1
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Frieberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A W Greeley
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Fey C, Truschel T, Nehlsen K, Damigos S, Horstmann J, Stradal T, May T, Metzger M, Zdzieblo D. Enhancing pre-clinical research with simplified intestinal cell line models. J Tissue Eng 2024; 15:20417314241228949. [PMID: 38449469 PMCID: PMC10916479 DOI: 10.1177/20417314241228949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024] Open
Abstract
Two-dimensional culture remains widely employed to determine the bioavailability of orally delivered drugs. To gain more knowledge about drug uptake mechanisms and risk assessment for the patient after oral drug admission, intestinal in vitro models demonstrating a closer similarity to the in vivo situation are needed. In particular, Caco-2 cell-based Transwell® models show advantages as they are reproducible, cost-efficient, and standardized. However, cellular complexity is impaired and cell function is strongly modified as important transporters in the apical membrane are missing. To overcome these limitations, primary organoid-based human small intestinal tissue models were developed recently but the application of these cultures in pre-clinical research still represents an enormous challenge, as culture setup is complex as well as time- and cost-intensive. To overcome these hurdles, we demonstrate the establishment of primary organoid-derived intestinal cell lines by immortalization. Besides exhibiting cellular diversity of the organoid, these immortalized cell lines enable a standardized and more cost-efficient culture. Further, our cell line-based Transwell®-like models display an organ-specific epithelial barrier integrity, ultrastructural features and representative transport functions. Altogether, our novel model systems are cost-efficient with close similarity to the in vivo situation, therefore favoring their use in bioavailability studies in the context of pre-clinical screenings.
Collapse
Affiliation(s)
- Christina Fey
- Translational Center for Regenerative Therapies (TLZ-RT) Würzburg, Branch of the Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | | | | | - Spyridon Damigos
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Julia Horstmann
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Marco Metzger
- Translational Center for Regenerative Therapies (TLZ-RT) Würzburg, Branch of the Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Daniela Zdzieblo
- Translational Center for Regenerative Therapies (TLZ-RT) Würzburg, Branch of the Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
- Project Center for Stem Cell Process Engineering (PZ-SPT), Branch of the Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| |
Collapse
|
3
|
Mussard E, Lencina C, Gallo L, Barilly C, Poli M, Feve K, Albin M, Cauquil L, Knudsen C, Achard C, Devailly G, Soler L, Combes S, Beaumont M. The phenotype of the gut region is more stably retained than developmental stage in piglet intestinal organoids. Front Cell Dev Biol 2022; 10:983031. [PMID: 36105361 PMCID: PMC9465596 DOI: 10.3389/fcell.2022.983031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal organoids are innovative in vitro tools to study the digestive epithelium. The objective of this study was to generate jejunum and colon organoids from suckling and weaned piglets in order to determine the extent to which organoids retain a location-specific and a developmental stage-specific phenotype. Organoids were studied at three time points by gene expression profiling for comparison with the transcriptomic patterns observed in crypts in vivo. In addition, the gut microbiota and the metabolome were analyzed to characterize the luminal environment of epithelial cells at the origin of organoids. The location-specific expression of 60 genes differentially expressed between jejunum and colon crypts from suckling piglets was partially retained (48%) in the derived organoids at all time point. The regional expression of these genes was independent of luminal signals since the major differences in microbiota and metabolome observed in vivo between the jejunum and the colon were not reproduced in vitro. In contrast, the regional expression of other genes was erased in organoids. Moreover, the developmental stage-specific expression of 30 genes differentially expressed between the jejunum crypts of suckling and weaned piglets was not stably retained in the derived organoids. Differentiation of organoids was necessary to observe the regional expression of certain genes while it was not sufficient to reproduce developmental stage-specific expression patterns. In conclusion, piglet intestinal organoids retained a location-specific phenotype while the characteristics of developmental stage were erased in vitro. Reproducing more closely the luminal environment might help to increase the physiological relevance of intestinal organoids.
Collapse
Affiliation(s)
- Eloïse Mussard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Lise Gallo
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Maryse Poli
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Katia Feve
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Mikael Albin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- *Correspondence: Martin Beaumont,
| |
Collapse
|
4
|
Balusikova K, Dostalikova-Cimburova M, Tacheci I, Kovar J. Expression profiles of iron transport molecules along the duodenum. J Cell Mol Med 2022; 26:2995-3004. [PMID: 35445529 PMCID: PMC9097835 DOI: 10.1111/jcmm.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Duodenal biopsies are considered a suitable source of enterocytes for studies of dietary iron absorption. However, the expression level of molecules involved in iron absorption may vary along the length of duodenum. We aimed to determine whether the expression of molecules involved in the absorption of heme and non-heme iron differs depending on the location in the duodenum. Analysis was performed with samples of duodenal biopsies from 10 individuals with normal iron metabolism. Samples were collected at the following locations: (a) immediately post-bulbar, (b) 1-2 cm below the papilla of Vater and (c) in the distal duodenum. The gene expression was analyzed at the mRNA and protein level using real-time PCR and Western blot analysis. At the mRNA level, significantly different expression of HCP1, DMT1, ferroportin and Zip8 was found at individual positions of duodenum. Position-dependent expression of other molecules, especially of FLVCR1, HMOX1 and HMOX2 was also detected but with no statistical significances. At the protein level, we observed statistically significantly decreasing expression of transporters HCP1, FLVCR1, DMT1, ferroportin, Zip14 and Zip8 with advancing positions of duodenum. Our results are consistent with a gradient of diminishing iron absorption along the duodenum for both heme and non-heme iron.
