1
|
Bouz G, Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorg Chem 2021; 110:104806. [PMID: 33799176 DOI: 10.1016/j.bioorg.2021.104806] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are crucial for the correct assembly of amino acids to cognate tRNA to maintain the fidelity of proteosynthesis. AaRSs have become a hot target in antimicrobial research. Three aaRS inhibitors are already in clinical practice; antibacterial mupirocin inhibits the synthetic site of isoleucyl-tRNA synthetase, antifungal tavaborole inhibits the editing site of leucyl-tRNA synthetase, and antiprotozoal halofuginone inhibits proline-tRNA synthetase. According to the World Health Organization, tuberculosis globally remains the leading cause of death from a single infectious agent. The rising incidence of multidrug-resistant tuberculosis is alarming and urges the search for new antimycobacterial compounds, preferably with yet unexploited mechanism of action. In this literature review, we have covered the up-to-date state in the field of inhibitors of mycobacterial aaRSs. The most studied aaRS in mycobacteria is LeuRS with at least four structural types of inhibitors, followed by TyrRS and AspRS. Inhibitors of MetRS, LysRS, and PheRS were addressed in a single significant study each. In many cases, the enzyme inhibition activity translated into micromolar or submicromolar inhibition of growth of mycobacteria. The most promising aaRS inhibitor as an antimycobacterial compound is GSK656 (compound 8), the only aaRS inhibitor in clinical trials (Phase IIa) for systemic use against tuberculosis. GSK656 is orally available and shares the oxaborole tRNA-trapping mechanism of action with antifungal tavaborole.
Collapse
Affiliation(s)
- Ghada Bouz
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University.
| |
Collapse
|
2
|
Chimukuche NM, Williams MJ. Genetic Manipulation of Non-tuberculosis Mycobacteria. Front Microbiol 2021; 12:633510. [PMID: 33679662 PMCID: PMC7925387 DOI: 10.3389/fmicb.2021.633510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTMs) comprise a large group of organisms that are phenotypically diverse. Analysis of the growing number of completed NTM genomes has revealed both significant intra-genus genetic diversity, and a high percentage of predicted genes that appear to be unique to this group. Most NTMs have not been studied, however, the rise in NTM infections in several countries has prompted increasing interest in these organisms. Mycobacterial research has recently benefitted from the development of new genetic tools and a growing number of studies describing the genetic manipulation of NTMs have now been reported. In this review, we discuss the use of both site-specific and random mutagenesis tools in NTMs, highlighting the challenges that exist in applying these techniques to this diverse group of organisms.
Collapse
Affiliation(s)
| | - Monique J Williams
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Amikacin and bacteriophage treatment modulates outer membrane proteins composition in Proteus mirabilis biofilm. Sci Rep 2021; 11:1522. [PMID: 33452316 PMCID: PMC7810710 DOI: 10.1038/s41598-020-80907-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Modification of outer membrane proteins (OMPs) is the first line of Gram-negative bacteria defence against antimicrobials. Here we point to Proteus mirabilis OMPs and their role in antibiotic and phage resistance. Protein profiles of amikacin (AMKrsv), phage (Brsv) and amikacin/phage (AMK/Brsv) resistant variants of P. mirabilis were compared to that obtained for a wild strain. In resistant variants there were identified 14, 1, 5 overexpressed and 13, 5, 1 downregulated proteins for AMKrsv, Brsv and AMK/Brsv, respectively. Application of phages with amikacin led to reducing the number of up- and downregulated proteins compared to single antibiotic treatment. Proteins isolated in AMKrsv are involved in protein biosynthesis, transcription and signal transduction, which correspond to well-known mechanisms of bacteria resistance to aminoglycosides. In isolated OMPs several cytoplasmic proteins, important in antibiotic resistance, were identified, probably as a result of environmental stress, e.g. elongation factor Tu, asparaginyl-tRNA and aspartyl-tRNA synthetases. In Brsv there were identified: NusA and dynamin superfamily protein which could play a role in bacteriophage resistance. In the resistant variants proteins associated with resistance mechanisms occurring in biofilm, e.g. polyphosphate kinase, flagella basal body rod protein were detected. These results indicate proteins important in the development of P. mirabilis antibiofilm therapies.
