1
|
Sacco MD, Hammond LR, Noor RE, Bhattacharya D, McKnight LJ, Madsen JJ, Zhang X, Butler SG, Kemp MT, Jaskolka-Brown AC, Khan SJ, Gelis I, Eswara P, Chen Y. Staphylococcus aureus FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB. eLife 2024; 13:e85579. [PMID: 38639993 PMCID: PMC11062636 DOI: 10.7554/elife.85579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.
Collapse
Affiliation(s)
- Michael D Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Lauren R Hammond
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Radwan E Noor
- Department of Chemistry, University of South FloridaTampaUnited States
| | | | - Lily J McKnight
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Jesper J Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
- Global and Planetary Health, College of Public Health, University of South FloridaTampaUnited States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Shane G Butler
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - M Trent Kemp
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Aiden C Jaskolka-Brown
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Sebastian J Khan
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Ioannis Gelis
- Department of Chemistry, University of South FloridaTampaUnited States
| | - Prahathees Eswara
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| |
Collapse
|
2
|
Pal S, Jain D, Biswal S, Rastogi SK, Kumar G, Ghosh AS. The physiological role of Acinetobacter baumannii DacC is exerted through influencing cell shape, biofilm formation, the fitness of survival, and manifesting DD-carboxypeptidase and beta-lactamase dual-enzyme activities. FEMS Microbiol Lett 2024; 371:fnae079. [PMID: 39333031 DOI: 10.1093/femsle/fnae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024] Open
Abstract
With the growing threat of drug-resistant Acinetobacter baumannii, there is an urgent need to comprehensively understand the physiology of this nosocomial pathogen. As penicillin-binding proteins are attractive targets for antibacterial therapy, we have tried to explore the physiological roles of two putative DD-carboxypeptidases, viz., DacC and DacD, in A. baumannii. Surprisingly, the deletion of dacC resulted in a reduced growth rate, loss of rod-shaped morphology, reduction in biofilm-forming ability, and enhanced susceptibility towards beta-lactams. In contrast, the deletion of dacD had no such effect. Interestingly, ectopic expression of dacC restored the lost phenotypes. The ∆dacCD mutant showed properties similar to the ∆dacC mutant. Conversely, in vitro enzyme kinetics assessments reveal that DacD is a stronger DD-CPase than DacC. Finally, we conclude that DacC might have DD-CPase and beta-lactamase activities, whereas DacD is a strong DD-CPase.
Collapse
Affiliation(s)
- Shilpa Pal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Diamond Jain
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sarmistha Biswal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sumit Kumar Rastogi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gaurav Kumar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Anindya S Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Schulz LM, Rothe P, Halbedel S, Gründling A, Rismondo J. Imbalance of peptidoglycan biosynthesis alters the cell surface charge of Listeria monocytogenes. Cell Surf 2022; 8:100085. [PMID: 36304571 PMCID: PMC9593813 DOI: 10.1016/j.tcsw.2022.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 02/09/2023] Open
Abstract
The bacterial cell wall is composed of a thick layer of peptidoglycan and cell wall polymers, which are either embedded in the membrane or linked to the peptidoglycan backbone and referred to as lipoteichoic acid (LTA) and wall teichoic acid (WTA), respectively. Modifications of the peptidoglycan or WTA backbone can alter the susceptibility of the bacterial cell towards cationic antimicrobials and lysozyme. The human pathogen Listeria monocytogenes is intrinsically resistant towards lysozyme, mainly due to deacetylation and O-acetylation of the peptidoglycan backbone via PgdA and OatA. Recent studies identified additional factors, which contribute to the lysozyme resistance of this pathogen. One of these is the predicted ABC transporter, EslABC. An eslB mutant is hyper-sensitive towards lysozyme, likely due to the production of thinner and less O-acetylated peptidoglycan. Using a suppressor screen, we show here that suppression of eslB phenotypes could be achieved by enhancing peptidoglycan biosynthesis, reducing peptidoglycan hydrolysis or alterations in WTA biosynthesis and modification. The lack of EslB also leads to a higher negative surface charge, which likely stimulates the activity of peptidoglycan hydrolases and lysozyme. Based on our results, we hypothesize that the portion of cell surface exposed WTA is increased in the eslB mutant due to the thinner peptidoglycan layer and that latter one could be caused by an impairment in UDP-N-acetylglucosamine (UDP-GlcNAc) production or distribution.
