency. SIGS-mediated gene knockdown showed that SVRDRP-3, SVRDRP-4, SVDICER-1, and SVDICER-2 were critical for mycelial biomass, flavonoid, triterpenoid, and polysaccharide production. Illumina deep sequencing was performed to characterize the milRNAs from S. vanini mycelium and fruiting body. A total of 31 milRNAs were identified, out of which, SvmilR10, SvmilR17, and SvmilR33 were Svrdrp-4- and Svdicer-1-dependent milRNAs. Importantly, SIGS-mediated overexpression of SvmilR10 and SvmilR33 resulted in significant changes in the yields of flavonoids, triterpenoids, and polysaccharides. Further analysis showed that these milRNA target genes encoding the retrotransposon-derived protein PEG1 and histone-lysine N-methyltransferase were potentially downregulated in the milRNA overexpressing strain. Our results revealed that S. vanini has high external dsRNA and small RNA uptake efficiency and that milRNAs may play crucial regulatory roles in the biosynthesis of bioactive compounds. IMPORTANCE Fungi can take up environmental RNA that can silence fungal genes with RNA interference, which prompts the development of SIGS. Efficient dsRNA and milRNA uptake in S. vanini, successful dsRNA-targeted gene block, and the increase in intracellular miRNA abundance showed that SIGS technology is an effective and powerful tool for the functional dissection of fungal genes and millRNAs. We found that the RdRP, Dicer, and Argonaute genes are critical for mycelial biomass and bioactive compound production. Our study also demonstrated that overexpressed SVRDRP-4- and SVDICER-1-dependent milRNAs (SvmilR10 and SvmilR33) led to significant changes in the yields of the three active compounds. This study not only provides the first report on SIGS-based gene and milRNA function exploration, but also provides a theoretical platform for exploration of the functions of milRNAs involved in biosynthesis of metabolic compounds in fungi.
Collapse
|
5
|
Johnson NR, Larrondo LF, Álvarez JM, Vidal EA. Comprehensive re-analysis of hairpin small RNAs in fungi reveals loci with conserved links. eLife 2022; 11:e83691. [PMID: 36484778 PMCID: PMC9757828 DOI: 10.7554/elife.83691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.
Collapse
Affiliation(s)
- Nathan R Johnson
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| | - Luis F Larrondo
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoChile
| | - José M Álvarez
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés BelloSantiagoChile
| | - Elena A Vidal
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| |
Collapse
|
6
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Vogan AA, Martinossi-Allibert I, Ament-Velásquez SL, Svedberg J, Johannesson H. The spore killers, fungal meiotic driver elements. Mycologia 2022; 114:1-23. [PMID: 35138994 DOI: 10.1080/00275514.2021.1994815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During meiosis, both alleles of any given gene should have equal chances of being inherited by the progeny. There are a number of reasons why, however, this is not the case, with one of the most intriguing instances presenting itself as the phenomenon of meiotic drive. Genes that are capable of driving can manipulate the ratio of alleles among viable meiotic products so that they are inherited in more than half of them. In many cases, this effect is achieved by direct antagonistic interactions, where the driving allele inhibits or otherwise eliminates the alternative allele. In ascomycete fungi, meiotic products are packaged directly into ascospores; thus, the effect of meiotic drive has been given the nefarious moniker, "spore killing." In recent years, many of the known spore killers have been elevated from mysterious phenotypes to well-described systems at genetic, genomic, and molecular levels. In this review, we describe the known diversity of spore killers and synthesize the varied pieces of data from each system into broader trends regarding genome architecture, mechanisms of resistance, the role of transposable elements, their effect on population dynamics, speciation and gene flow, and finally how they may be developed as synthetic drivers. We propose that spore killing is common, but that it is under-observed because of a lack of studies on natural populations. We encourage researchers to seek new spore killers to build on the knowledge that these remarkable genetic elements can teach us about meiotic drive, genomic conflict, and evolution more broadly.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077, Bordeaux CEDEX, France
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Jesper Svedberg
- Department of Biomolecular Engineering, University of California, -Santa Cruz, Santa Cruz, California 95064
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
9
|
Jeseničnik T, Štajner N, Radišek S, Mishra AK, Košmelj K, Kunej U, Jakše J. Discovery of microRNA-like Small RNAs in Pathogenic Plant Fungus Verticillium nonalfalfae Using High-Throughput Sequencing and qPCR and RLM-RACE Validation. Int J Mol Sci 2022; 23:900. [PMID: 35055083 PMCID: PMC8778906 DOI: 10.3390/ijms23020900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant-fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5' RLM-RACE approach.
