1
|
Sanghani A, Antaliya K, Patel R, Dave S, Tipre D. Revealing microbial functionalities and ecological roles in Rajpardi lignite mine: insights from metagenomics analysis. Lett Appl Microbiol 2025; 78:ovaf048. [PMID: 40156579 DOI: 10.1093/lambio/ovaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/01/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
The present study employs a metagenomics approach to evaluate microbial communities' ecological functions and potential within the Rajpardi lignite mine of Gujarat, India. Through whole genome shotgun sequencing on the Illumina Miseq platform, we obtained 10 071 318 sequences, which unveiled a diverse and abundant microbial community primarily composed of Proteobacteria, Acidobacteria, and Nitrospirae. Comprehensive taxonomic profiling and gene prediction was carried out using the SqueezeMeta pipline, which highlighted significant contributions to carbohydrate, amino acid, and energy metabolism. The detection of antimicrobial resistance and stress resistance genes, such as blaTEM and merA, suggests that these microbes possess the ability to adapt to harsh environmental conditions. Genome binning revealed species such as Acidiphilum sp. 20-67-58, emphasizing the nature of these communities as they adapted to an acidic environment. This finding highlights the crucial role of microbes in biogeochemical cycles, emphasizing their potential in bioremediation, pollutant degradation, and ecosystem restoration.
Collapse
Affiliation(s)
- Anjana Sanghani
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Komal Antaliya
- Bioinformatics and supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
| | - Rajesh Patel
- Bioinformatics and supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
| | - Shailesh Dave
- Xavier's Research Foundation, Loyola Centre for R & D, Navarangpura, Ahmedabad 380009, India
| | - Devayani Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India
| |
Collapse
|
2
|
Sharma Y, Hemmings AM, Deshmukh R, Pareek A. Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1370-1389. [PMID: 38847578 DOI: 10.1093/jxb/erae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 03/15/2025]
Abstract
The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, elements that exhibit properties of both metals and non-metals, can have different effects on plant growth, from being essential and beneficial to being toxic. This toxicity arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters regulating their uptake and distribution in plants. Genomic sequence analysis suggests that such transporter families exist throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding the chemistry of transporters to atomic detail is important to achieve the desired genetic modifications for crop improvement. We outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating plant adaptations to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review highlights the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.
Collapse
Affiliation(s)
- Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, Norwich NR4 7TJ, UK
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali 140306, India
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Da Costa C, Berthe T, Dehaies T, Ayrault S, Colin Y. The Bacterial Antimonite Oxidase AnoA: Unexpected Diversity and Environmental Widespread Occurrence. Environ Microbiol 2025; 27:e70069. [PMID: 40008589 DOI: 10.1111/1462-2920.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The growing contamination of urban areas by antimony (Sb) has sparked interest in microbial processes that modulate Sb speciation in ecosystems. The bacterial antimonite oxidase AnoA is the only oxidase known so far whose gene expression is specifically induced by Sb(III), but its annotation in public databases is currently lacking. Here, the computational search for AnoA orthologs predicted an unexpected phylogenetic distribution across the Pseudomonadota and Actinomycetota. Putative orthologs were identified in both known Sb(III)-oxidisers (e.g., Shinella, Hydrogenophaga, Bosea, Cupriavidus and Pseudomonas) and taxa not previously linked to the Sb cycle (e.g., Bradyrhizobium, Mesorhizobium, Methylobacterium and Paraburkholderia). The anoA gene is single-copy in most Proteobacterial genomes, but is often detected in multiple copies in the Actinomycetota. Furthermore, sequence evolutionary distances suggest that it is mainly inherited vertically, with horizontal transfer events, in particular towards the Gammaproteobacteria. Using the constructed database, new PCR primers were designed and outperformed existing strain-specific primers in amplifying the anoA gene from samples with varying Sb levels and microbial profiles. Sequencing and quantification of PCR amplicons revealed a diverse range of sequences in sediments and natural biofilms, indicating that the oxidase is more environmentally diverse and widespread than previously thought and may play a significant role in Sb(III) detoxification.