Collapse
Affiliation(s)
- Kamila Balusikova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Dostalikova-Cimburova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine - Gastroenterology, University Hospital and Charles University in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Kovar
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos 2022; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other functions of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, whereas the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. SIGNIFICANCE STATEMENT: This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
6
|
Martins Garcia T, van Roest M, Vermeulen JLM, Meisner S, Koster J, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Altered Gut Structure and Anti-Bacterial Defense in Adult Mice Treated with Antibiotics during Early Life. Antibiotics (Basel) 2022; 11:antibiotics11020267. [PMID: 35203869 PMCID: PMC8868095 DOI: 10.3390/antibiotics11020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The association between prolonged antibiotic (AB) use in neonates and increased incidence of later life diseases is not yet fully understood. AB treatment in early life alters intestinal epithelial cell composition, functioning, and maturation, which could be the basis for later life health effects. Here, we investigated whether AB-induced changes in the neonatal gut persisted up to adulthood and whether early life AB had additional long-term consequences for gut functioning. Mice received AB orally from postnatal day 10 to 20. Intestinal morphology, permeability, and gene and protein expression at 8 weeks were analyzed. Our data showed that the majority of the early life AB-induced gut effects did not persist into adulthood, yet early life AB did impact later life gut functioning. Specifically, the proximal small intestine (SI) of adult mice treated with AB in early life was characterized by hyperproliferative crypts, increased number of Paneth cells, and alterations in enteroendocrine cell-specific gene expression profiles. The distal SI of adult mice displayed a reduced expression of antibacterial defense markers. Together, our results suggest that early life AB leads to structural and physiological changes in the adult gut, which may contribute to disease development when homeostatic conditions are under challenge.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jacqueline L. M. Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Ruurd M. van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
- Correspondence:
| | - Ingrid B. Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
7
|
Vecchio Dezillio LE, Romanin DE, Ivanoff Marinoff IM, Vernengo J, Abate Zárate JC, Machuca MA, Gondolesi GE, Lausada NR, Stringa PL, Rumbo M. Experimental study to assess the impact of vasopressors administered during maintenance of the brain-dead donation in the quality of the intestinal graft. J Trauma Acute Care Surg 2022; 92:380-387. [PMID: 35081098 DOI: 10.1097/ta.0000000000003473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The hemodynamic maintenance of brain-dead donors will influence the quality of the organs procured for transplantation, including the intestine. Although norepinephrine (NE) and dopamine (DA) are commonly used to sustain mean arterial pressure in humans, there are no standardized protocols for their use during maintenance of brain-dead donors. Our aim was to compare the effects of each drug, in the intestinal graft quality using a rat brain-dead donation model. METHODS Wistar rats (N = 17) underwent brain death (BD) for 2 hours with NE (NE group) or with DA (DA group) administration; the control group was mechanically ventilated for 2 hours without BD. Jejunum biopsies were obtained at the end of the maintenance period. Histological damage was evaluated using Park-Chiu scale. Villi/crypt ratio, mucosal thickness, Goblet cell count, and villi density were evaluated using ImageJ software (US National Institutes of Health, Bethesda, MD). Barrier damage was assessed by bacterial translocation culture counting on liver samples. The inflammatory status of the intestine was evaluated by CD3+ counting by immunohistochemistry and gene expression analysis of interleukin (IL)-6, IL-22, and CXCL10. RESULTS Norepinephrine-treated donors had higher focal ischemic injury in the intestinal mucosa without a substantial modification of morphometrical parameters compared with DA-treated donors. CD3+ mucosal infiltration was greater in intestines procured from brain-dead donors, being highest in NE (p ˂ 0.001). Local inflammatory mediators were affected in BD: DA and NE groups showed a trend to lower expression of IL-22, whereas CXCL10 expression was higher in NE versus control group. Brain death promoted intestinal bacterial translocation, but the use of NE resulted in the highest bacterial counting in the liver (p ˂ 0.01). CONCLUSION Our results favor the use of DA instead of NE as main vasoactive drug to manage BD-associated hemodynamic instability. Dopamine may contribute to improve the quality of the intestinal graft, by better preserving barrier function and lowering immune cell infiltration.
Collapse
Affiliation(s)
- Leandro Emmanuel Vecchio Dezillio
- From the Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET-UNLP) (L.E.V.D., D.E.R., I.M.I.M., J.V., P.L.S., M.R.), Universidad Nacional de La Plata, La Plata, Argentina; Cátedra de Trasplante de Órganos (L.E.V.D., J.C.A.Z., N.R.L., P.L.S.), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; Laboratorio de Patología Especial (M.A.M.), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina; Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB-CONICET) (G.E.G.), Buenos Aires, Argentina; and Instituto de Trasplante Multiorgánico (G.E.G.), Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Garcia TM, van Roest M, Vermeulen JLM, Meisner S, Smit WL, Silva J, Koelink PJ, Koster J, Faller WJ, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Early Life Antibiotics Influence In Vivo and In Vitro Mouse Intestinal Epithelium Maturation and Functioning. Cell Mol Gastroenterol Hepatol 2021; 12:943-981. [PMID: 34102314 PMCID: PMC8346670 DOI: 10.1016/j.jcmgh.2021.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The use of antibiotics (ABs) is a common practice during the first months of life. ABs can perturb the intestinal microbiota, indirectly influencing the intestinal epithelial cells (IECs), but can also directly affect IECs independent of the microbiota. Previous studies have focused mostly on the impact of AB treatment during adulthood. However, the difference between the adult and neonatal intestine warrants careful investigation of AB effects in early life. METHODS Neonatal mice were treated with a combination of amoxicillin, vancomycin, and metronidazole from postnatal day 10 to 20. Intestinal permeability and whole-intestine gene and protein expression were analyzed. IECs were sorted by a fluorescence-activated cell sorter and their genome-wide gene expression was analyzed. Mouse fetal intestinal organoids were treated with the same AB combination and their gene and protein expression and metabolic capacity were determined. RESULTS We found that in vivo treatment of neonatal mice led to decreased intestinal permeability and a reduced number of specialized vacuolated cells, characteristic of the neonatal period and necessary for absorption of milk macromolecules. In addition, the expression of genes typically present in the neonatal intestinal epithelium was lower, whereas the adult gene expression signature was higher. Moreover, we found altered epithelial defense and transepithelial-sensing capacity. In vitro treatment of intestinal fetal organoids with AB showed that part of the consequences observed in vivo is a result of the direct action of the ABs on IECs. Lastly, ABs reduced the metabolic capacity of intestinal fetal organoids. CONCLUSIONS Our results show that early life AB treatment induces direct and indirect effects on IECs, influencing their maturation and functioning.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L M Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam, the Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| |
Collapse
|
9
|
The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Arch 2020; 473:95-106. [PMID: 33205229 DOI: 10.1007/s00424-020-02495-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023]
Abstract
The membrane-bound transport proteins responsible for oxalate secretion across the large intestine remain unidentified. The apical chloride/bicarbonate (Cl-/HCO3-) exchanger encoded by Slc26a6, known as PAT-1 (putative anion transporter 1), is a potential candidate. In the small intestine, PAT-1 makes a major contribution to oxalate secretion but whether this role extends into the large intestine has not been directly tested. Using the PAT-1 knockout (KO) mouse, we compared the unidirectional absorptive ([Formula: see text]) and secretory ([Formula: see text]) flux of oxalate and Cl- across cecum, proximal colon, and distal colon from wild-type (WT) and KO mice in vitro. We also utilized the non-specific inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) to confirm a role for PAT-1 in WT large intestine and (in KO tissues) highlight any other apical anion exchangers involved. Under symmetrical, short-circuit conditions the cecum and proximal colon did not transport oxalate on a net basis, whereas the distal colon supported net secretion. We found no evidence for the participation of PAT-1, or indeed any other DIDS-sensitive transport mechanism, in oxalate or Cl- by the large intestine. Most unexpectedly, mucosal DIDS concurrently stimulated [Formula: see text] and [Formula: see text] by 25-68% across each segment without impacting net transport. For the colon, these changes were directly proportional to increased transepithelial conductance suggesting this response was the result of bidirectional paracellular flux. In conclusion, PAT-1 does not contribute to oxalate or Cl- transport by the large intestine, and we urge caution when using DIDS with mouse colonic epithelium.