Collapse
Affiliation(s)
- Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Patricia Rothe
- FG11, Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Sven Halbedel
- FG11, Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Boichis E, Sigal N, Borovok I, Herskovits AA. A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms 2021; 9:1323. [PMID: 34207021 PMCID: PMC8235301 DOI: 10.3390/microorganisms9061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
| | | | | | - Anat A. Herskovits
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (E.B.); (N.S.); (I.B.)
| |
Collapse
|
6
|
Wambui J, Eshwar AK, Aalto-Araneda M, Pöntinen A, Stevens MJA, Njage PMK, Tasara T. The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Front Microbiol 2020; 11:549531. [PMID: 33123101 PMCID: PMC7574537 DOI: 10.3389/fmicb.2020.549531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariella Aalto-Araneda
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Patrick M K Njage
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, Kengens Lyngby, Denmark
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Muchaamba F, Eshwar AK, von Ah U, Stevens MJA, Tasara T. Evolution of Listeria monocytogenes During a Persistent Human Prosthetic Hip Joint Infection. Front Microbiol 2020; 11:1726. [PMID: 32849369 PMCID: PMC7399150 DOI: 10.3389/fmicb.2020.01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Listeria monocytogenes associated prosthetic joint infections (PJI) are a rare but increasing clinical problem of listeriosis. We characterized two isolates of the same L. monocytogenes strain isolated within five years of each other from a recurrent human prosthetic joint infection. The two isolates although clonally identical were phenotypically distinct confirming that the original infection strain had evolved within the human host PJI environment giving rise to a phenotypically distinct variant. The recurrent PJI isolate displayed various phenotypic differences compared to the parental original PJI isolate including diminished growth and carbon source metabolism, as well as altered morphology and increased stress sensitivity. The PJI isolates were both diminished in virulence due to an identical truncation mutation in the major virulence regulator PrfA. Genome wide sequence comparison provided conclusive evidence that the two isolates were identical clonal descendants of the same L. monocytogenes strain that had evolved through acquisition of various single nucleotide polymorphisms (SNPs) as well as insertion and deletion events (InDels) during a persistent human PJI. Acquired genetic changes included a specific mutation causing premature stop codon (PMSC) and truncation of RNAse J1 protein. Based on analysis of this naturally truncated as well as other complete RNAse J1 deletion mutants we show that the long-term survival of this specific L. monocytogenes strain within the prosthetic joint might in part be explained by the rnjA PMSC mutation that diminishes virulence and activation of the host immune system in a zebrafish embryo localized infection model. Overall our analysis of this special natural case provides insights into random mutation events and molecular mechanisms that might be associated with the adaptation and short-term evolution of this specific L. monocytogenes strain within a persistent human PJI environment.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Marc J. A. Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Ferwerda B, Maury MM, Brouwer MC, Hafner L, van der Ende A, Bentley S, Lecuit M, van de Beek D. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes. Front Microbiol 2019; 10:2702. [PMID: 31849867 PMCID: PMC6901971 DOI: 10.3389/fmicb.2019.02702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that can be found in a broad range of environments, including soil, food, animals, and humans. L. monocytogenes can cause a foodborne disease manifesting as sepsis and meningo-encephalitis. To evaluate signals of selection within the core genome of neuroinvasive L. monocytogenes strains, we sequenced 122 L. monocytogenes strains from cerebrospinal fluid (CSF) of Dutch meningitis patients and performed a genome-wide analysis using Tajima’s D and ω (dN/dS). We also evaluated the residual variation intolerance score (RVIS), a computationally less demanding methodology, to identify loci under selection. Results show that the large genetic distance between the listerial lineages influences the Tajima’s D and ω (dN/dS) outcome. Within genetic lineages we detected signals of selection in 6 of 2327 loci (<1%), which were replicated in an external cohort of 105 listerial CSF isolates from France. Functions of identified loci under selection were within metabolism pathways (lmo2476, encoding aldose 1-epimerase), putative antimicrobial resistance mechanisms (lmo1855, encoding PBPD3), and virulence factors (lmo0549, internalin-like protein; lmo1482, encoding comEC). RVIS over the two genetic lineages showed signals of selection in internalin-like proteins loci potentially involved in pathogen-host interaction (lmo0549, lmo0610, and lmo1290). Our results show that RVIS can be used to detect bacterial loci under selection.