Collapse
Affiliation(s)
- Taja Jeseničnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic;
| | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| |
Collapse
|
10
|
Sperschneider J, Jones AW, Nasim J, Xu B, Jacques S, Zhong C, Upadhyaya NM, Mago R, Hu Y, Figueroa M, Singh KB, Stone EA, Schwessinger B, Wang MB, Taylor JM, Dodds PN. The stem rust fungus Puccinia graminis f. sp. tritici induces centromeric small RNAs during late infection that are associated with genome-wide DNA methylation. BMC Biol 2021; 19:203. [PMID: 34526021 PMCID: PMC8444563 DOI: 10.1186/s12915-021-01123-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive. Results We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5′ uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5′ adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes. Conclusions We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01123-z.
Collapse
Affiliation(s)
- Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, Australia. .,Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia.
| | - Ashley W Jones
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Jamila Nasim
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Bo Xu
- Thermo Fisher Scientific, 5 Caribbean Drive, Scoresby, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Australia
| | - Chengcheng Zhong
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| | - Narayana M Upadhyaya
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| | - Rohit Mago
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| | - Yiheng Hu
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Melania Figueroa
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| | - Karam B Singh
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Australia.,Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, Australia
| | - Eric A Stone
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Ming-Bo Wang
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| | - Jennifer M Taylor
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia.
| |
Collapse
|
11
|
Lax C, Tahiri G, Patiño-Medina JA, Cánovas-Márquez JT, Pérez-Ruiz JA, Osorio-Concepción M, Navarro E, Calo S. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int J Mol Sci 2020; 21:E9348. [PMID: 33302447 PMCID: PMC7763443 DOI: 10.3390/ijms21249348] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.
Collapse
Affiliation(s)
- Carlos Lax
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Ghizlane Tahiri
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán CP 58030, Mexico;
| | - José T. Cánovas-Márquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José A. Pérez-Ruiz
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Macario Osorio-Concepción
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Eusebio Navarro
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Silvia Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033 Santiago de los Caballeros, Dominican Republic
| |
Collapse
|
12
|
Dubey H, Kiran K, Jaswal R, Bhardwaj SC, Mondal TK, Jain N, Singh NK, Kayastha AM, Sharma TR. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 2020; 20:711-721. [PMID: 32705366 DOI: 10.1007/s10142-020-00745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, Karnataka, 560035, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India. .,Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India.
| |
Collapse
|
13
|
Jeseničnik T, Štajner N, Radišek S, Jakše J. RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Sci Rep 2019; 9:8651. [PMID: 31209232 PMCID: PMC6572790 DOI: 10.1038/s41598-019-44494-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
The conserved RNA interference mechanism (RNAi) in the fungal kingdom has become a focus of intense scientific investigation. The three catalytic core components, Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RdRP), and their associated small interfering RNA molecules (siRNAs) have been identified and characterised in several fungal species. Recent studies have proposed that RNAi is a major contributor to the virulence of fungal pathogens as a result of so-called trans-kingdom RNA silencing. In the present study, we report on the existence of three core RNAi proteins in the pathogenic plant fungus Verticillium nonalfalfae, which is a soilborne plant pathogen that causes severe wilting disease in hops (Humulus lupulus L.). Two DCL proteins, two AGO proteins, and two RdRP proteins were identified, and their conserved RNAi domains were characterised. Our phylogeny results confirm the existing taxonomic relationships in the Ascomycete fungal phylum and show that the fungi of the Hypocreomycetidae subclass of the Sordariomycetes class have high amino acid sequence similarity. The expression analysis revealed a potential role of RNAi in the pathogenicity of the fungi, since all the RNAi genes were highly upregulated in the highly virulent isolate T2 and were also differentially expressed in the V. nonalfalfae-susceptible Celeia and V. nonalfalfae-resistant Wye Target cultivars.
