1
|
Dong J, Zhang Q, Yang J, Zhao Y, Miao Z, Pei S, Qin H, Jing C, Wen G, Zhang A, Tao P. BacScan: a novel genome-wide strategy for uncovering broadly immunogenic proteins in bacteria. Front Immunol 2024; 15:1392456. [PMID: 38779673 PMCID: PMC11109440 DOI: 10.3389/fimmu.2024.1392456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.
Collapse
Affiliation(s)
- Junhua Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Jinyue Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yacan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Zhuangxia Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Siyang Pei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Huan Qin
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Changwei Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
2
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
3
|
Pei X, Liu M, Zhou H, Fan H. Screening for phagocytosis resistance-related genes via a transposon mutant library of Streptococcus suis serotype 2. Virulence 2021; 11:825-838. [PMID: 32614642 PMCID: PMC7567436 DOI: 10.1080/21505594.2020.1782088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a serious zoonotic pathogen which causes symptoms of streptococcal toxic shock syndrome (STSS) and septicemia; these symptoms suggest that SS2 may have evade innate immunity. Phagocytosis is an important innate immunity process where phagocytosed pathogens are killed by lysosome enzymes, reactive oxygen, and nitrogen species, and acidic environments in macrophages following engulfment. A previously constructed mutant SS2 library was screened, revealing 13 mutant strains with decreased phagocytic resistance. Through inverse PCR, the transposon insertion sites were determined. Through bioinformatic analysis, the 13 disrupted genes were identified as Cps2F, 3 genes belonging to ABC transporters, WalR, TehB, rpiA, S-transferase encoding gene, prs, HsdM, GNAT family N-acetyltransferase encoding gene, proB, and upstream region of DnaK. Except for the capsular polysaccharide biosynthesis associated Cps2F, the other genes had not been linked to a role in anti-phagocytosis. The survival ability in macrophages and whole blood of randomly picked mutant strains were significantly impaired compared with wild-type ZY05719. The virulence of the mutant strains was also attenuated in a mouse infection model. In the WalR mutant, the transcription of HP1065 decreased significantly compared with wild-type strain, indicating WalR might regulated HP1065 expression and contribute to the anti-phagocytosis of SS2. In conclusion, we identified 13 genes that influenced the phagocytosis resistant ability of SS2, and many of these genes have not been reported to be associated with resistance to phagocytosis. Our work provides novel insight into resistance to phagocytosis, and furthers our understanding of the pathogenesis mechanism of SS2.
Collapse
Affiliation(s)
- Xiaomeng Pei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, China
| |
Collapse
|
4
|
Pei X, Liu J, Liu M, Zhou H, Wang X, Fan H. Quantitative proteomics revealed modulation of macrophages by MetQ gene of Streptococcus suis serotype 2. AMB Express 2020; 10:195. [PMID: 33125582 PMCID: PMC7599288 DOI: 10.1186/s13568-020-01131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a serious zoonotic pathogen; it can lead to symptoms of streptococcal toxic shock syndrome (STSS) in humans and sepsis in pigs, and poses a great threat to public health. The SS2 MetQ gene deletion strain has attenuated antiphagocytosis, although the mechanism of antiphagocytosis and pathogenesis of MetQ in SS2 has remained unclear. In this study, stable isotope labeling by amino acids in cell culture (SILAC) based liquid chromatography–mass spectrometry (LC–MS) and subsequent bioinformatics analysis was used to determine differentially expressed proteins of RAW264.7 cells infected with △MetQ and ZY05719. Proteomic results were verified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting for selected proteins. Further research was focused mainly on immune system processes related to downregulated proteins, such as Src and Ccl9, and actin cytoskeleton and endocytosis related upregulated proteins, like Pstpip1 and Ppp1r9b. The proteomic results in this study shed light on the mechanism of antiphagocytosis and innate immunity of macrophages infected with △MetQ and ZY05719, which might provide novel targets to prevent or control the infection of SS2.