Collapse
Affiliation(s)
- Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Mathijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas Hafner
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Roedel A, Dieckmann R, Brendebach H, Hammerl JA, Kleta S, Noll M, Al Dahouk S, Vincze S. Biocide-Tolerant Listeria monocytogenes Isolates from German Food Production Plants Do Not Show Cross-Resistance to Clinically Relevant Antibiotics. Appl Environ Microbiol 2019; 85:e01253-19. [PMID: 31375490 PMCID: PMC6805086 DOI: 10.1128/aem.01253-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
Contamination of food during processing is recognized as a main transmission route of Listeria monocytogenes To prevent microbial contamination, biocides are widely applied as disinfectants in food processing plants. However, there are concerns about the development of antimicrobial resistance in foodborne pathogens due to widespread biocide usage. In our study, 93 L. monocytogenes isolates from German food production facilities were (i) tested for biocide and antibiotic susceptibility using broth microdilution assays, (ii) analyzed for links between reduced biocide susceptibility and antibiotic resistance, and (iii) characterized by whole-genome sequencing, including the detection of genes coding for biocide tolerance, antibiotic resistance, and other virulence factors. Fifteen L. monocytogenes isolates were tolerant to benzalkonium chloride (BAC), and genes conferring BAC tolerance were found in 13 of them. Antibiotic resistance was not associated with biocide tolerance. BAC-tolerant isolates were assigned to 6 multilocus sequence type (MLST) clonal complexes, and most of them harbored internalin A pseudogenes with premature stop codons or deletions (n = 9). Our study demonstrated a high genetic diversity among the investigated isolates including genotypes that are frequently involved in human infections. Although in vitro adaptation studies to biocides have raised concerns about increasing cross-resistance to antibiotics, our results do not provide evidence for this phenomenon in field isolates.IMPORTANCE Foodborne pathogens such as L. monocytogenes can persist in food production environments for a long time, causing perennial outbreaks. Hence, bacterial pathogens are able to survive cleaning and disinfection procedures. Accordingly, they may be repeatedly exposed to sublethal concentrations of disinfectants, which might result in bacterial adaptation to these biocides. Furthermore, antibiotic coresistance and cross-resistance are known to evolve under biocide selection pressure in vitro Hence, antimicrobial tolerance seems to play a crucial role in the resilience and persistence of foodborne pathogens in the food chain and might reduce therapeutic options in infectious diseases.
Collapse
Affiliation(s)
- A Roedel
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - R Dieckmann
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - H Brendebach
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - J A Hammerl
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - S Kleta
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - M Noll
- University of Applied Sciences and Arts, Institute for Bioanalysis, Coburg, Germany
| | - S Al Dahouk
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - S Vincze
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
10
|
Rismondo J, Halbedel S, Gründling A. Cell Shape and Antibiotic Resistance Are Maintained by the Activity of Multiple FtsW and RodA Enzymes in Listeria monocytogenes. mBio 2019; 10:e01448-19. [PMID: 31387909 PMCID: PMC6686043 DOI: 10.1128/mbio.01448-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Rod-shaped bacteria have two modes of peptidoglycan synthesis: lateral synthesis and synthesis at the cell division site. These two processes are controlled by two macromolecular protein complexes, the elongasome and divisome. Recently, it has been shown that the Bacillus subtilis RodA protein, which forms part of the elongasome, has peptidoglycan glycosyltransferase activity. The cell division-specific RodA homolog FtsW fulfils a similar role at the divisome. The human pathogen Listeria monocytogenes carries genes that encode up to six FtsW/RodA homologs; however, their functions have not yet been investigated. Analysis of deletion and depletion strains led to the identification of the essential cell division-specific FtsW protein, FtsW1. Interestingly, L. monocytogenes carries a gene that encodes a second FtsW protein, FtsW2, which can compensate for the lack of FtsW1, when expressed from an inducible promoter. L. monocytogenes also possesses three RodA homologs, RodA1, RodA2, and RodA3, and their combined absence is lethal. Cells of a rodA1 rodA3 double mutant are shorter and have increased antibiotic and lysozyme sensitivity, probably due to a weakened cell wall. Results