Collapse
|
10
|
Mohammad MA, Didelija IC, Stoll B, Burrin DG, Marini JC. Modeling age-dependent developmental changes in the expression of genes involved in citrulline synthesis using pig enteroids. Physiol Rep 2020; 8:e14565. [PMID: 33181004 PMCID: PMC7660678 DOI: 10.14814/phy2.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Age-dependent changes in the intestinal gene expression of enzymes involved in the metabolism of citrulline and arginine are well characterized. Enteroids, a novel ex-vivo model that recreates the three-dimensional structure of the intestinal crypt-villus unit, have shown to replicate molecular and physiological profiles of the intestinal segment from where they originated ("location memory"). OBJECTIVE The present study tested the hypothesis that enteroids recapitulate the developmental changes observed in vivo regarding citrulline production in pigs ("developmental memory"). METHODS Preterm (10- and 5-d preterm) and term pigs at birth, together with 7- and 35-d-old pigs were studied. Gene expression was measured in jejunal samples and in enteroids derived from this segment. Whole body citrulline production was measured by isotope dilution and enteroid citrulline production by accumulation in the media. RESULTS With the exception of arginase I and inducible nitric oxide synthase, all the genes investigated expressed in jejunum were expressed by enteroids. In the jejunum, established markers of development (lactase and sucrase-isomaltase), as well as genes that code for enzymes involved in the production and utilization of citrulline and arginine, underwent the ontogenic changes described in the literature. However, enteroid expression of these genes, as well as citrulline production, failed to recapitulate the changes observed in vivo. CONCLUSIONS Under culture conditions used in our study, enteroids derived from jejunal crypts of pigs at different ages failed to replicate the gene expression observed in whole tissue and whole body citrulline production. Additional extracellular cues may be needed to reproduce the age-dependent phenotype.
Collapse
Affiliation(s)
- Mahmoud A. Mohammad
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Food Science and Nutrition DepartmentNational Research CentreDokki, GizaEgypt
| | - Inka C. Didelija
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Juan C. Marini
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Pediatric Critical Care MedicineDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
11
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Dzama MM, Nigmatullina L, Sayols S, Kreim N, Soshnikova N. Distinct populations of embryonic epithelial progenitors generate Lgr5 + intestinal stem cells. Dev Biol 2017; 432:258-264. [PMID: 29037931 DOI: 10.1016/j.ydbio.2017.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022]
Abstract
The adult intestinal stem cells (ISCs) are transcriptionally heterogeneous. As the mechanisms governing their developmental specification are still poorly understood, whether this heterogeneity reflects an early determination of distinct cellular sub-types with potentially distinct physiological functions remains an open question. We investigate the cellular heterogeneity within the mouse embryonic midgut epithelium at the molecular and functional levels. Cell fate mapping analysis revealed that multiple early embryonic epithelial progenitors give rise to Lgr5+ ISCs. The origin of the molecularly distinct early precursors along the anterior-posterior axis defines the transcriptional signature of embryonic Lgr5+ ISC progenitors. We further show that the early epithelial progenitors have different capacity to generate Lgr5+ ISC progenitors and Axin2+ early precursors display the highest potential.
Collapse
Affiliation(s)
| | | | - Sergi Sayols
- Institute of Molecular Biology, D-55128 Mainz, Germany
| | | | | |
Collapse
|
13
|
Matsumoto Y, Mochizuki W, Akiyama S, Matsumoto T, Nozaki K, Watanabe M, Nakamura T. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection. Biol Open 2017; 6:1364-1374. [PMID: 28818841 PMCID: PMC5612230 DOI: 10.1242/bio.024927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.
Collapse
Affiliation(s)
- Yuka Matsumoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Wakana Mochizuki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shintaro Akiyama
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Taichi Matsumoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kengo Nozaki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
14
|
Osmolality of Orally Administered Solutions Influences Luminal Water Volume and Drug Absorption in Intestine. J Pharm Sci 2017; 106:2889-2894. [DOI: 10.1016/j.xphs.2017.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
|
15
|
Oh E, Jeremian R, Oh G, Groot D, Susic M, Lee K, Foy K, Laird PW, Petronis A, Labrie V. Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Sci Rep 2017; 7:41843. [PMID: 28139744 PMCID: PMC5282553 DOI: 10.1038/srep41843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Transcriptional variation in histologically- and genetically- identical cells is a widespread phenomenon in tissues, yet the processes conferring this heterogeneity are not well understood. To identify contributing factors, we analyzed epigenetic profiles associated with the in vivo transcriptional gradient of the mouse lactase gene (Lct), which occurs in enterocytes along the proximal-to-distal axis of the small intestine. We found that epigenetic signatures at enhancer and promoter elements aligns with transcriptional variation of Lct in enterocytes. Age and phenotype-specific environmental cues (lactose exposure after weaning) induced changes to epigenetic modifications and CTCF binding at select regulatory elements, which corresponded to the alterations in the intestinal Lct mRNA gradient. Thus, epigenetic modifications in combination with CTCF binding at regulatory elements account for the transcriptional gradient in Lct in cells of the same type. Epigenetic divergence within enterocytes may contribute to the functional specialization of intestinal subregions.
Collapse
Affiliation(s)
- Edward Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richie Jeremian
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriel Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel Groot
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miki Susic
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - KwangHo Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kelly Foy
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter W. Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Arturas Petronis
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
16
|
The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2016; 45:89-108. [PMID: 27913853 DOI: 10.1007/s00240-016-0952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans.
Collapse
|
17
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RDL, van Wijngaarden S, Clevers H, Nieuwenhuis EES. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014; 32:1083-91. [PMID: 24496776 DOI: 10.1002/stem.1655] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 12/22/2022]
Abstract
Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.