Collapse
Affiliation(s)
- Taja Jeseničnik
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia
| | - Nataša Štajner
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec, 3310, Slovenia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia.
| |
Collapse
|
14
|
Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct Integr Genomics 2019; 19:391-407. [PMID: 30618015 DOI: 10.1007/s10142-018-00652-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Cross-kingdom RNAi is a well-documented phenomenon where sRNAs generated by host and pathogens may govern resistance or susceptible phenotypes during host-pathogen interaction. With the first example of the direct involvement of fungal generated sRNAs in virulence of plant pathogenic fungi Botrytis cinerea and recently from Puccinia striiformis f. sp. tritici, we attempted to identify sRNAs in Puccinia triticina (P. triticina). Four sRNA libraries were prepared and sequenced using Illumina sequencing technology and a total of ~ 1-1.28 million potential sRNAs and two microRNA-like small RNA (mil-RNAs) candidates were identified. Computational prediction of targets using a common set of sRNAs and P. triticina mil-RNAs (pt-mil-RNAs) within P. triticina and wheat revealed the majority of the targets as repetitive elements in P. triticina whereas in wheat, the target genes were identified to be involved in many biological processes including defense-related pathways. We found 9 receptor-like kinases (RLKs) and 14 target genes of each related to reactive oxygen species (ROS) pathway and transcription factors respectively, including significant numbers of target genes from various other categories. Expression analysis of twenty selected sRNAs, targeting host genes pertaining to ROS related, disease resistance, metabolic processes, transporter, apoptotic inhibitor, and transcription factors along with two pt-mil-RNAs by qRT-PCR showed distinct patterns of expression of the sRNAs in urediniospore-specific libraries. In this study, for the first time, we report identification of novel sRNAs identified in P. triticina including two pt-mil-RNAs that may play an important role in biotrophic growth and pathogenicity.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kanti Kiran
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India
| | - Priyanka Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India. .,National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India.
| |
Collapse
|
15
|
Calkins SS, Elledge NC, Mueller KE, Marek SM, Couger MB, Elshahed MS, Youssef NH. Development of an RNA interference (RNAi) gene knockdown protocol in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. PeerJ 2018; 6:e4276. [PMID: 29404209 PMCID: PMC5796279 DOI: 10.7717/peerj.4276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols for gene insertion, deletion, silencing, or mutation are currently available for the AGF, rendering gene-targeted molecular biological manipulations unfeasible. Here, we developed and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, Argonaute, Neurospora crassa QDE-3 homolog DNA helicase, Argonaute-interacting protein, and Neurospora crassa QIP homolog exonuclease); and the competency of C1A germinating spores for RNA uptake was confirmed using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-lactate dehydrogenase (ldhD) gene to C1A germinating spores resulted in marked target gene silencing; as evident by significantly lower ldhD transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in intracellular protein extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-treated cultures identified a few off-target siRNA-mediated gene silencing effects. As well, significant differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for gene silencing-based studies in this fungal clade.
Collapse
Affiliation(s)
- Shelby S Calkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Nicole C Elledge
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.,Current affiliation: University of Texas A&M Corpus Christi, Department of Life Sciences, Marine Biology Program, USA
| | - Katherine E Mueller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- High Performance Computing Center, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
16
|
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles. Genome Biol Evol 2017; 9:3463-3477. [PMID: 29228286 PMCID: PMC5751038 DOI: 10.1093/gbe/evx261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a "cut-and-paste" fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species' lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| | | | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| |
Collapse
|
17
|
Abstract
RNA interference (RNAi) is a mechanism conserved in eukaryotes, including fungi, that represses gene expression by means of small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides. Its discovery is one of the most important scientific breakthroughs of the past 20 years, and it has revolutionized our perception of the functioning of the cell. Initially described and characterized in Neurospora crassa, the RNAi is widespread in fungi, suggesting that it plays important functions in the fungal kingdom. Several RNAi-related mechanisms for maintenance of genome integrity, particularly protection against exogenous nucleic acids such as mobile elements, have been described in several fungi, suggesting that this is the main function of RNAi in the fungal kingdom. However, an increasing number of fungal sRNAs with regulatory functions generated by specific RNAi pathways have been identified. Several mechanistic aspects of the biogenesis of these sRNAs are known, but their function in fungal development and physiology is scarce, except for remarkable examples such as Mucor circinelloides, in which specific sRNAs clearly regulate responses to environmental and endogenous signals. Despite the retention of RNAi in most species, some fungal groups and species lack an active RNAi mechanism, suggesting that its loss may provide some selective advantage. This article summarizes the current understanding of RNAi functions in the fungal kingdom.
Collapse
|
18
|
Torres-Martínez S, Ruiz-Vázquez RM. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu Rev Microbiol 2017; 71:371-391. [PMID: 28657888 DOI: 10.1146/annurev-micro-090816-093352] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.