from promoter activity assays revealed that expression of rodA3 and ftsW2 is induced in the presence of antibiotics targeting penicillin binding proteins. Consistent with this, a rodA3 mutant was more susceptible to the β-lactam antibiotic cefuroxime. Interestingly, overexpression of RodA3 also led to increased cefuroxime sensitivity. Our study highlights that L. monocytogenes genes encode a multitude of functional FtsW and RodA enzymes to produce its rigid cell wall and that their expression needs to be tightly regulated to maintain growth, cell division, and antibiotic resistance.IMPORTANCE The human pathogen Listeria monocytogenes is usually treated with high doses of β-lactam antibiotics, often combined with gentamicin. However, these antibiotics only act bacteriostatically on L. monocytogenes, and the immune system is needed to clear the infection. Therefore, individuals with a compromised immune system are at risk to develop a severe form of Listeria infection, which can be fatal in up to 30% of cases. The development of new strategies to treat Listeria infections is necessary. Here we show that the expression of some of the FtsW and RodA enzymes of L. monocytogenes is induced by the presence of β-lactam antibiotics, and the combined absence of these enzymes makes bacteria more susceptible to this class of antibiotics. The development of antimicrobial agents that inhibit the activity or production of FtsW and RodA enzymes might therefore help to improve the treatment of Listeria infections and thereby lead to a reduction in mortality.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Angelika Gründling
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Crystal Structures of Penicillin-Binding Protein D2 from Listeria monocytogenes and Structural Basis for Antibiotic Specificity. Antimicrob Agents Chemother 2018; 62:AAC.00796-18. [PMID: 30082290 DOI: 10.1128/aac.00796-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
β-Lactam antibiotics that inhibit penicillin-binding proteins (PBPs) have been widely used in the treatment of bacterial infections. However, the molecular basis underlying the different inhibitory potencies of β-lactams against specific PBPs is not fully understood. Here, we present the crystal structures of penicillin-binding protein D2 (PBPD2) from Listeria monocytogenes, a Gram-positive foodborne bacterial pathogen that causes listeriosis in humans. The acylated structures in complex with four antibiotics (penicillin G, ampicillin, cefotaxime, and cefuroxime) revealed that the β-lactam core structures were recognized by a common set of residues; however, the R1 side chains of each antibiotic participate in different interactions with PBPD2. In addition, the structural complementarities between the side chains of β-lactams and the enzyme were found to be highly correlated with the relative reactivities of penam or cephem antibiotics against PBPD2. Our study provides the structural basis for the inhibition of PBPD2 by clinically important β-lactam antibiotics that are commonly used in listeriosis treatment. Our findings imply that the modification of β-lactam side chains based on structural complementarity could be useful for the development of potent inhibitors against β-lactam-resistant PBPs.
Collapse
|
12
|
Parsons C, Costolo B, Brown P, Kathariou S. Penicillin-binding protein encoded by pbp4 is involved in mediating copper stress in Listeria monocytogenes. FEMS Microbiol Lett 2018; 364:4329268. [PMID: 29029084 DOI: 10.1093/femsle/fnx207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes raises major food safety and public health concerns due to its potential for severe foodborne disease and persistent colonization of food processing facilities. Copper is often employed to control pathogens in agriculture and is increasingly used in healthcare facilities, but mechanisms mediating tolerance of L. monocytogenes to copper remain poorly understood. A mariner-based mutant library of L. monocytogenes 2011L-2858, implicated in the 2011 listeriosis outbreak via whole cantaloupe, was screened for growth at sublethal levels of copper yielding mutant G2B4 with decreased copper tolerance. The transposon was localized in pbp4 (lmo2229 homolog), encoding a penicillin-binding protein (PBP). In addition to reduced copper tolerance, G2B4 exhibited increased susceptibility to β-lactam antibiotics, reduced biofilm formation and reduced virulence in the Galleria mellonella model. Mutant phenotypes were fully restored upon genetic complementation of G2B4 with intact pbp4. Findings provide the first evidence for the role of a PBP in copper tolerance of L. monocytogenes and suggest that pbp4 may be a suitable target to enable the use of lower levels of copper or enhance the effectiveness of levels currently in use. Given the wide distribution of PBPs and their highly conserved nature, this could have profound impacts in regard to ecology and control of L. monocytogenes and other microorganisms.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Ben Costolo