Collapse
|
5
|
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020; 9:E387. [PMID: 32443590 PMCID: PMC7281376 DOI: 10.3390/pathogens9050387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
6
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
7
|
Jiang X, Yang Y, Zhou J, Zhu L, Gu Y, Zhang X, Li X, Fang W. Roles of the Putative Type IV-like Secretion System Key Component VirD4 and PrsA in Pathogenesis of Streptococcus suis Type 2. Front Cell Infect Microbiol 2016; 6:172. [PMID: 27995095 PMCID: PMC5133265 DOI: 10.3389/fcimb.2016.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis type 2 (SS2) is a zoonotic pathogen causing septic infection, meningitis and pneumonia in pigs and humans. SS2 may cause streptococcal toxic shock syndrome (STSS) probably due to excessive release of inflammatory cytokines. A previous study indicated that the virD4 gene in the putative type IV-like secretion system (T4SS) within the 89K pathogenicity island specific for recent epidemic strains contributed to the development of STSS. However, the functional basis of VirD4 in STSS remains unclear. Here we show that deletion of virD4 led to reduced virulence as shown by about 65% higher LD50, lower bacterial load in liver and brain, and lower level of expression of inflammatory cytokines in mice and cell lines than its parent strain. The ΔVirD4 mutant was more easily phagocytosed, suggesting its role as an anti-phagocytic factor. Oxidative stress that mimic bacterial exposure to respiratory burst of phagocytes upregulated expression of virD4. Proteomic analysis identified 10 secreted proteins of significant differences between the parent and mutant strains under oxidative stress, including PrsA, a peptidyl-prolyl isomerase. The SS2 PrsA expressed in E. coli caused a dose-dependent cell death and increased expression of proinflammatory IL-1β, IL-6 and TNF-α in murine macrophage cells. Our data provide novel insights into the contribution of the VirD4 factor to STSS pathogenesis, possibly via its anti-phagocytic activity, upregulation of its expression upon oxidative stress and its involvement in increased secretion of PrsA as a cell death inducer and proinflammatory effector.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Yunkai Yang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Jingjing Zhou
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Lexin Zhu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Yuanxing Gu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Xiaoyan Zhang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| |
Collapse
|
8
|
Xiao G, Wu Z, Zhang S, Tang H, Wang F, Lu C. Mac Protein is not an Essential Virulence Factor for the Virulent Reference Strain Streptococcus suis P1/7. Curr Microbiol 2016; 74:90-96. [PMID: 27847975 DOI: 10.1007/s00284-016-1160-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
Streptococcus suis is a major pathogen of pigs and also an important zoonotic agent for humans. A S. suis protein containing Mac-1 domain (designated Mac) is a protective antigen, exclusively cleaves porcine IgM, and contributes to complement evasion with the presence of high titers of specific porcine anti-S. suis IgM, but its role in S. suis virulence has not been investigated in natural healthy host without specific IgM. In this study, a mac deletion mutant was constructed by homologous recombination in S. suis serotype 2 virulent reference strain P1/7. Deletion of mac did not significantly influence phagocytosis or intracellular survival within murine macrophages RAW264.7, or the oxidative-burst induction of RAW264.7 and murine neutrophils. Furthermore, the mutant is as virulent as the wild-type strain in pig, mouse, and zebrafish infection models. Our data suggest that Mac is not essential for S. suis virulence in strain P1/7 in natural healthy host without specific IgM, and the immunogenicity of Mac does not appear to correlate with its significance for virulence.
Collapse
Affiliation(s)
- Genhui Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Shouming Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Huanyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Fengqiu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
9
|
Abstract
Streptococcus suis is a major swine pathogen and an emerging zoonotic agent of human meningitis and streptococcal toxic shock-like syndrome. S. suis is a well-encapsulated pathogen and multiple serotypes have been described based on the capsular polysaccharide antigenic diversity. In addition, high genotypic, phenotypic and geographic variability exits among strains within the same serotype. Besides, S. suis uses an arsenal of virulence factors to evade the host immune system. Together, these characteristics have challenged the development of efficacious vaccines to fight this important pathogen. In this careful and comprehensive review, clinical field information and experimental data have been compiled and compared for the first time to give a precise overview of the current status of vaccine development against S. suis. The candidate antigens and vaccine formulations under research are examined and the feasibility of reaching the goal of a "universal" cross-protective S. suis vaccine discussed.