Collapse
|
4
|
Kirubakar G, Schäfer H, Rickerts V, Schwarz C, Lewin A. Mutation on lysX from Mycobacterium avium hominissuis impacts the host-pathogen interaction and virulence phenotype. Virulence 2020; 11:132-144. [PMID: 31996090 PMCID: PMC6999840 DOI: 10.1080/21505594.2020.1713690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
The lysX gene from Mycobacterium avium hominissuis (MAH) is not only involved in cationic antimicrobial resistance but also regulates metabolic activity. An MAH lysX deficient mutant was shown to exhibit a metabolic shift at the extracellular state preadapting the bacteria to the conditions inside host-cells. It further showed stronger growth in human monocytes. In the present study, the LysX activity on host-pathogen interactions were analyzed. The lysX mutant from MAH proved to be more sensitive toward host-mediated stresses such as reactive oxygen species. Further, the lysX mutant exhibited increased inflammatory response in PBMC and multinucleated giant cell (MGC) formation in human macrophages during infection studies. Coincidentally, the lysX mutant strain revealed to be more reproductive in the Galleria mellonella infection model. Together, these data demonstrate that LysX plays a role in regulating the bacillary load in host organisms and the lack of lysX gene facilitates MAH adaptation to intracellular host-habitat, thereby suggesting an essential role of LysX in the modulation of host-pathogen interaction.
Collapse
Affiliation(s)
- Greana Kirubakar
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Volker Rickerts
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Global Assessment of Mycobacterium avium subsp. hominissuis Genetic Requirement for Growth and Virulence. mSystems 2019; 4:4/6/e00402-19. [PMID: 31822597 PMCID: PMC6906737 DOI: 10.1128/msystems.00402-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof >90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12 months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH's global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis (Mtb). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.
Collapse
|
6
|
Kirubakar G, Murugaiyan J, Schaudinn C, Dematheis F, Holland G, Eravci M, Weise C, Roesler U, Lewin A. Proteome Analysis of a M. avium Mutant Exposes a Novel Role of the Bifunctional Protein LysX in the Regulation of Metabolic Activity. J Infect Dis 2019; 218:291-299. [PMID: 29471363 DOI: 10.1093/infdis/jiy100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/16/2018] [Indexed: 11/14/2022] Open
Abstract
Lysyl-phosphatidylglycerol is one of the components of the mycobacterial membrane that contributes to the resistance to cationic antimicrobial peptides, a host-induced frontline defense against invading pathogens. Its production is catalyzed by LysX, a bifunctional protein with lysyl transferase and lysyl transfer RNA synthetase activity. Comparative proteome analysis of a lysX mutant of Mycobacterium avium strain 104 and the wild type indicated that the lysX mutant strain undergoes a transition in phenotype by switching the carbon metabolism to β-oxidation of fatty acids, along with accumulation of lipid inclusions. Surprisingly, proteins associated with intracellular survival were upregulated in the lysX mutant, even during extracellular growth, preparing bacteria for the conditions occurring inside host cells. In line with this, the lysX mutant exhibited enhanced intracellular growth in human-blood-derived monocytes. Thus, our study exposes the significance of lysX in the metabolism and virulence of the environmental pathogen M. avium hominissuis.
Collapse
Affiliation(s)
- Greana Kirubakar
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute for Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Berlin, Germany
| | - Christoph Schaudinn
- Division ZBS 4, Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | | | - Gudrun Holland
- Division ZBS 4, Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Berlin, Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
7
|
Abstract
Nontuberculous mycobacteria (NTM) include species that colonize human epithelia, as well as species that are ubiquitous in soil and aquatic environments. NTM that primarily inhabit soil and aquatic environments include the Mycobacterium avium complex (MAC, M. avium and Mycobacterium intracellulare) and the Mycobacterium abscessus complex (MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii), and can be free-living, biofilm-associated, or amoeba-associated. Although NTM are rarely pathogenic in immunocompetent individuals, those who are immunocompromised - due to either an inherited or acquired immunodeficiency - are highly susceptible to NTM infection (NTMI). Several characteristics such as biofilm formation and the ability of select NTM species to form distinct colony morphotypes all may play a role in pathogenesis not observed in the related, well-characterized pathogen Mycobacterium tuberculosis The recognition of different morphotypes of NTM has been established and characterized since the 1950s, but the mechanisms that underlie colony phenotype change and subsequent differences in pathogenicity are just beginning to be explored. Advances in genomic analysis have led to progress in identifying genes important to the pathogenesis and persistence of MAC disease as well as illuminating genetic aspects of different colony morphotypes. Here we review recent literature regarding NTM ecology and transmission, as well as the factors which regulate colony morphotype and pathogenicity.