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Phillip Brown
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Rismondo J, Wamp S, Aldridge C, Vollmer W, Halbedel S. Stimulation of PgdA-dependent peptidoglycanN-deacetylation by GpsB-PBP A1 inListeria monocytogenes. Mol Microbiol 2017; 107:472-487. [DOI: 10.1111/mmi.13893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Jeanine Rismondo
- FG11 Division of Enteropathogenic bacteria and Legionella; Robert Koch Institute, Burgstrasse 37; Wernigerode 38855 Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella; Robert Koch Institute, Burgstrasse 37; Wernigerode 38855 Germany
| | - Christine Aldridge
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne NE2 4AX UK
| | - Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne NE2 4AX UK
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella; Robert Koch Institute, Burgstrasse 37; Wernigerode 38855 Germany
| |
Collapse
|
14
|
Suppressor Mutations Linking gpsB with the First Committed Step of Peptidoglycan Biosynthesis in Listeria monocytogenes. J Bacteriol 2016; 199:JB.00393-16. [PMID: 27795316 DOI: 10.1128/jb.00393-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
The cell division protein GpsB is a regulator of the penicillin binding protein A1 (PBP A1) in the Gram-positive human pathogen Listeria monocytogenes Penicillin binding proteins mediate the last two steps of peptidoglycan biosynthesis as they polymerize and cross-link peptidoglycan strands, the main components of the bacterial cell wall. It is not known what other processes are controlled by GpsB. L. monocytogenes gpsB mutants are unable to grow at 42°C, but we observed that spontaneous suppressors correcting this defect arise on agar plates with high frequency. We here describe a first set of gpsB suppressors that mapped to the clpC and murZ genes. While ClpC is the ATPase component of the Clp protease, MurZ is a paralogue of the listerial UDP-N-acetylglucosamine (UDP-GlcNAc) 1-carboxyvinyltransferase MurA. Both enzymes catalyze the enolpyruvyl transfer from phosphoenolpyruvate to UDP-GlcNAc, representing the first committed step of peptidoglycan biosynthesis. We confirmed that clean deletion of the clpC or murZ gene suppressed the ΔgpsB phenotype. It turned out that the absence of either gene leads to accumulation of MurA, and we show that artificial overexpression of MurA alone was sufficient for suppression. Inactivation of other UDP-GlcNAc-consuming pathways also suppressed the heat-sensitive growth of the ΔgpsB mutant, suggesting that an increased influx of precursor molecules into peptidoglycan biosynthesis can compensate for the lack of GpsB. Our results support a model according to which PBP A1 becomes misregulated and thus toxic in the absence of GpsB due to unproductive consumption of cell wall precursor molecules. IMPORTANCE The late cell division protein GpsB is important for cell wall biosynthesis in Gram-positive bacteria. GpsB of the human pathogen L. monocytogenes interacts with one of the key enzymes of this pathway, penicillin binding protein A1 (PBP A1), and influences its activity. PBP A1 catalyzes the last two steps of cell wall biosynthesis, but it is unknown how GpsB controls PBP A1. We observed that a L. monocytogenes gpsB mutant forms spontaneous suppressors and have mapped their mutations to genes mediating and influencing the first step of cell wall biosynthesis, likely stimulating the influx of metabolites into this pathway. We assume that GpsB is important to ensure productive incorporation of cell wall precursors into the peptidoglycan sacculus by PBP A1.
Collapse
|
15
|
Studer P, Borisova M, Schneider A, Ayala JA, Mayer C, Schuppler M, Loessner MJ, Briers Y. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis. PLoS One 2016; 11:e0154925. [PMID: 27149671 PMCID: PMC4858229 DOI: 10.1371/journal.pone.0154925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 01/16/2023] Open
Abstract
L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.
Collapse
Affiliation(s)
- Patrick Studer
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marina Borisova
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Alexander Schneider
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Juan A. Ayala
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christoph Mayer
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Markus Schuppler
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yves Briers
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
16
|
Krawczyk-Balska A, Markiewicz Z. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 2015; 120:251-65. [PMID: 26509460 DOI: 10.1111/jam.12989] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.