Collapse
Affiliation(s)
- Mariela Segura
- a Laboratory of Immunology, Faculty of Veterinary Medicine , University of Montreal , Saint-Hyacinthe , Quebec , J2S 2M2 Canada
| |
Collapse
|
10
|
Lee SW, Shet UK, Park SW, Lim HP, Yun KD, Kang SS, Kim SE. Identification of Enterococcus faecalis antigens specifically expressed in vivo. Restor Dent Endod 2015; 40:306-11. [PMID: 26587417 PMCID: PMC4650527 DOI: 10.5395/rde.2015.40.4.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 01/05/2023] Open
Abstract
Objectives Molecular mechanism of the pathogenicity of Enterococcus faecalis (E. faecalis), a suspected endodontic pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here we report the identification of in vivo expressed antigens of E. faecalis by using a novel immunoscreening technique called change-mediated antigen technology (CMAT) and an experimental animal model of endodontic infection. Materials and Methods Among 4,500 E. coli recombinant clones screened, 19 positive clones reacted reproducibly with hyperimmune sera obtained from rabbits immunized with E. faecalis cells isolated from an experimental endodontic infection. DNA sequences from 16 of these in vivo-induced (IVI) genes were determined. Results Identified protein antigens of E. faecalis included enzymes involved in housekeeping functions, copper resistance protein, putative outer membrane proteins, and proteins of unknown function. Conclusions In vivo expressed antigens of E. faecalis could be identified by using a novel immune-screening technique CMAT and an experimental animal model of endodontic infection. Detailed analysis of these IVI genes will lead to a better understanding of the molecular mechanisms involved in the endodontic infection of E. faecalis.
Collapse
Affiliation(s)
- Seok-Woo Lee
- Department of Dental Education, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea. ; Department of Periodontology, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Uttom K Shet
- Department of Maxillofacial Surgery, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Sang-Won Park
- Department of Prosthodontics, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Kwi-Dug Yun
- Department of Prosthodontics, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Seong Soo Kang
- Department of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Se Eun Kim
- Department of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
11
|
Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int J Med Microbiol 2015; 305:310-21. [DOI: 10.1016/j.ijmm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/20/2014] [Indexed: 01/21/2023] Open
|
12
|
Ma Z, Yu L, Zhou H, Liu T, Xu B, Ma F, Peng J, Fan H. Identification of novel genes expressed during host infection in Streptococcus equi ssp. zooepidemicus ATCC35246. Microb Pathog 2015; 79:31-40. [PMID: 25595678 DOI: 10.1016/j.micpath.2015.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Infection with Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) can cause septicemia, meningitis, and mastitis in domesticated species. Identification of this organism's virulence factors is an effective way of clarifying its pathogenic mechanism. We employed in vivo-induced antigen technology (IVIAT) to find bacterial genes that were only expressed or upregulated in an infected host (IVI genes). Convalescent-phase sera from pigs infected with SEZ were pooled, adsorbed against in vitro antigens, and used to screen SEZ genomic expression libraries. This analysis identified 43 genes as IVI genes. Six of these 43 genes were verified via real-time PCR. Following the analysis, we were able to assign a putative function to 36 of the 43 proteins. These proteins included those involved in virulence and adaptation; formation of intermediary products; gene replication, transcription and expression; energy metabolism; transport and also various proteins of unknown function. The relationship between sagD gene and bacterial virulence was confirmed. This study provides new molecular data for the study of streptococcal disease in swine and is important for identifying the pathogenic mechanisms of SEZ.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Lei Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Peng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
13
|
Huang K, Yuan Z, Li J, Zhang Q, Xu Z, Yan S, Zhang A, Jin M. Identification and characterisation a surface-associated arginine peptidase in Streptococcus suis serotype 2. Microbiol Res 2015; 170:168-76. [DOI: 10.1016/j.micres.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/27/2014] [Accepted: 08/09/2014] [Indexed: 11/26/2022]