Collapse
Affiliation(s)
- Sabine Middendorp
- Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dahlgren D, Roos C, Sjögren E, Lennernäs H. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods. J Pharm Sci 2014; 104:2702-26. [PMID: 25410736 DOI: 10.1002/jps.24258] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022]
Abstract
Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Fukuda M, Mizutani T, Mochizuki W, Matsumoto T, Nozaki K, Sakamaki Y, Ichinose S, Okada Y, Tanaka T, Watanabe M, Nakamura T. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev 2014; 28:1752-7. [PMID: 25128495 PMCID: PMC4197962 DOI: 10.1101/gad.245233.114] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To develop stem cell therapy for small intestinal (SI) diseases, it is essential to determine whether SI stem cells in culture retain their tissue regeneration capabilities. By using a heterotopic transplantation approach, we show that cultured murine SI epithelial organoids are able to reconstitute self-renewing epithelia in the colon. When stably integrated, the SI-derived grafts show many features unique only to the SI but distinct from the colonic epithelium. Our study provides evidence that cultured adult SI stem cells could be a source for cell therapy of intestinal diseases, maintaining their identity along the gastrointestinal tract through an epithelium-intrinsic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Bioresource Research Center
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Bioresource Research Center
| | | | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University, 113-8519 Tokyo, Japan
| |
Collapse
|
21
|
Rolny IS, Minnaard J, Racedo SM, Pérez PF. Murine model of Bacillus cereus gastrointestinal infection. J Med Microbiol 2014; 63:1741-1749. [PMID: 25231625 DOI: 10.1099/jmm.0.079939-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus is a spore-forming micro-organism responsible for foodborne illness. In this study, we focus on the host response following intragastric challenge with a pathogenic B. cereus strain (B10502) isolated from a foodborne outbreak. C57BL/6J female mice were infected by gavage with strain B10502. Controls were administered with PBS. Infection leads to significant modification in relevant immune cells in the spleen, Peyer's patches (PP) and mesenteric lymph nodes (MLN). These findings correlated with an increase in the size of PP as compared with uninfected controls. Histological studies showed that B. cereus infection increased the ratio of intestinal goblet cells and induces mononuclear cell infiltrates in spleen at 5 days post-infection. Evaluation of cytokine mRNA expression demonstrated a significant increase in IFN-γ in MLN after 2 days of infection. The present work demonstrates that infection of mice with vegetative B. cereus is self-limited. Our findings determined relevant cell populations that were involved in the control of the pathogen through modification of the ratio and/or activation.
Collapse
Affiliation(s)
- Ivanna S Rolny
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| | - Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina
| | - Silvia M Racedo
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| | - Pablo F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina.,Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| |
Collapse
|
22
|
Abstract
Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health , Prague , Czech Republic
| | | |
Collapse
|
23
|
The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 2013; 34:252-69. [PMID: 23506869 DOI: 10.1016/j.mam.2012.07.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term "sodium bile salt cotransporting family" was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. Explicitly, SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family.
Collapse
|
24
|
Kell DB. Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 2013; 280:5957-80. [PMID: 23552054 DOI: 10.1111/febs.12268] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/16/2022]
Abstract
Despite the sequencing of the human genome, the rate of innovative and successful drug discovery in the pharmaceutical industry has continued to decrease. Leaving aside regulatory matters, the fundamental and interlinked intellectual issues proposed to be largely responsible for this are: (a) the move from 'function-first' to 'target-first' methods of screening and drug discovery; (b) the belief that successful drugs should and do interact solely with single, individual targets, despite natural evolution's selection for biochemical networks that are robust to individual parameter changes; (c) an over-reliance on the rule-of-5 to constrain biophysical and chemical properties of drug libraries; (d) the general abandoning of natural products that do not obey the rule-of-5; (e) an incorrect belief that drugs diffuse passively into (and presumably out of) cells across the bilayers portions of membranes, according to their lipophilicity; (f) a widespread failure to recognize the overwhelmingly important role of proteinaceous transporters, as well as their expression profiles, in determining drug distribution in and between different tissues and individual patients; and (g) the general failure to use engineering principles to model biology in parallel with performing 'wet' experiments, such that 'what if?' experiments can be performed in silico to assess the likely success of any strategy. These facts/ideas are illustrated with a reasonably extensive literature review. Success in turning round drug discovery consequently requires: (a) decent systems biology models of human biochemical networks; (b) the use of these (iteratively with experiments) to model how drugs need to interact with multiple targets to have substantive effects on the phenotype; (c) the adoption of polypharmacology and/or cocktails of drugs as a desirable goal in itself; (d) the incorporation of drug transporters into systems biology models, en route to full and multiscale systems biology models that incorporate drug absorption, distribution, metabolism and excretion; (e) a return to 'function-first' or phenotypic screening; and (f) novel methods for inferring modes of action by measuring the properties on system variables at all levels of the 'omes. Such a strategy offers the opportunity of achieving a state where we can hope to predict biological processes and the effect of pharmaceutical agents upon them. Consequently, this should both lower attrition rates and raise the rates of discovery of effective drugs substantially.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, UK; Manchester Institute of Biotechnology, The University of Manchester, UK
| |
Collapse
|
25
|
Kerr CA, Hines BM, Shaw JM, Dunne R, Bragg LM, Clarke J, Lockett T, Head R. Genomic homeostasis is dysregulated in favour of apoptosis in the colonic epithelium of the azoxymethane treated rat. BMC PHYSIOLOGY 2013; 13:2. [PMID: 23343511 PMCID: PMC3561103 DOI: 10.1186/1472-6793-13-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
Abstract
Background The acute response to genotoxic carcinogens in rats is an important model for researching cancer initiation events. In this report we define the normal rat colonic epithelium by describing transcriptional events along the anterior-posterior axis and then investigate the acute effects of azoxymethane (AOM) on gene expression, with a particular emphasis on pathways associated with the maintenance of genomic integrity in the proximal and distal compartments using whole genome expression microarrays. Results There are large transcriptional changes that occur in epithelial gene expression along the anterior-posterior axis of the normal healthy rat colon. AOM administration superimposes substantial changes on these basal gene expression patterns in both the distal and proximal rat colonic epithelium. In particular, the pathways associated with cell cycle and DNA damage and repair processes appear to be disrupted in favour of apoptosis. Conclusions The healthy rats’ colon exhibits extensive gene expression changes between its proximal and distal ends. The most common changes are associated with metabolism, but more subtle expression changes in genes involved in genomic homeostasis are also evident. These latter changes presumably protect and maintain a healthy colonic epithelium against incidental dietary and environmental insults. AOM induces substantial changes in gene expression, resulting in an early switch in the cell cycle process, involving p53 signalling, towards cell cycle arrest leading to the more effective process of apoptosis to counteract this genotoxic insult.