Collapse
Affiliation(s)
- Claire Da Costa
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, Rouen, France
| | - Thierry Berthe
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, Rouen, France
- Sorbonne Université, CNRS, EPHE, UMR METIS, Paris, France
| | - Titouan Dehaies
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, Rouen, France
| | - Sophie Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yannick Colin
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, Rouen, France
- Sorbonne Université, CNRS, EPHE, UMR METIS, Paris, France
| |
Collapse
|
4
|
Deng J, Mi S, Qu C, Huang Q, Feng X, Wang X. Enhanced As(III) adsorption-oxidation via synergistic interactions between bacteria and goethite. ECO-ENVIRONMENT & HEALTH 2025; 4:100131. [PMID: 39968223 PMCID: PMC11833349 DOI: 10.1016/j.eehl.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/17/2024] [Accepted: 12/15/2024] [Indexed: 02/20/2025]
Abstract
The adsorption and oxidation of arsenite [As(III)] by soil components are critical processes that influence its toxicity and mobility. However, the specific mechanisms driving the synergistic interactions among bacteria, soil minerals, and humic acid (HA) in these processes remain insufficiently understood. This study investigated the effects of goethite and HA association on As(III) adsorption-oxidation by the As(III)-oxidizing bacterium SY8 using batch incubation experiments and spectroscopic analyses. The results indicated that goethite inhibited the growth of SY8, but its binary and ternary composites with HA and SY8 substantially enhanced the adsorption and oxidation of As(III) compared to SY8 alone. This enhancement could be attributed to the generation of hydroxyl radicals (·OH) through Fenton-like reactions that contribute to the enhanced oxidation of As(III). The Fenton-like reactions involved interactions between H2O2 and goethite, as well as the activation of molecular O2 by structural Fe(II). Furthermore, the proportion of As(V) associated with the solids was lower than that in the solution, suggesting that As(III) oxidation by SY8 was potentially inhibited by As(III) adsorption on goethite. Additionally, HA did not affect SY8 growth or its As(III) oxidation capability, but slightly enhanced As adsorption on the composites. These findings reveal a complex interplay among microbial, mineral, and organic matter interactions. Understanding these interactions is essential for elucidating soil As biogeochemical processes and developing effective remediation strategies for As-contaminated environments.
Collapse
Affiliation(s)
| | | | - Chenchen Qu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Zhou Z, Yu H, Liu J, Zhu L, Wang G, Shi K. Ferruginous hemeprotein HhuH facilitates the cadmium adsorption and chromium reduction in Stenotrophomonas sp. SY1. Appl Environ Microbiol 2025; 91:e0209724. [PMID: 39629984 PMCID: PMC11784086 DOI: 10.1128/aem.02097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 02/01/2025] Open
Abstract
Cadmium (Cd) and chromium (Cr) are frequently encountered toxicants, while iron (Fe) plays a crucial role in bacterial survival under conditions of heavy metal stress. However, intracellular Fe ion depletion by heavy metals leads to a state of Fe starvation. Therefore, it is imperative to investigate the mechanism through which bacteria maintain a balance between heavy metal detoxification and Fe homeostasis. This study demonstrates Cd(II) immobilization and Cr(VI) reduction abilities of Stenotrophomonas sp. SY1, while proteomics reveals the upregulation of heme metabolism in response to Cd(II) and Cr(VI) exposure. The expression of the heme-uptake system in Escherichia coli can enhance Cd(II) immobilization and facilitate Cr(VI) reduction. The ferruginous hemeprotein HhuH exhibits the ability to chelate Cd(II) and reduce Cr(VI). The presence of Cd(II) and Cr(VI) in strain SY1 initially led to Fe starvation. Subsequently, the hemeprotein HhuH facilitated Cd(II) adsorption and Cr(VI) reduction, thereby restoring normal cellular Fe homeostasis. Our findings explain the hemeprotein-mediated mechanism for Cd(II) adsorption and Cr(VI) reduction, providing further insights into the correlation between heavy metal and Fe metabolism.IMPORTANCEIron (Fe) is an indispensable trace element for many organisms, and virtually, all bacteria require Fe as a cofactor in enzymes to facilitate redox reactions involved in fundamental cellular processes during periods of heavy metal stress. Understanding bacterial response to Fe in heavy metal contamination is essential. Therefore, our study elucidates Cd(II) adsorption and Cr(VI) reduction processes mediated by the Fe-bearing hemeprotein HhuH. It is a unique trifunctional protein capable of chelating Cd(II) and reducing Cr(VI), demonstrating significant potential in the environmental remediation of heavy metals.