Collapse
Affiliation(s)
- Tiffany A Claeys
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
8
|
Zhu L, Peng Y, Ye J, Wang T, Bian Z, Qin Y, Zhang H, Ding J. Isolation, Identification, and Characterization of a New Highly Pathogenic Field Isolate of Mycobacterium avium spp. avium. Front Vet Sci 2018; 4:243. [PMID: 29379790 PMCID: PMC5775284 DOI: 10.3389/fvets.2017.00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 01/27/2023] Open
Abstract
Avian tuberculosis is a chronic, contagious zoonotic disease affecting birds, mammals, and humans. The disease is most often caused by Mycobacterium avium spp. avium (MAA). Strain resources are important for research on avian tuberculosis and vaccine development. However, there has been little reported about the newly identified MAA strain in recent years in China. In this study, a new strain was isolated from a fowl with symptoms of avian tuberculosis by bacterial culture. The isolated strain was identified to be MAA by culture, staining, and biochemical and genetic analysis, except for different colony morphology. The isolated strain was Ziehl-Zeelsen staining positive, resistant to p-nitrobenzoic acid, and negative for niacin production, Tween-80 hydrolysis, heat stable catalase and nitrate production. The strain had the DnaJ gene, IS1245, and IS901, as well. Serum agglutination indicated that the MAA strain was of serotype 1. The MAA strain showed strong virulence via mortality in rabbits and chickens. The prepared tuberculin of the MAA strain had similar potency compared to the MAA reference strain and standard tuberculin via a tuberculin skin test. Our studies suggested that this MAA strain tends to be a novel subtype, which might enrich the strain resource of avian tuberculosis.
Collapse
Affiliation(s)
- Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yong Peng
- China Institute of Veterinary Drug Control, Beijing, China
| | - Junxian Ye
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zengjie Bian
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yuming Qin
- China Institute of Veterinary Drug Control, Beijing, China
| | - He Zhang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jiabo Ding
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
9
|
Meena LS. GTPases: Prerequisite Molecular Target in Virulence and Survival of Mycobacterium Tuberculosis. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/ijmboa.2016.01.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Abstract
The precise knockout or modification of Mycobacterium tuberculosis genes has been critical for the identification of functions important for the growth and pathogenicity of this important bacterium. Schemes have been previously described, using both non-replicating vectors and transducing particles, for the introduction of gene knockout substrates into M. tuberculosis, where the endogenous recombination systems of the host (both homologous and illegitimate) compete for transfer of the modified allele to the chromosome. Recombineering technologies, first introduced in laboratory and pathogenic strains of Escherichia coli over the last 16 years, have been developed for use in M. tuberculosis. Described in this chapter is the use of the mycobacterial Che9c phage RecET recombination system, which has been used to make gene knockouts, reporter fusions, promoter replacements, and single base pair modifications within the M. tuberculosis and M. smegmatis chromosomes at very high frequency. Higher success rates, in a shorter period of time, are routinely observed when recombineering is compared to previously described M. tuberculosis gene knockout protocols.
Collapse
|
11
|
Kumar A, Lewin A, Rani PS, Qureshi IA, Devi S, Majid M, Kamal E, Marek S, Hasnain SE, Ahmed N. Dormancy Associated Translation Inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression. Cytokine 2013; 64:258-64. [DOI: 10.1016/j.cyto.2013.06.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/16/2022]
|