Collapse
Affiliation(s)
- Caroline A Kerr
- CSIRO Preventative Health Flagship, CSIRO, North Ryde, NSW 2113, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, Liska V, Pitule P, Novak P, Bruha J, Vycital O, Holubec L, Treska V, Vodicka P, Soucek P. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012; 27:187-96. [PMID: 22294766 DOI: 10.1093/mutage/ger075] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) is the third most common cancer, with the highest mortality rates occurring in Central Europe. The use of chemotherapy to treat CRC is limited by the inter-individual variability in drug response and the development of cancer cell resistance. ATP-binding cassette (ABC) transporters play a crucial role in the development of resistance by the efflux of anticancer agents outside of cancer cells. The aim of this study was to explore transcript levels of all human ABCs in tumours and non-neoplastic control tissues from CRC patients collected before the first line of treatment by 5-fluorouracil (5-FU)-containing regimen. The prognostic potential of ABCs was evaluated by the correlation of transcript levels with clinical factors. Relations between transcript levels of ABCs in tumours and chemotherapy efficacy were also addressed. The transcript profile of all known human ABCs was assessed using real-time polymerase chain reaction with a relative standard curve. The majority of the studied ABCs were down-regulated or unchanged between tumours and control tissues. ABCA12, ABCA13, ABCB6, ABCC1, ABCC2 and ABCE1 were up-regulated in tumours versus control tissues. Transcript levels of ABCA12, ABCC7 and ABCC8 increased in direction from colon to rectum. Additionally, transcript levels of ABCB9, ABCB11, ABCG5 and ABCG8 followed the reverse significant trend, i.e. a decrease in direction from colon to rectum. The transcript level of ABCC10 in tumours correlated with the grade (P = 0.01). Transcript levels of ABCC6, ABCC11, ABCF1 and ABCF2 were significantly lower in non-responders to palliative chemotherapy in comparison with responders. The disease-free interval of patients treated by adjuvant chemotherapy was significantly shorter in patients with low transcript levels of ABCA7, ABCA13, ABCB4, ABCC11 and ABCD4. In conclusion, ABCC11 may be a promising candidate marker for a validation study on 5-FU therapy outcome.
Collapse
Affiliation(s)
- I Hlavata
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, Prague 10, 100 42 Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Soták M, Polidarová L, Musílková J, Hock M, Sumová A, Pácha J. Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1066-74. [PMID: 21903759 DOI: 10.1152/ajpgi.00256.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal transport of nutrients exhibits distinct diurnal rhythmicity, and the enterocytes harbor a circadian clock. However, temporal regulation of the genes involved in colonic ion transport, i.e., ion transporters and channels operating in absorption and secretion, remains poorly understood. To address this issue, we assessed the 24-h profiles of expression of genes encoding the sodium pump (subunits Atp1a1 and Atp1b1), channels (α-, β-, and γ-subunits of Enac and Cftr), transporters (Dra, Ae1, Nkcc1, Kcc1, and Nhe3), and the Na(+)/H(+) exchanger (NHE) regulatory factor (Nherf1) in rat colonic mucosa. Furthermore, we investigated temporal changes in the spatial localization of the clock genes Per1, Per2, and Bmal1 and the genes encoding ion transporters and channels along the crypt axis. In rats fed ad libitum, the expression of Atp1a1, γEnac, Dra, Ae1, Nhe3, and Nherf1 showed circadian variation with maximal expression at circadian time 12, i.e., at the beginning of the subjective night. The peak γEnac expression coincided with the rise in plasma aldosterone. Restricted feeding phase advanced the expression of Dra, Ae1, Nherf, and γEnac and decreased expression of Atp1a1. The genes Atp1b1, Cftr, αEnac, βEnac, Nkcc1, and Kcc1 did not show any diurnal variations in mRNA levels. A low-salt diet upregulated the expression of βEnac and γEnac during the subjective night but did not affect expression of αEnac. Similarly, colonic electrogenic Na(+) transport was much higher during the subjective night than the subjective day. These findings indicate that the transporters and channels operating in NaCl absorption undergo diurnal regulation and suggest a role of an intestinal clock in the coordination of colonic NaCl absorption.
Collapse
Affiliation(s)
- M Soták
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
28
|
Cedernaes J, Olszewski PK, Almén MS, Stephansson O, Levine AS, Fredriksson R, Nylander O, Schiöth HB. Comprehensive analysis of localization of 78 solute carrier genes throughout the subsections of the rat gastrointestinal tract. Biochem Biophys Res Commun 2011; 411:702-7. [DOI: 10.1016/j.bbrc.2011.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 01/07/2023]
|
29
|
Lagerstedt KK, Kristiansson E, Lönnroth C, Andersson M, Iresjö BM, Gustafsson A, Hansson E, Kressner U, Nordgren S, Enlund F, Lundholm K. Genes with relevance for early to late progression of colon carcinoma based on combined genomic and transcriptomic information from the same patients. Cancer Inform 2010; 9:79-91. [PMID: 20467480 PMCID: PMC2867635 DOI: 10.4137/cin.s4545] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genetic and epigenetic alterations in colorectal cancer are numerous. However, it is difficult to judge whether such changes are primary or secondary to the appearance and progression of tumors. Therefore, the aim of the present study was to identify altered DNA regions with significant covariation to transcription alterations along colon cancer progression. METHODS Tumor and normal colon tissue were obtained at primary operations from 24 patients selected by chance. DNA, RNA and microRNAs were extracted from the same biopsy material in all individuals and analyzed by oligo-nucleotide array-based comparative genomic hybridization (CGH), mRNA- and microRNA oligo-arrays. Statistical analyses were performed to assess statistical interactions (correlations, co-variations) between DNA copy number changes and significant alterations in gene and microRNA expression using appropriate parametric and non-parametric statistics. RESULTS Main DNA alterations were located on chromosome 7, 8, 13 and 20. Tumor DNA copy number gain increased with tumor progression, significantly related to increased gene expression. Copy number loss was not observed in Dukes A tumors. There was no significant relationship between expressed genes and tumor progression across Dukes A-D tumors; and no relationship between tumor stage and the number of microRNAs with significantly altered expression. Interaction analyses identified overall 41 genes, which discriminated early Dukes A plus B tumors from late Dukes C plus D tumor; 28 of these genes remained with correlations between genomic and transcriptomic alterations in Dukes C plus D tumors and 17 in Dukes D. One microRNA (microR-663) showed interactions with DNA alterations in all Dukes A-D tumors. CONCLUSIONS Our modeling confirms that colon cancer progression is related to genomic instability and altered gene expression. However, early invasive tumor growth seemed rather related to transcriptomic alterations, where changes in microRNA may be an early phenomenon, and less to DNA copy number changes.