Collapse
Affiliation(s)
- Zijie Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Rahman ME, Mahmud K, Uddin MK, Shamsuzzaman SM, Shukor MYA, Ghani SSA, Akter A, Nabayi A, Sadeq BM, Chompa SS, Halmi MIEB. Impact of aeration on plant growth-promoting rhizobacteria assisted phytoremediation capability of arsenic in artificial wetland system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:810-831. [PMID: 39801090 DOI: 10.1080/15226514.2024.2449161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The increasing demand for sustainable, robust, and cost-efficient arsenic (As) treatment techniques strengthens the implementation of new constructed wetland (CW) designs like aerated CWs in the agricultural sector. The aim was to assess and contrast the influence of various aeration rates on As elimination in subsurface flow CW utilizing Pennisetum purpureum plants for treating As-polluted sand. This study consisted of an experiment with 16 subsurface flow CW, operating at different As concentrations of 0, 5, 22, and 39 mg kg-1 and aeration rates of 0, 0.18, 1, and 2 L min-1. The highest elimination of As from treatment sand in the subsurface flow CWs was 96.19 ± 3.09%, 93.95 ± 2.17%, and 91.91 ± 1.92% for 5, 22, and 39 mg kg-1 As, respectively, at 0.18 L min-1 aeration. A negative influence of As pollution on growth was detected in the 0, 1, and 2 L min-1 aeration but Pennisetum purpureum grows well in polluted sand with 0.18 L min-1 aeration. Bacterial population and different enzyme activity showed statistically significant differences with 0, 0.18, 1, and 2 L min-1 aerations at all As levels. These results suggest that this treatment can be used for As phytoremediation in anthropogenically polluted environments due to its high capability to uptake As.
Collapse
Affiliation(s)
- Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Md Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - S M Shamsuzzaman
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Salwa Abd Ghani
- Department of Agricultural Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amaily Akter
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abba Nabayi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Soil Science, Faculty of Agriculture, Federal University Dutse, Dutse, Nigeria
| | - Buraq Musa Sadeq
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sayma Serine Chompa
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
7
|
Hoque MN, Mannan ABA, Hossian A, Faisal GM, Hossain MA, Sultana M. Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BMC Microbiol 2024; 24:518. [PMID: 39627700 PMCID: PMC11616139 DOI: 10.1186/s12866-024-03676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Anamica Hossian
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Present address: One Health Laboratory, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, 1212, Bangladesh.
| |
Collapse
|
8
|
Galisteo C, Puente-Sánchez F, de la Haba RR, Bertilsson S, Sánchez-Porro C, Ventosa A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175497. [PMID: 39151617 DOI: 10.1016/j.scitotenv.2024.175497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Saline soils and their microbial communities have recently been studied in response to ongoing desertification of agricultural soils caused by anthropogenic impacts and climate change. Here we describe the prokaryotic microbiota of hypersaline soils in the Odiel Saltmarshes Natural Area of Southwest Spain. This region has been strongly affected by mining and industrial activity and feature high levels of certain heavy metals. We sequenced 18 shotgun metagenomes through Illumina NovaSeq from samples obtained from three different areas in 2020 and 2021. Taxogenomic analyses demonstrate that these soils harbored equal proportions of archaea and bacteria, with Methanobacteriota, Pseudomonadota, Bacteroidota, Gemmatimonadota, and Balneolota as most abundant phyla. Functions related to the transport of heavy metal outside the cytoplasm are among the most relevant features of the community (i.e., ZntA and CopA enzymes). They seem to be indispensable to avoid the increase of zinc and copper concentration inside the cell. Besides, the archaeal phylum Methanobacteriota is the main arsenic detoxifier within the microbiota although arsenic related genes are widely distributed in the community. Regarding the osmoregulation strategies, "salt-out" mechanism was identified in part of the bacterial population, whereas "salt-in" mechanism was present in both domains, Bacteria and Archaea. De novo biosynthesis of two of the most universal compatible solutes was detected, with predominance of glycine betaine biosynthesis (betAB genes) over ectoine (ectABC genes). Furthermore, doeABCD gene cluster related to the use of ectoine as carbon and energy source was solely identified in Pseudomonadota and Methanobacteriota.