Collapse
|
19
|
Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, Lopez-Fernandez L, Torres-Martínez S, Garre V, Ruiz-Vázquez RM, Nicolás FE. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathog 2017; 13:e1006150. [PMID: 28107502 PMCID: PMC5287474 DOI: 10.1371/journal.ppat.1006150] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/01/2017] [Accepted: 12/22/2016] [Indexed: 01/17/2023] Open
Abstract
Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies. Mucormycosis is an infectious disease caused by organisms of the order Mucorales. It is a lethal infection that is raising the alarm in the medical and scientific community due to its high mortality rates, unusual antifungal drug resistance and its emerging character. Among the reasons explaining the nescience about this disease is the lack of knowledge on the biology of the organisms that cause mucormycosis, which is encouraged by the reluctance of these species to genetic studies. In this work, we have developed an RNAi-based functional genomic platform to study virulence in Mucorales. It is a powerful tool available for the scientific community that will contribute to solve the reluctance of Mucorales to genetic studies and will help to understand the genetic basis of virulence in these organisms. Secondly, and as a proof of concept, we have used this genetic tool to identify two new virulence determinants in Mucor circinelloides. Lack of function of these determinants delays germination and growth of spores, conceding time to macrophages for the inactivation of the pathogen. The two genes identified, mcplD and mcmyo5, represent promising targets for future development of new antifungal therapies against mucormycosis.
Collapse
Affiliation(s)
- Trung Anh Trieu
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | | | - Carlos Pérez-Arques
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | - Marta Sanchis
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Javier Capilla
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | | | | | | | - Victoriano Garre
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | | | - Francisco E. Nicolás
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
- * E-mail:
| |
Collapse
|
20
|
Baulcombe DC. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:141-6. [PMID: 26247121 DOI: 10.1016/j.pbi.2015.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/28/2015] [Accepted: 06/06/2015] [Indexed: 05/21/2023]
Abstract
Recent evidence indicates two-way traffic of silencing RNA between filamentous organisms and their plant hosts. There are also indications that suppressors of RNA silencing are transferred from filamentous organisms into host plant cells where they influence the innate immune system. Here I use virus disease as a template for interpretation of RNA silencing in connection with filamentous organisms and infected plant cells. I propose that host plant interactions of these organisms are influenced by RNA silencing networks in which there are: small interfering RNAs from the host that are transported into the filamentous organism and vice versa; silencing suppressors from the organism that are transported into the host; endogenous small interfering RNAs and micro RNAs that target components of the innate immune system or endogenous suppressors of the innate immune system.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
21
|
Zhu Y, Xu J, Sun C, Zhou S, Xu H, Nelson DR, Qian J, Song J, Luo H, Xiang L, Li Y, Xu Z, Ji A, Wang L, Lu S, Hayward A, Sun W, Li X, Schwartz DC, Wang Y, Chen S. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense. Sci Rep 2015; 5:11087. [PMID: 26046933 PMCID: PMC4457147 DOI: 10.1038/srep11087] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/14/2015] [Indexed: 11/30/2022] Open
Abstract
Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms.
Collapse
Affiliation(s)
- Yingjie Zhu
- 1] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China [2] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jiang Xu
- 1] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China [2] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Haibin Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jun Qian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Li Xiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Lizhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia, 4072
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Shilin Chen
- 1] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China [2] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
22
|
Schönbach C, Tan T, Ranganathan S. InCoB2014: mining biological data from genomics for transforming industry and health. BMC Genomics 2014; 15 Suppl 9:I1. [PMID: 25521539 PMCID: PMC4290585 DOI: 10.1186/1471-2164-15-s9-i1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 13th International Conference on Bioinformatics (InCoB2014) was held for the first time in Australia, at Sydney, July 31-2 August, 2014. InCoB is the annual scientific gathering of the Asia-Pacific Bioinformatics Network (APBioNet), hosted since 2002 in the Asia-Pacific region. Of 106 full papers submitted to the BMC track of InCoB2014, 50 (47.2%) were accepted in BMC Bioinformatics, BMC Genomics and BMC Systems Biology supplements, with three papers in a new BMC Medical Genomics supplement. While the majority of presenters and authors were from Asia and Australia, the increasing number of US and European conference attendees augurs well for the international flavour of InCoB. Next year's InCoB will be held jointly with the Genome Informatics Workshop (GIW), September 9-11, 2015 in Tokyo, Japan, with a view to integrate bioinformatics communities in the region.
Collapse
|