|
14
|
Ron M, Gorelick-Ashkenazi A, Levisohn S, Nir-Paz R, Geary SJ, Tulman E, Lysnyansky I, Yogev D. Mycoplasma gallisepticum in vivo induced antigens expressed during infection in chickens. Vet Microbiol 2014; 175:265-74. [PMID: 25575879 DOI: 10.1016/j.vetmic.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022]
Abstract
Until now only a few genes encoding virulence factors have been characterized in the avian pathogen Mycoplasma gallisepticum. In order to identify candidate targets associated with infection we applied an immunoscreening technique-in vivo induced antigen technology (IVIAT)-to detect immunogens of M. gallisepticum strain Rlow expressed preferentially during in vivo infection. We identified 13 in vivo-induced (IVI) proteins that correspond to different functional categories including: previously reported putative virulence factors (GapA, PlpA, Hlp3, VlhA 1.07 and VlhA 4.01), transport (PotE, MGA_0241 and 0654), translation (L2, L23, ValS), chaperone (GroEL) and a protein with unknown function (MGA_0042). To validate the in vivo antigenic reactivity, 10 IVI proteins were tested by Western blot analysis using serum samples collected from chickens experimentally (with strain Rlow) and naturally (outbreaks, N=3) infected with M. gallisepticum. All IVI proteins tested were immunogenic. To corroborate these results, we tested expression of IVI genes in chickens experimentally infected with M. gallisepticum Rlow, and in MRC-5 human lung fibroblasts cell culture by using relative real time reverse-transcription PCR (RT-PCR). With the exception of MGA_0338, all six genes tested (MGA_1199, 0042, 0654, 0712, 0928 and 0241) were upregulated at least at one time point during experimental infection (2-4 week post-infection). In contrast, the expression of seven out of eight IVI genes (MGA_1199, 0152, 0338, 0042, 0654, 0712, 0928) were downregulated in MRC-5 cell culture at both 2 and 4h PI; MGA_0241 was upregulated 2h PI. Our data suggest that the identified IVI antigens may have important roles in the pathogenesis of M. gallisepticum infection in vivo.
Collapse
Affiliation(s)
- Merav Ron
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | - Anna Gorelick-Ashkenazi
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | - Sharon Levisohn
- Mycoplasma Unit, Department of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Steven J Geary
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
| | - Edan Tulman
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
| | - Inna Lysnyansky
- Mycoplasma Unit, Department of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel.
| | - David Yogev
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
15
|
Han X, Sun X, Shan X, Zhang M, Song J, Tian M, Fan G, Wang S, Tong Y, Ding C, Yu S. In vivo-induced argininosuccinate lyase plays a role in the replication of Brucella abortus in RAW264.7 cells. MICROBIOLOGY-SGM 2014; 160:567-575. [PMID: 24421405 DOI: 10.1099/mic.0.072926-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brucellosis caused by Brucella species is a zoonotic disease with a serious impact on public health and the livestock industry. To better understand the pathogenesis of the disease, in vivo-induced antigen technology (IVIAT) was used to investigate the in vivo-induced antigens of Brucella abortus in this study. A genomic expression library of B. abortus was constructed and screened using pooled bovine B. abortus-positive sera by IVIAT. In total, 33 antigens were identified. Five antigens were further expressed and tested for their seroreactivity against 33 individual bovine B. abortus-positive sera by Western blot analysis. The results showed a highest positive rate of 32/33 for argininosuccinate lyase (ASL), indicating that ASL may be used as a candidate marker for serodiagnosis of brucellosis. Furthermore, an asl gene-deleted mutant strain S2308ΔASL was constructed, and the intracellular survival and replication of the mutant strain in RAW264.7 cells were investigated. Interestingly, the numbers of bacteria recovered from cells infected with mutant strain S2308ΔASL were similar at all time points observed from 0 h to 96 h post-infection, suggesting the asl gene plays an important role in the bacterial replication in RAW264.7 cells. Real-time quantitative PCR (qPCR) analysis showed that the mRNA levels in S2308ΔASL were decreased for BvrR, BvrS and virB5 when compared with those in S2308 (P<0.05). Our results not only expand the knowledge of Brucella intracellular replication but also expand the list of candidates for serodiagnostic markers of brucellosis.