Collapse
Affiliation(s)
- Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
9
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
10
|
Khan A, Asif I, Abid R, Ghazanfar S, Ajmal W, Shehata AM, Naiel MAE. The sustainable approach of microbial bioremediation of arsenic: an updated overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2024; 21:7849-7864. [DOI: 10.1007/s13762-024-05594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/19/2023] [Accepted: 03/10/2024] [Indexed: 03/06/2025]
|
11
|
Sajid S, Zhang G, Zhang Z, Lu Y, Chen L, Cai L. Spartinivicinus poritis sp. nov., a red pigment-producing bacterium isolated from a scleractinian coral Porites lutea. Int J Syst Evol Microbiol 2024; 74. [PMID: 38963416 DOI: 10.1099/ijsem.0.006444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
A Gram-stain-negative, red pigment-producing, aerobic, and rod-shaped bacterial strain (A2-2T) was isolated from a bleached scleractinian coral (Porites lutea). Strain A2-2T grew with 1.0-7.0 % (w/v) NaCl (optimum, 3.0 %), at pH 6.0-11.0 (optimum, pH 8.0), and at 18-41 °C (optimum, 35 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences suggested that strain A2-2T fell within the genus Spartinivicinus and was closely related to Spartinivicinus ruber S2-4-1HT (98.1 % sequence similarity) and Spartinivicinus marinus SM1973T (98.0 % sequence similarity). The predominant cellular fatty acids of strain A2-2T were C16 : 0 (31.0 %), summed feature 3 (29.0 %), summed feature 8 (11.7 %), C12 : 0 3-OH (6.4 %), and C10 : 0 3-OH (5.5 %), while the major respiratory quinone was Q-9. The polar lipids mainly comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid. The genome size of strain A2-2T was 6.8 Mb, with a G+C content of 40.2 mol%. The DNA-DNA hybridization value was 24.2 % between A2-2T and S. ruber S2-4-1HT and 36.9 % between A2-2T and S. marinus SM1973T, while the average nucleotide identity values were 80.1 and 88.8 %, respectively. Based on these findings, strain A2-2T could be recognized to represent a novel species of the genus Spartinivicinus, for which the name Spartinivicinus poritis sp. nov. is proposed. The type strain is A2-2T (=MCCC 1K08228T=KCTC 8323T).
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| |
Collapse
|
12
|
Khandelwal R, Keelka S, Jain N, Jain P, Kumar Sharma M, Kaushik P. Biosorption of arsenic (III) from aqueous solution using calcium alginate immobilized dead biomass of Acinetobacter sp. strain Sp2b. Sci Rep 2024; 14:9972. [PMID: 38693342 PMCID: PMC11063054 DOI: 10.1038/s41598-024-60329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
This study presents a novel biosorbent developed by immobilizing dead Sp2b bacterial biomass into calcium alginate (CASp2b) to efficiently remove arsenic (AsIII) from contaminated water. The bacterium Sp2b was isolated from arsenic-contaminated industrial soil of Punjab, a state in India. The strain was designated Acinetobacter sp. strain Sp2b as per the 16S rDNA sequencing, GenBank accession number -OP010048.The CASp2b was used for the biosorption studies after an initial screening for the biosorption capacity of Sp2b biomass with immobilized biomass in both live and dead states. The optimum biosorption conditions were examined in batch experimentations with contact time, pH, biomass, temperature, and AsIII concentration variables. The maximum biosorption capacity (qmax = 20.1 ± 0.76 mg/g of CA Sp2b) was obtained at pH9, 35 ̊ C, 20 min contact time, and 120 rpm agitation speed. The isotherm, kinetic and thermodynamic modeling of the experimental data favored Freundlich isotherm (R2 = 0.941) and pseudo-2nd-order kinetics (R2 = 0.968) with endothermic nature (ΔH° = 27.42) and high randomness (ΔS° = 58.1).The scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis indicated the As surface binding. The reusability study revealed the reasonable usage of beads up to 5 cycles. In conclusion, CASp2b is a promising, efficient, eco-friendly biosorbent for AsIII removal from contaminated water.