Collapse
Affiliation(s)
- A Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Z Markiewicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Rismondo J, Möller L, Aldridge C, Gray J, Vollmer W, Halbedel S. Discrete and overlapping functions of peptidoglycan synthases in growth, cell division and virulence of Listeria monocytogenes. Mol Microbiol 2014; 95:332-51. [PMID: 25424554 PMCID: PMC4320753 DOI: 10.1111/mmi.12873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2014] [Indexed: 12/19/2022]
Abstract
Upon ingestion of contaminated food, Listeria monocytogenes can cause serious infections in humans that are normally treated with β-lactam antibiotics. These target Listeria's five high molecular weight penicillin-binding proteins (HMW PBPs), which are required for peptidoglycan biosynthesis. The two bi-functional class A HMW PBPs PBP A1 and PBP A2 have transglycosylase and transpeptidase domains catalyzing glycan chain polymerization and peptide cross-linking, respectively, whereas the three class B HMW PBPs B1, B2 and B3 are monofunctional transpeptidases. The precise roles of these PBPs in the cell cycle are unknown. Here we show that green fluorescent protein (GFP)-PBP fusions localized either at the septum, the lateral wall or both, suggesting distinct and overlapping functions. Genetic data confirmed this view: PBP A1 and PBP A2 could not be inactivated simultaneously, and a conditional double mutant strain is largely inducer dependent. PBP B1 is required for rod-shape and PBP B2 for cross-wall biosynthesis and viability, whereas PBP B3 is dispensable for growth and cell division. PBP B1 depletion dramatically increased β-lactam susceptibilities and stimulated spontaneous autolysis but had no effect on peptidoglycan cross-linkage. Our in vitro virulence assays indicated that the complete set of all HMW PBPs is required for maximal virulence.
Collapse
Affiliation(s)
- Jeanine Rismondo
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Nguyen UT, Harvey H, Hogan AJ, Afonso ACF, Wright GD, Burrows LL. Role of PBPD1 in stimulation of Listeria monocytogenes biofilm formation by subminimal inhibitory β-lactam concentrations. Antimicrob Agents Chemother 2014; 58:6508-17. [PMID: 25136010 PMCID: PMC4249420 DOI: 10.1128/aac.03671-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/10/2014] [Indexed: 12/19/2022] Open
Abstract
Disinfectant-tolerant Listeria monocytogenes biofilms can colonize surfaces that come into contact with food, leading to contamination and, potentially, food-borne illnesses. To better understand the process of L. monocytogenes biofilm formation and dispersal, we screened 1,120 off-patent FDA-approved drugs and identified several that modulate Listeria biofilm development. Among the hits were more than 30 β-lactam antibiotics, with effects ranging from inhibiting (≤50%) to stimulating (≥200%) biofilm formation compared to control. Most β-lactams also dispersed a substantial proportion of established biofilms. This phenotype did not necessarily involve killing, as >50% dispersal could be achieved with concentrations as low as 1/20 of the MIC of some cephalosporins. Penicillin-binding protein (PBP) profiling using a fluorescent penicillin analogue showed similar inhibition patterns for most β-lactams, except that biofilm-stimulatory drugs did not bind PBPD1, a low-molecular-weight d,d-carboxypeptidase. Compared to the wild type, a pbpD1 mutant had an attenuated biofilm response to stimulatory β-lactams. The cephalosporin-responsive CesRK two-component regulatory system, whose regulon includes PBPs, was not required for the response. The requirement for PBPD1 activity for β-lactam stimulation of L. monocytogenes biofilms shows that the specific set of PBPs that are inactivated by a particular drug dictates whether a protective biofilm response is provoked.
Collapse
Affiliation(s)
- Uyen T Nguyen
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Hanjeong Harvey
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Andrew J Hogan
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Alexandria C F Afonso
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
20
|
Cha HJ, Jeong JH, Kim YG. Crystallization and preliminary X-ray crystallographic analysis of PBPD2 from Listeria monocytogenes. Acta Crystallogr F Struct Biol Commun 2014; 70:535-7. [PMID: 24699757 PMCID: PMC3976081 DOI: 10.1107/s2053230x14005470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/10/2014] [Indexed: 02/05/2023] Open
Abstract
Penicillin-binding proteins (PBPs), which mediate the peptidoglycan biosynthetic pathway in the bacterial cell wall, have been intensively investigated as a target for the design of antibiotics. In this study, PBPD2, a low-molecular-weight PBP encoded by lmo2812 from Listeria monocytogenes, was overexpressed in Escherichia coli, purified and crystallized at 295 K using the sitting-drop vapour-diffusion method. The crystal belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 37.7, b = 74.7, c = 75.1 Å, and diffracted to 1.55 Å resolution. There was one molecule in the asymmetric unit. The preliminary structure was determined by the molecular-replacement method.