Collapse
Affiliation(s)
- Kristina K. Lagerstedt
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Christina Lönnroth
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianne Andersson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britt-Marie Iresjö
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Gustafsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Ulf Kressner
- Department of Surgery, Uddevalla Hospital, Uddevalla, Sweden
| | - Svante Nordgren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Enlund
- Department of Clinical Chemistry, Sahlgrenska Academy, Sahlgrenska University Hospital, Gotenhburg, Sweden.
| | - Kent Lundholm
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Wang F, Wang J, Liu D, Su Y. Normalizing genes for real-time polymerase chain reaction in epithelial and nonepithelial cells of mouse small intestine. Anal Biochem 2010; 399:211-7. [DOI: 10.1016/j.ab.2009.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
|
31
|
Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 2010; 16:684-95. [PMID: 19774643 DOI: 10.1002/ibd.21108] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The short-chain fatty acid butyrate, which is mainly produced in the lumen of the large intestine by the fermentation of dietary fibers, plays a major role in the physiology of the colonic mucosa. It is also the major energy source for the colonocyte. Numerous studies have reported that butyrate metabolism is impaired in intestinal inflamed mucosa of patients with inflammatory bowel disease (IBD). The data of butyrate oxidation in normal and inflamed colonic tissues depend on several factors, such as the methodology or the models used or the intensity of inflammation. The putative mechanisms involved in butyrate oxidation impairment may include a defect in beta oxidation, luminal compounds interfering with butyrate metabolism, changes in luminal butyrate concentrations or pH, and a defect in butyrate transport. Recent data show that butyrate deficiency results from the reduction of butyrate uptake by the inflamed mucosa through downregulation of the monocarboxylate transporter MCT1. The concomitant induction of the glucose transporter GLUT1 suggests that inflammation could induce a metabolic switch from butyrate to glucose oxidation. Butyrate transport deficiency is expected to have clinical consequences. Particularly, the reduction of the intracellular availability of butyrate in colonocytes may decrease its protective effects toward cancer in IBD patients.
Collapse
Affiliation(s)
- Ronan Thibault
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Université de Nantes, CHU Nantes, Nantes, France.
| | | | | | | | | | | |
Collapse
|
32
|
Coady MJ, Wallendorff B, Bourgeois F, Lapointe JY. Anionic leak currents through the Na+/monocarboxylate cotransporter SMCT1. Am J Physiol Cell Physiol 2010; 298:C124-31. [DOI: 10.1152/ajpcell.00220.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl− replacement with cyclamate− and that the protein exhibited an ostensible anionic leak current. In this paper, we have revisited the interaction between small monovalent anions and SMCT cotransport and leak currents. We found that the apparent Cl− dependence of cotransport was due to inhibition of this protein by the replacement anion cyclamate, whereas several other replacement anions function as substrates for SMCT1; a suitable replacement anion (MES−) was identified. The observed outward leak currents represented anionic influx and favored larger anions (NO3−>I−>Br−>Cl−); currents in excess of 1 μA (at +50 mV) could be observed and exhibited a quasilinear relationship with anion concentrations up to 100 mM. Application of 25 mM bicarbonate did not produce measurable leak currents. The leak current displayed outward rectification, which disappeared when external Na+ was replaced by N-methyl-d-glucamine+. More precisely, external Na+ blocked the leak current in both directions, but its Ki value rose rapidly when membrane potential became positive. Thus SMCT1 possesses a anionic leak current that becomes significant whenever external Na+ concentration is reduced. The presence of this leak current may represent a second function for SMCT1 in addition to cotransporting short chain fatty acids, and future experiments will determine whether this function serves a physiological role in tissues where SMCT1 is expressed.
Collapse
Affiliation(s)
- Michael J. Coady
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| | - Bernadette Wallendorff
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| | - Francis Bourgeois
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| | - Jean-Yves Lapointe
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| |
Collapse
|
33
|
Biomarkers of human gastrointestinal tract regions. Mamm Genome 2009; 20:516-27. [PMID: 19711126 DOI: 10.1007/s00335-009-9212-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/23/2009] [Indexed: 12/29/2022]
Abstract
Dysregulation of intestinal epithelial cell performance is associated with an array of pathologies whose onset mechanisms are incompletely understood. While whole-genomics approaches have been valuable for studying the molecular basis of several intestinal diseases, a thorough analysis of gene expression along the healthy gastrointestinal tract is still lacking. The aim of this study was to map gene expression in gastrointestinal regions of healthy human adults and to implement a procedure for microarray data analysis that would allow its use as a reference when screening for pathological deviations. We analyzed the gene expression signature of antrum, duodenum, jejunum, ileum, and transverse colon biopsies using a biostatistical method based on a multivariate and univariate approach to identify region-selective genes. One hundred sixty-six genes were found responsible for distinguishing the five regions considered. Nineteen had never been described in the GI tract, including a semaphorin probably implicated in pathogen invasion and six novel genes. Moreover, by crossing these genes with those retrieved from an existing data set of gene expression in the intestine of ulcerative colitis and Crohn's disease patients, we identified genes that might be biomarkers of Crohn's and/or ulcerative colitis in ileum and/or colon. These include CLCA4 and SLC26A2, both implicated in ion transport. This study furnishes the first map of gene expression along the healthy human gastrointestinal tract. Furthermore, the approach implemented here, and validated by retrieving known gene profiles, allowed the identification of promising new leads in both healthy and disease states.
Collapse
|
34
|
Suzuki T, Mochizuki K, Goda T. Localized expression of genes related to carbohydrate and lipid absorption along the crypt-villus axis of rat jejunum. Biochim Biophys Acta Gen Subj 2009; 1790:1624-35. [PMID: 19715743 DOI: 10.1016/j.bbagen.2009.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Enterocytes of the jejunum express several genes related to digestion/absorption of nutrients and ions when these cells rapidly differentiate from crypt to villus cells. However, it is unknown whether the distribution of extensive gene expression along the villus-crypt axis of the jejunum is altered during differentiation. METHODS We investigated the changes in jejunal gene expression during differentiation from crypt to villus cells in rats using DNA microarray analysis on cryostat sections of the villus-crypt columns. RESULTS During differentiation, the expression of many genes related to cell growth rapidly decreased, while expression of genes related to digestion and absorption of nutrients and ions increased. Expression of a subset of genes related to the digestion and absorption of starch and sucrose was highest at the middle of the villi, whereas expression of genes related to dietary fat absorption was highest at the top of the villi. Several transcriptional factors such as Pdx1, Foxa2 and Thra were expressed in the crypt, whereas Klf15 was highly expressed during the crypt-villus transition. Expression of Klf4 and Pparg was highest at the top of the villi. CONCLUSIONS Subsets of genes related to the digestion and absorption of starch/sucrose and dietary fat as well as their transcriptional factors/co-factors are expressed in the specific locations along the crypt-villus axis. GENERAL SIGNIFICANCE The jejunum may absorb nutrients effectively by simultaneously expressing subsets of genes along the villus-crypt axis.