Collapse
Affiliation(s)
- Renu Khandelwal
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Sneha Keelka
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Neha Jain
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Prachi Jain
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Mukesh Kumar Sharma
- Department of Zoology, SPC Government College, Ajmer, Rajasthan, 305001, India
| | - Pallavi Kaushik
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
13
|
Loni PC, Wang W, Qiu X, Man B, Wu M, Qiu D, Wang H. Antimony precipitation and removal by antimony hyper resistant strain Achromobacter sp. 25-M. ENVIRONMENTAL RESEARCH 2024; 245:118011. [PMID: 38141916 DOI: 10.1016/j.envres.2023.118011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Microbes have been confirmed to play key role in biogeochemistry of antimony. However, the impact of indigenous bacteria (from active mines) on the behavior of dissolved antimony remained poorly understood. In current study, the hyper antimony-resistant strain, Achromobacter sp. 25-M, isolated from the world largest antimony deposit, Xikuangshan antimony deposit, was evaluated for its role in dissolved Sb(V) and Sb(III) precipitation and removal. Despite of the high resistance to Sb(III) (up to 50 mM), the facultative alkaliphile, 25-M was not capable of Sb(III) oxidation. Meanwhile 25-M can produce high amount of exopolymeric substance (EPS) with the presence of Sb, which prompted us to investigate the potential role of EPS in the precipitation and removal of Sb. To this end, 2 mM of Sb(III) and Sb(V) were added into the experimental systems with and without 25-M to discern the interaction mechanism between microbe and antimony. After 96 hrs' incubation, 88% [1.73 mM (210 mg/L)] of dissolved Sb(V) and 80% [1.57 mM (190 mg/L)] of dissolved Sb(III) were removed. X-ray diffraction and energy dispersive spectroscopy analysis confirmed the formation of valentinite (Sb2O3) in Sb(III) amended system and a solitary Sb(V) mineral mopungite [NaSb(OH)6] in Sb(V) amended group with microbes. Conversely, no precipitate was detected in abiotic systems. Morphologically valentinite was bowtie and mopungite was pseudo-cubic as indicated by scanning electronic microscopy. EPS was subjected to fourier transform infrared (FT-IR) analysis. FT-IR analysis suggested that -OH and -COO groups were responsible for the complexation and ligand exchange with Sb(III) and Sb(V), respectively. Additionally, the C-H group and N-H group could be involved in π-π interaction and chelation with Sb species. All these interactions between Sb and functional groups in EPS may subsequently favore the formation of valentinite and mopungite. Collectively, current results suggested that EPS play fundamental role in bioprecipitation of Sb, which offered a new strategy in Sb bioremediation.