Collapse
Affiliation(s)
- Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Xiaoqing Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Xueqing Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Jun Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Guobo Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Yongliang Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| |
Collapse
|
16
|
Li S, Song J, Huang H, Chen W, Li M, Zhao Y, Cong Y, Zhu J, Rao X, Hu X, Hu F. Identification of in-vivo induced genes of Streptococcus suis serotype 2 specially expressed in infected human. Microb Pathog 2013; 63:8-15. [DOI: 10.1016/j.micpath.2013.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 05/15/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
17
|
Identification of Salmonella enterica serovar Pullorum antigenic determinants expressed in vivo. Infect Immun 2013; 81:3119-27. [PMID: 23774596 DOI: 10.1128/iai.00145-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica serovar Pullorum affecting poultry causes pullorum disease and results in severe economic loss in the poultry industry. Currently, it remains a major threat in countries with poor poultry surveillance and no efficient control measures. As S. Pullorum could induce strong humoral immune responses, we applied an immunoscreening technique, the in vivo-induced antigen technology (IVIAT), to identify immunogenic bacterial proteins expressed or upregulated during S. Pullorum infection. Convalescent-phase sera from chickens infected with S. Pullorum were pooled, adsorbed against antigens expressed in vitro, and used to screen an S. Pullorum genomic expression library. Forty-five proteins were screened out, and their functions were implicated in molecular biosynthesis and degradation, transport, metabolism, regulation, cell wall synthesis and antibiotic resistance, environmental adaptation, or putative functions. In addition, 11 of these 45 genes were assessed for their differential expression by quantitative real-time reverse transcription-PCR (RT-PCR), revealing that 9 of 11 genes were upregulated to different degrees under in vivo conditions, especially the regulator of virulence determinants, phoQ. Then, four in vivo-induced proteins (ShdA, PhoQ, Cse3, and PbpC) were tested for their immunoreactivity in 28 clinical serum samples from chickens infected with S. Pullorum. The rate of detection of antibodies against ShdA reached 82% and was the highest among these proteins. ShdA is a host colonization factor known to be upregulated in vivo and related to the persistence of S. Typhimurium in the intestine. Furthermore, these antigens identified by IVIAT warrant further evaluation for their contributions to pathogenesis, and more potential roles, such as diagnostic, therapeutic, and preventive uses, need to be developed in future studies.
Collapse
|
18
|
Zhang H, Ma Z, Li Y, Zheng J, Yi L, Fan H, Lu C. Identification of a novel collagen type І-binding protein from Streptococcus suis serotype 2. Vet J 2013; 197:406-14. [PMID: 23465548 DOI: 10.1016/j.tvjl.2013.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
Streptococcus suis, a major pathogen of pigs, is an emerging zoonotic agent that causes meningitis and septic shock. cbp40 is a putative virulent gene that has been identified using suppression subtractive hybridization performed on the virulent S. suis serotype 2 strain HA9801 and the avirulent S. suis serotype 2 strain T15. Based on predicted protein features showing a shared conserved domain with the collagen-binding protein Cna of Staphylococcus aureus, Cbp40 is likely to function as a direct mediator of collagen adhesion. Here, the cbp40 gene was cloned and the recombinant protein purified. Western blotting using swine convalescent sera confirmed its role as an immunogenic protein. Collagen binding activity could be detected by western affinity blot and ELISA. Conversely, deletion of the cbp40 gene reduced bacterial adhesion to HEp-2 cells, capacity for biofilm formation, and virulence in a zebrafish infection model. The response of the bEnd.3 cell line to infection with the S. suis serotype 2 strain ZY05719 and the cbp40-knockout strain was evaluated using gene expression arrays. The differentially expressed genes were involved in inflammatory and immune responses, leukocyte adhesion and heterophilic cell adhesion. Collectively, these data suggest that Cbp40 plays an important role as an extracellular matrix adhesion protein that interacts with host cells during infection.