Collapse
Affiliation(s)
- Takuji Suzuki
- Laboratory of Nutritional Physiology, The University of Shizuoka Graduate School of Nutritional and Environmental Sciences and Global COE, Shizuoka, Japan
| | | | | |
Collapse
|
35
|
Wang J, Wu G, Zhou H, Wang F. Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids 2008; 37:177-86. [DOI: 10.1007/s00726-008-0193-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/05/2008] [Indexed: 12/30/2022]
|
36
|
Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, Rumbo M, Hozbor D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 2008; 26:4639-46. [DOI: 10.1016/j.vaccine.2008.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
|
37
|
Li H, Gilbert ER, Zhang Y, Crasta O, Emmerson D, Webb KE, Wong EA. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Anim Genet 2008; 39:407-24. [PMID: 18544075 DOI: 10.1111/j.1365-2052.2008.01744.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intestinal development during late embryogenesis and early post-hatch has a long-term influence on digestive and absorptive capacity in chickens. The objective of this research was to obtain a global view of intestinal solute carrier (SLC) gene family member expression from late embryogenesis until 2 weeks post-hatch with a focus on SLC genes involved in uptake of sugars and amino acids. Small intestine samples from male chicks were collected on embryonic days 18 (E18) and 20 (E20), day of hatch and days 1, 3, 7 and 14 post-hatch. The expression profiles of 162 SLC genes belonging to 41 SLC families were determined using Affymetrix chicken genome microarrays. The majority of SLC genes showed little or no difference in level of expression during E18-D14. A number of well-known intestinal transporters were upregulated between E18 and D14 including the amino acid transporters rBAT, y(+)LAT-2 and EAAT3, the peptide transporter PepT1 and the sugar transporters SGLT1, GLUT2 and GLUT5. The amino acid transporters CAT-1 and CAT-2 were downregulated. In addition, several glucose and amino acid transporters that are novel to our understanding of nutrient absorption in the chicken intestine were discovered through the arrays (SGLT6, SNAT1, SNAT2 and AST). These results represent a comprehensive characterization of the expression profiles of the SLC family of genes at different stages of development in the chicken intestine and lay the ground work for future nutritional studies.
Collapse
Affiliation(s)
- H Li
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061-0306, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
George MD, Wehkamp J, Kays RJ, Leutenegger CM, Sabir S, Grishina I, Dandekar S, Bevins CL. In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics 2008; 9:209. [PMID: 18457593 PMCID: PMC2394537 DOI: 10.1186/1471-2164-9-209] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 05/05/2008] [Indexed: 01/20/2023] Open
Abstract
Background The small intestinal epithelium mediates vital functions of nutrient absorption and host defense. The spatial organization of the epithelial cells along the crypt-villus axis segregates them into regions of specialized function. However, the differences in transcriptional programming and the molecular machinery that governs the migration, adhesion, and differentiation of intestinal epithelial cell lineages in humans remain under-explored. To increase our understanding of these mechanisms, we have evaluated gene expression patterns of ileal epithelial cells isolated by laser capture microdissection from either the villus epithelial or crypt cell regions of healthy human small intestinal mucosa. Expression profiles in villus and crypt epithelium were determined by DNA microarray, quantitative real-time PCR, and immunohistochemistry based methods. The expression levels of selected epithelial biomarkers were also compared between gastrointestinal tissues. Results Previously established biomarkers as well as a novel and distinct set of genes believed to be linked to epithelial cell motility, adhesion, and differentiation were found to be enriched in each of the two corresponding cell populations (GEO accession: GSE10629). Additionally, high baseline expression levels of innate antimicrobials, alpha defensin 5 (HD5) and regenerating islet-derived 3 alpha (Reg3A), were detected exclusively within the small bowel crypt, most notably in the ileum in comparison to other sites along the gastrointestinal tract. Conclusion The elucidation of differential gene expression patterns between crypt and villus epithelial cell lineages in human ileal tissue provides novel insights into the molecular machinery that mediates their functions and spatial organization. Moreover, our findings establish an important framework of knowledge for future investigations of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael D George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sokolović M, Wehkamp D, Sokolović A, Vermeulen J, Gilhuijs-Pederson LA, van Haaften RIM, Nikolsky Y, Evelo CTA, van Kampen AHC, Hakvoort TBM, Lamers WH. Fasting induces a biphasic adaptive metabolic response in murine small intestine. BMC Genomics 2007; 8:361. [PMID: 17925015 PMCID: PMC2148066 DOI: 10.1186/1471-2164-8-361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/09/2007] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. RESULTS Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. CONCLUSION The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover.
Collapse
Affiliation(s)
- Milka Sokolović
- AMC Liver Centre, Academic Medical Centre, Amsterdam, The Netherlands
| | - Diederik Wehkamp
- Bioinformatics Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | - Chris TA Evelo
- BiGCaT Bioinformatics, University of Maastricht, Maastricht, The Netherlands
| | | | | | - Wouter H Lamers
- AMC Liver Centre, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Abstract
The use of microarrays to evaluate the transcriptome has transformed our view of biology. In addition to the focused, hypothesis-testing studies that we have traditionally conducted in cell biology, we are now able to see global changes within the entire system of the cell in response to a treatment. By examining a biological question under multiple complementary perturbations model systems (e.g. yeast, C. Elegans) have revealed new complexity that would have been impossible to see on a gene-by-gene approach. Unfortunately, beyond the use of transcript profiles to define the molecular signature of diseases (e.g. cancer), transcriptomics has not been extensively used to study intestinal biology. This review will provide a roadmap for effective use of gene expression profiling for biological research and will review some of the microarray work that has been done to better understand the nature of intestinal development and enterocyte differentiation.
Collapse
Affiliation(s)
- J C Fleet
- Department of Foods and Nutrition and Interdepartmental Nutrition Program, Purdue University, 700 West State St., West Lafayette, IN 47906-2059, USA.
| |
Collapse
|
41
|
Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 2006; 124:758-87. [PMID: 16600411 DOI: 10.1016/j.jbiotec.2006.02.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/22/2005] [Accepted: 02/17/2006] [Indexed: 01/21/2023]
Abstract
While traditional nutrition research has dealt with providing nutrients to nourish populations, it nowadays focuses on improving health of individuals through diet. Modern nutritional research is aiming at health promotion and disease prevention and on performance improvement. As a consequence of these ambitious objectives, the disciplines "nutrigenetics" and "nutrigenomics" have evolved. Nutrigenetics asks the question how individual genetic disposition, manifesting as single nucleotide polymorphisms, copy-number polymorphisms and epigenetic phenomena, affects susceptibility to diet. Nutrigenomics addresses the inverse relationship, that is how diet influences gene transcription, protein expression and metabolism. A major methodological challenge and first pre-requisite of nutrigenomics is integrating genomics (gene analysis), transcriptomics (gene expression analysis), proteomics (protein expression analysis) and metabonomics (metabolite profiling) to define a "healthy" phenotype. The long-term deliverable of nutrigenomics is personalised nutrition for maintenance of individual health and prevention of disease. Transcriptomics serves to put proteomic and metabolomic markers into a larger biological perspective and is suitable for a first "round of discovery" in regulatory networks. Metabonomics is a diagnostic tool for metabolic classification of individuals. The great asset of this platform is the quantitative, non-invasive analysis of easily accessible human body fluids like urine, blood and saliva. This feature also holds true to some extent for proteomics, with the constraint that proteomics is more complex in terms of absolute number, chemical properties and dynamic range of compounds present. Apart from addressing the most complex "-ome", proteomics represents the only platform that delivers not only markers for disposition and efficacy but also targets of intervention. The Omics disciplines applied in the context of nutrition and health have the potential to deliver biomarkers for health and comfort, reveal early indicators for disease disposition, assist in differentiating dietary responders from non-responders, and, last but not least, discover bioactive, beneficial food components. This paper reviews the state-of-the-art of the three Omics platforms, discusses their implication in nutrigenomics and elaborates on applications in nutrition and health such as digestive health, allergy, diabetes and obesity, nutritional intervention and nutrient bioavailability. Proteomic developments, applications and potential in the field of nutrition have been specifically addressed in another review issued by our group.