Collapse
Affiliation(s)
- Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Department of Earth Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Zhejiang Economic and Information Center, Hangzhou, 310006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
14
|
Carboni MF, Arriaga S, Lens PNL. Effect of copper, arsenic and nickel on pyrite-based autotrophic denitrification. Biodegradation 2024; 35:101-114. [PMID: 37115375 PMCID: PMC10774168 DOI: 10.1007/s10532-023-10027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Pyritic minerals generally occur in nature together with other trace metals as impurities, that can be released during the ore oxidation. To investigate the role of such impurities, the presence of copper (Cu(II)), arsenic (As(III)) and nickel (Ni(II)) during pyrite mediated autotrophic denitrification has been explored in this study at 30 °C with a specialized microbial community of denitrifiers as inoculum. The three metal(loid)s were supplemented at an initial concentration of 2, 5, and 7.5 ppm and only Cu(II) had an inhibitory effect on the autotrophic denitrification. The presence of As(III) and Ni(II) enhanced the nitrate removal efficiency with autotrophic denitrification rates between 3.3 [7.5 ppm As(III)] and 1.6 [7.5 ppm Ni(II)] times faster than the experiment without any metal(loid) supplementation. The Cu(II) batches, instead, decreased the denitrification kinetics with 16, 40 and 28% compared to the no-metal(loid) control for the 2, 5 and 7.5 ppm incubations, respectively. The kinetic study revealed that autotrophic denitrification with pyrite as electron donor, also with Cu(II) and Ni(II) additions, fits better a zero-order model, while the As(III) incubation followed first-order kinetic. The investigation of the extracellular polymeric substances content and composition showed more abundance of proteins, fulvic and humic acids in the metal(loid) exposed biomass.
Collapse
Affiliation(s)
- Maria F Carboni
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
- School of Natural Science and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Sonia Arriaga
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a Sección, 78216, San Luis Potosí, CP, Mexico
| | - Piet N L Lens
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
15
|
Zhang LZ, Xing SP, Huang FY, Xiu W, Rensing C, Zhao Y, Guo H. Metabolic coupling of arsenic, carbon, nitrogen, and sulfur in high arsenic geothermal groundwater: Evidence from molecular mechanisms to community ecology. WATER RESEARCH 2024; 249:120953. [PMID: 38071906 DOI: 10.1016/j.watres.2023.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Groundwater arsenic (As) poses a global environmental problem and is regulated by complex biogeochemical processes. However, the As biogeochemistry and its metabolic coupling with carbon (C), nitrogen (N), and sulfur (S) in high As geothermal groundwater remain unclear. Here, we reported significant shifts in the geothermal groundwater microbiome and its functional ecological clusters along the flow path with increased As levels and dynamic As-C-N-S biogeochemical cycle from the Guide Basin, China. Strong associations among As(III), NH4+, HCO3-, and corresponding functional microbial taxa suggest that microbe-mediated As transformation, ammonification, and organic carbon biodegradation potentially contributed to the As mobilization in the discharge area. And As oxidizers (coupling with denitrification or carbon fixation) and S oxidizers were closely linked to the transformation of As(III) to immobile As(V) in the recharge area. Our study provides a comprehensive insight into the complex microbial As-C-N-S coupling network and its potential role in groundwater As mobilization under hydrological disturbances.
Collapse
Affiliation(s)
- Ling-Zhi Zhang
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Shi-Ping Xing
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fu-Yi Huang
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China
| | - Wei Xiu
- Institutes of Earth Sciences, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yi Zhao
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huaming Guo
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
16
|
Sun X, Chen Q, Häggblom MM, Liu G, Kong T, Huang D, Chen Z, Li F, Li B, Sun W. Microbially mediated sulfur oxidation coupled with arsenate reduction within oligotrophic mining-impacted habitats. THE ISME JOURNAL 2024; 18:wrae110. [PMID: 38900902 PMCID: PMC11283718 DOI: 10.1093/ismejo/wrae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
Arsenate [As(V)] reduction is a major cause of arsenic (As) release from soils, which threatens more than 200 million people worldwide. While heterotrophic As(V) reduction has been investigated extensively, the mechanism of chemolithotrophic As(V) reduction is less studied. Since As is frequently found as a sulfidic mineral in the environment, microbial mediated sulfur oxidation coupled to As(V) reduction (SOAsR), a chemolithotrophic process, may be more favorable in sites impacted by oligotrophic mining (e.g. As-contaminated mine tailings). While SOAsR is thermodynamically favorable, knowledge regarding this biogeochemical process is still limited. The current study suggested that SOAsR was a more prevalent process than heterotrophic As(V) reduction in oligotrophic sites, such as mine tailings. The water-soluble reduced sulfur concentration was predicted to be one of the major geochemical parameters that had a substantial impact on SOAsR potentials. A combination of DNA stable isotope probing and metagenome binning revealed members of the genera Sulfuricella, Ramlibacter, and Sulfuritalea as sulfur oxidizing As(V)-reducing bacteria (SOAsRB) in mine tailings. Genome mining further expanded the list of potential SOAsRB to diverse phylogenetic lineages such as members associated with Burkholderiaceae and Rhodocyclaceae. Metagenome analysis using multiple tailing samples across southern China confirmed that the putative SOAsRB were the dominant As(V) reducers in these sites. Together, the current findings expand our knowledge regarding the chemolithotrophic As(V) reduction process, which may be harnessed to facilitate future remediation practices in mine tailings.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qizhi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Kopf A, Bunk B, Riedel T, Schröttner P. The zoonotic pathogen Wohlfahrtiimonas chitiniclastica - current findings from a clinical and genomic perspective. BMC Microbiol 2024; 24:3. [PMID: 38172653 PMCID: PMC10763324 DOI: 10.1186/s12866-023-03139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.