Collapse
Affiliation(s)
- Hyung Jin Cha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
21
|
Comparison of Listeria monocytogenes Exoproteomes from biofilm and planktonic state: Lmo2504, a protein associated with biofilms. Appl Environ Microbiol 2013; 79:6075-82. [PMID: 23892746 DOI: 10.1128/aem.01592-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is the causative agent of the severe human and animal disease listeriosis. The persistence of this bacterium in food processing environments is mainly attributed to its ability to form biofilms. The search for proteins associated with biofilm formation is an issue of great interest, with most studies targeting the whole bacterial proteome. Nevertheless, exoproteins constitute an important class of molecules participating in various physiological processes, such as cell signaling, pathogenesis, and matrix remodeling. The aim of this work was to quantify differences in protein abundance between exoproteomes from a biofilm and from the planktonic state. For this, two field strains previously evaluated to be good biofilm producers (3119 and J311) were used, and a procedure for the recovery of biofilm exoproteins was optimized. Proteins were resolved by two-dimensional difference gel electrophoresis and identified by electrospray ionization-tandem mass spectrometry. One of the proteins identified in higher abundance in the biofilm exoproteomes of both strains was the putative cell wall binding protein Lmo2504. A mutant strain with deletion of the gene for Lmo2504 was produced (3119Δlmo2504), and its biofilm-forming ability was compared to that of the wild type using the crystal violet and the ruthenium red assays as well as scanning electron microscopy. The results confirmed the involvement of Lmo2504 in biofilm formation, as strain 3119Δlmo2504 showed a significantly (P < 0.05) lower biofilm-forming ability than the wild type. The identification of additional exoproteins associated with biofilm formation may lead to new strategies for controlling this pathogen in food processing facilities.
Collapse
|
22
|
Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR. (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol 2013; 8:500-5. [PMID: 23240806 PMCID: PMC3601600 DOI: 10.1021/cb3004995] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Peptidoglycan (PG) is an essential component of the bacterial
cell
wall. Although experiments with organisms in vitro have yielded a wealth of information on PG synthesis and maturation,
it is unclear how these studies translate to bacteria replicating
within host cells. We report a chemical approach for probing PG in vivo via metabolic labeling and bioorthogonal chemistry.
A wide variety of bacterial species incorporated azide and alkyne-functionalized d-alanine into their cell walls, which we visualized by covalent
reaction with click chemistry probes. The d-alanine analogues
were specifically incorporated into nascent PG of the intracellular
pathogen Listeria monocytogenes both in vitro and during macrophage infection. Metabolic incorporation of d-alanine derivatives and click chemistry detection constitute
a facile, modular platform that facilitates unprecedented spatial
and temporal resolution of PG dynamics in vivo.
Collapse
Affiliation(s)
| | | | - John C. Jewett
- Department of Chemistry and
Biochemistry, University of Arizona, Tucson,
Arizona 85721, United States
| | | | - Felipe Cava
- Centro de Biologia Molecular
Severo Ochoa, Universidad Autonoma de Madrid, Madrid 28049, Spain
| | | |
Collapse
|
23
|
Krawczyk-Balska A, Popowska M, Markiewicz Z. Re-evaluation of the significance of penicillin binding protein 3 in the susceptibility of Listeria monocytogenes to β-lactam antibiotics. BMC Microbiol 2012; 12:57. [PMID: 22513233 PMCID: PMC3366878 DOI: 10.1186/1471-2180-12-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 04/18/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Penicillin binding protein 3 (PBP3) of L. monocytogenes has long been thought of as the primary lethal target for β-lactam antibiotics due to the excellent correlation between the MICs of different β-lactams and their affinity for this protein. The gene encoding PBP3 has not yet been directly identified in this gram-positive bacterium, but based on in silico analysis, this protein is likely to be encoded by lmo1438. However, studies examining the effects of mutations in genes encoding known and putative L. monocytogenes PBPs have demonstrated that inactivation of lmo1438 does not affect sensitivity to β-lactams. RESULTS In this study, overexpression of lmo1438 was achieved using an inducible (nisin-controlled) expression system. This permitted the direct demonstration that lmo1438 encodes PBP3. PBP3 overexpression was accompanied by slightly elevated PBP4 expression. The recombinant strain overexpressing