Collapse
Affiliation(s)
- Martin Kussmann
- Bioanalytical Science Department, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
42
|
Laser literature watch. Photomed Laser Surg 2006; 24:424-53. [PMID: 16875454 DOI: 10.1089/pho.2006.24.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Ofer M, Langguth P, Spahn-Langguth H. Bidirectional membrane transport: simulations of transport inhibition in uptake studies explain data obtained with flavonoids. Eur J Pharm Sci 2006; 29:251-8. [PMID: 16934962 DOI: 10.1016/j.ejps.2006.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 06/23/2006] [Indexed: 11/23/2022]
Abstract
The purpose of the simulations was to obtain an estimate of concentration-dependent uptake curves when two counteracting transporters are present. On the basis of this experimental data obtained with a pair of ovarian carcinoma cell lines, one of which was not expressing the exsorptive transporter P-glycoprotein and one of which was an MDR1-transfected, P-glycoprotein expressing variant, the kinetics of cellular uptake of the radiolabel (3)H-talinolol were calculated and the inhibitory constants at P-gp were determined for different flavonoids. With respect to the inhibition of P-gp function, among others, naringenin and isoquercitrin were identified as inhibitors, yet estimation of the inhibitory constant was only possible for uptake values corrected for non-P-glycoprotein-mediated processes. It was assumed that an additional inside-directed transporting protein (Carrier B), which is inhibited by the presence of test compounds, uptake of radiolabel was simulated as a function of the concentration of test-compound, with exemplary parameters for the rate constant (k(B)) of the additional Carrier B and the inhibition constants (K(I)-values) for both transporting proteins. The obtained uncorrected experimental data, which showed either inhibition or enhancement of radiolabel uptake as a function of the inhibitor concentration, were appropriately explained by the respective model. The respective model included an exsorptive transporter as well as carrier-mediating facilitated diffusion. It is concluded that flavonoids, such as naringenin and isoquercitrin, inhibit an inside-directed process in addition to their inhibition of P-glycoprotein-mediated exsorption.
Collapse
Affiliation(s)
- Monika Ofer
- School of Pharmacy, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | | | | |
Collapse
|
44
|
Mutch DM, Crespy V, Clough J, Henderson CJ, Lariani S, Mansourian R, Moulin J, Wolf CR, Williamson G. Hepatic cytochrome P-450 reductase-null mice show reduced transcriptional response to quercetin and reveal physiological homeostasis between jejunum and liver. Am J Physiol Gastrointest Liver Physiol 2006; 291:G63-72. [PMID: 16455785 DOI: 10.1152/ajpgi.00565.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using mice deficient in hepatic cytochrome P-450 oxidoreductase (POR), which disables the liver cytochrome P-450 system, we examined the metabolism and biological response of the anticarcinogenic flavonoid, quercetin. Profiling circulating metabolites revealed similar profiles over 72 h in wild-type (WT) and POR-null (KO) mice, showing that hepatic P450 and reduced biliary secretion do not affect quercetin metabolism. Transcriptional profiling at 24 h revealed that two- to threefold more genes responded significantly to quercetin in WT compared with KO in the jejunum, ileum, colon, and liver, suggesting that hepatic P450s mediate many of the biological effects of quercetin, such as immune function, estrogen receptor signaling, and lipid, glutathione, purine, and amino acid metabolism, even though quercetin metabolism is not modified. The functional interpretation of expression data in response to quercetin (single dose of 7 mg/animal) revealed a molecular relationship between the liver and jejunum. In WT animals, amino acid and sterol metabolism was predominantly modulated in the liver, fatty acid metabolism response was shared between the liver and jejunum, and glutathione metabolism was modulated in the small intestine. In contrast, KO animals do not regulate amino acid metabolism in the liver or small intestine, they share the control of fatty acid metabolism between the liver and jejunum, and regulation of sterol metabolism is shifted from the liver to the jejunum and that of glutathione metabolism from the jejunum to the liver. This demonstrates that the quercetin-mediated regulation of these biological functions in extrahepatic tissues is dependent on the functionality of the liver POR. In conclusion, using a systems biology approach to explore the contribution of hepatic phase 1 detoxification on quercetin metabolism demonstrated the resiliency and adaptive capacity of a biological organism in dealing with a bioactive nutrient when faced with a tissue-specific molecular dysfunction.
Collapse
Affiliation(s)
- David M Mutch
- Nutrient Bioavailability, Nestlé Research Center Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Takebe K, Nio J, Morimatsu M, Karaki SI, Kuwahara A, Kato I, Iwanaga T. Histochemical demonstration of a Na(+)-coupled transporter for short-chain fatty acids (slc5a8) in the intestine and kidney of the mouse. Biomed Res 2006; 26:213-21. [PMID: 16295698 DOI: 10.2220/biomedres.26.213] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Short-chain fatty acids in the intestinal lumen affect colonic cell proliferation as well as function as an energy source for intestinal epithelial cells. A novel transporter of monocarboxylates, Slc5a8, is expressed abundantly in the colon, where it may participate in the Na(+)-coupled absorption of short-chain fatty acids produced by bacterial fermentation of dietary fiber. The present study examined the cellular localization of Slc5a8 in the murine gastrointestinal tract and kidney by in situ hybridization and immunohistochemistry. The hybridization signals were recognized in the terminal ileum and whole length of the large intestine, and were especially intense in the distal colon and rectum. The immunoreactivity of Slc5a8 was restricted to the striated border (the brush border) of enterocytes, and was not present in goblet cells, Paneth cells, or lamina propria cells. In the kidney, proximal tubules of both the cortex and the outer stripe of the outer medulla intensely expressed Slc5a8 mRNA, while the distal portions, including the loop of Henle, lacked the signals. The renal Slc5a8 immunoreactivity was localized only in the brush border of proximal tubules, not along the basolateral membrane. Thyroid follicular cells were immunoreactive for Slc5a8, with predominant labeling on the apical membrane. No other organs, including the esophagus, stomach, liver, pancreas, and salivary glands contained any notable signals of Slc5a8. These findings on the cellular and subcellular localization of Slc5a8 under normal conditions are helpful for understanding the physiological and pathological roles of Slc5a8.
Collapse
Affiliation(s)
- Kumiko Takebe
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|