Collapse
Affiliation(s)
- Hui Zhang
- Key Lab Animal Disease Diagnostic and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Identification of Toxoplasma gondii in-vivo induced antigens by cDNA library immunoscreening with chronic toxoplasmosis sera. Microb Pathog 2012; 54:60-6. [PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/01/2012] [Accepted: 09/16/2012] [Indexed: 11/22/2022]
Abstract
Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
Collapse
|
20
|
Søndergaard L, Dagnæs-Hansen F, Herskin M. Welfare assessment in porcine biomedical research – Suggestion for an operational tool. Res Vet Sci 2011; 91:e1-9. [DOI: 10.1016/j.rvsc.2011.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
|
21
|
Kouki A, Haataja S, Loimaranta V, Pulliainen AT, Nilsson UJ, Finne J. Identification of a novel streptococcal adhesin P (SadP) protein recognizing galactosyl-α1-4-galactose-containing glycoconjugates: convergent evolution of bacterial pathogens to binding of the same host receptor. J Biol Chem 2011; 286:38854-64. [PMID: 21908601 DOI: 10.1074/jbc.m111.260992] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial adhesion is often a prerequisite for infection, and host cell surface carbohydrates play a major role as adhesion receptors. Streptococci are a leading cause of infectious diseases. However, only few carbohydrate-specific streptococcal adhesins are known. Streptococcus suis is an important pig pathogen and a zoonotic agent causing meningitis in pigs and humans. In this study, we have identified an adhesin that mediates the binding of S. suis to galactosyl-α1-4-galactose (Galα1-4Gal)-containing host receptors. A functionally unknown S. suis cell wall protein (SSU0253), designated here as SadP (streptococcal adhesin P), was identified using a Galα1-4Gal-containing affinity matrix and LC-ESI mass spectrometry. Although the function of the protein was not previously known, it was recently identified as an immunogenic cell wall protein in a proteomic study. Insertional inactivation of the sadP gene abolished S. suis Galα1-4Gal-dependent binding. The adhesin gene sadP was cloned and expressed in Escherichia coli. Characterization of its binding specificity showed that SadP recognizes Galα1-4Gal-oligosaccharides and binds its natural glycolipid receptor, GbO(3) (CD77). The N terminus of SadP was shown to contain a Galα1-Gal-binding site and not to have apparent sequence similarity to other bacterial adhesins, including the E. coli P fimbrial adhesins, or to E. coli verotoxin or Pseudomonas aeruginosa lectin I also recognizing the same Galα1-4Gal disaccharide. The SadP and E. coli P adhesins represent a unique example of convergent evolution toward binding to the same host receptor structure.
Collapse
Affiliation(s)
- Annika Kouki
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Liu G, Li S, Wang M, Song J, Wang J, Tang J, Li M, Hu F. Role of a Type IV–Like Secretion System of Streptococcus suis 2 in the Development of Streptococcal Toxic Shock Syndrome. J Infect Dis 2011; 204:274-81. [DOI: 10.1093/infdis/jir261] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Zhang W, Liu G, Tang F, Shao J, Lu Y, Bao Y, Yao H, Lu C. Pre-absorbed immunoproteomics: a novel method for the detection of Streptococcus suis surface proteins. PLoS One 2011; 6:e21234. [PMID: 21713002 PMCID: PMC3119691 DOI: 10.1371/journal.pone.0021234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/24/2011] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jing Shao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yan Lu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yinli Bao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
24
|
Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol 2011; 26:164-72. [DOI: 10.1111/j.2041-1014.2010.00594.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Li W, Liu L, Qiu D, Chen H, Zhou R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int J Med Microbiol 2010; 300:482-8. [PMID: 20554247 DOI: 10.1016/j.ijmm.2010.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/16/2010] [Accepted: 04/18/2010] [Indexed: 01/01/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen for swine and humans. Previous research about the mechanism of SS2 infection was largely established on in vitro or ex vivo models. In this study, we focused on the identification of SS2 genes preferentially expressed in vivo during natural infection in pigs. Eighty SS2 genes were identified to be up-regulated in the porcine brains and lungs by selective capture of transcribed sequences (SCOTS) and comparative dot blot analysis, followed by quantitative RT-PCR validation. These genes could be classified into 5 functional categories: metabolism, cell wall associated proteins, transporters, cell replication, and function unknown. Some of these genes may contribute to the survival and pathogenesis of SS2 in the host via the following strategies. First, SS2 evades the host innate immune clearance through modifying its metabolism and cell wall composition as indicated by the up-regulation of the corresponding gene ldh and pbp2A, respectively. Secondly, SS2 adapts to the in vivo conditions by inducing the expression of the two-component signal transduction system VicKR which may function on the target genes such as pcsB involved in stress response and cell wall biosynthesis. Thirdly, SS2 enhances its virulence in vivo by up-regulating the virulence genes, such as sly, pdgA, ssp, gidA, gcp and hp1311. Further study of these in vivo up-regulated genes will contribute to understanding the in vivo survival mechanism and pathogenesis of SS2.
Collapse
Affiliation(s)
- Wei Li
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Hongshan District, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
26
|
Identification of a Novel Virulence-Related Gene in Streptococcus suis Type 2 Strains. Curr Microbiol 2010; 61:494-9. [DOI: 10.1007/s00284-010-9643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/30/2010] [Indexed: 02/03/2023]
|