PBP3 displayed significant growth retardation and greatly reduced cell length in the stationary phase of growth in culture. In antibiotic susceptibility assays, the strain overexpressing PBP3 displayed increased sensitivity to subinhibitory concentrations of several β-lactams and decreased survival in the presence of a lethal dose of penicillin G. However, the MIC values of the tested β-lactams for this recombinant strain were unchanged compared to the parent strain. CONCLUSIONS The present study allows a reevaluation of the importance of PBP3 in the susceptibility of L. monocytogenes to β-lactams. It is clear that PBP3 is not the primary lethal target for β-lactams, since neither the absence nor an excess of this protein affect the susceptibility of L. monocytogenes to these antibiotics. The elevated level of PBP4 expression observed in the recombinant strain overexpressing PBP3 demonstrates that the composition of the L. monocytogenes cell wall is subject to tight regulation. The observed changes in the morphology of stationary phase cells in response to PBP3 overexpression suggests the involvement of this protein in cell division during this phase of growth.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
24
|
Genome-wide transcriptional profiling of the cell envelope stress response and the role of LisRK and CesRK in Listeria monocytogenes. Microbiology (Reading) 2012; 158:963-974. [DOI: 10.1099/mic.0.055467-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl Environ Microbiol 2012; 78:2602-12. [PMID: 22307309 DOI: 10.1128/aem.07658-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The food-borne pathogen Listeria monocytogenes experiences osmotic stress in many habitats, including foods and the gastrointestinal tract of the host. During transmission, L. monocytogenes is likely to experience osmotic stress at different temperatures and may adapt to osmotic stress in a temperature-dependent manner. To understand the impact of temperature on the responses this pathogen uses to adapt to osmotic stress, we assessed genome-wide changes in the L. monocytogenes H7858 transcriptome during short-term and long-term adaptation to salt stress at 7°C and 37°C. At both temperatures, the short-term response to salt stress included increased transcript levels of sigB and SigB-regulated genes, as well as mrpABCDEFG, encoding a sodium/proton antiporter. This antiporter was found to play a role in adaptation to salt stress at both temperatures; ΔmrpABCDEFG had a significantly longer lag phase than the parent strain in BHI plus 6% NaCl at 7°C and 37°C. The short-term adaptation to salt stress at 7°C included increased transcript levels of two genes encoding carboxypeptidases that modify peptidoglycan. These carboxypeptidases play a role in the short-term adaptation to salt stress only at 7°C, where the deletion mutants had significantly different lag phases than the parent strain. Changes in the transcriptome at both temperatures suggested that exposure to salt stress could provide cross-protection to other stresses, including peroxide stress. Short-term exposure to salt stress significantly increased H(2)O(2) resistance at both temperatures. These results provide information for the development of knowledge-based intervention methods against this pathogen, as well as provide insight into potential mechanisms of cross-protection.
Collapse
|
26
|
AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli. J Bacteriol 2011; 193:6887-94. [PMID: 22001512 DOI: 10.1128/jb.05764-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.
Collapse
|
27
|
Jeong JH, Kim YG. Purification, crystallization and preliminary X-ray crystallographic analysis of Lmo0540 from Listeria monocytogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:266-8. [PMID: 21301102 DOI: 10.1107/s1744309110051754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/09/2010] [Indexed: 11/10/2022]
Abstract
Penicillin-binding proteins catalyze the biosynthesis of the peptidoglycan chains of the bacterial cell wall, which protects cells from osmotic pressure. Although Lmo0540 has been identified as a putative penicillin-binding protein that contributes to the virulence of Listeria monocytogenes, the biochemical role of Lmo0540 remains unclear. To provide insights into its biochemical function, Lmo0540 was overexpressed, purified and crystallized by the sitting-drop vapour-diffusion method. Diffraction data were collected to 1.5 Å resolution using synchrotron radiation. The crystal belonged to the C-centred monoclinic space group C2, with unit-cell parameters a = 82.5, b = 75.7, c = 75.9 Å, α = γ = 90, β = 121.8°. A full structural determination is under way in order to elucidate the structure-function relationship of this protein.
Collapse
Affiliation(s)
- Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | |
Collapse
|