Collapse
Affiliation(s)
- Anna Kopf
- Clinic for Cardiology, Sana Heart Center, Leipziger Str. 50, 03048, Cottbus, Germany
- 2nd Medical Clinic for Hematology, Oncology, Pneumology and Nephrology, Carl-Thiem Hospital Cottbus gGmbH, Cottbus, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Sher S, Ishaq MT, Bukhari DA, Rehman A. Identification of arsenic oxidizing genes fragment in Microbacterium sp. strain 1S1 and its cloning in E. coli (DH5 a). Saudi J Biol Sci 2023; 30:103846. [PMID: 38046866 PMCID: PMC10689279 DOI: 10.1016/j.sjbs.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023] Open
Abstract
Microbacterium sp. strain 1S1, an arsenic-resistant bacterial strain, was isolated with 75 mM MIC against arsenite. Brownish precipitation with silver nitrate appeared, which confirmed its oxidizing ability against arsenite. The bacterial genomic DNA underwent Illumina and Nanopore sequencing, revealing a distinctive cluster of genes spanning 9.6 kb associated with arsenite oxidation. These genes were identified within an isolated bacterial strain. Notably, the smaller subunit (aioB) of the arsenite oxidizing gene at the chromosomal DNA locus (Prokka_01508) was pinpointed. This gene, aioB, is pivotal in arsenite oxidation, a process crucial for energy metabolism. Upon thorough sequencing analysis, only a singular megaplasmid was detected within the isolated bacterial strain. Strikingly, this megaplasmid did not harbor any genes responsible for arsenic resistance or detoxification. This intriguingly indicates that the bacterial strain relies on the arsenic oxidizing genes present for its efficient arsenic oxidation capability. This is especially true for Microbacterium sp. strain 1S1. Subsequently, a segment of genes linked to arsenic resistance was successfully cloned into E. coli (DH5a). The fragment of arsenic-resistant genes was cloned in E. coli (DH5a), further confirmed by the AgNO3 method. This genetically engineered E. coli (DH5a) can decontaminate arsenic-contaminated sites.
Collapse
Affiliation(s)
- Shahid Sher
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
- School of Environment Florida Agricultural and Mechanical University, United States
| | - Muhammad Tahir Ishaq
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
19
|
Sher S, Tahir Ishaq M, Abbas Bukhari D, Rehman A. Brevibacterium sp. strain CS2: A potential candidate for arsenic bioremediation from industrial wastewater. Saudi J Biol Sci 2023; 30:103781. [PMID: 37680980 PMCID: PMC10480674 DOI: 10.1016/j.sjbs.2023.103781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
A multiple metal-resistant Brevibacterium sp. strain CS2, isolated from an industrial wastewater, resisted arsenate and arsenate upto 280 and 40 mM. The order of resistance against multiple metals was Arsenate > Arsenite > Selenium = Cobalt > Lead = Nickel > Cadmium = Chromium = Mercury. The bacterium was characterized as per morphological and biochemical characteristics at optimum conditions (37 ℃ and 7 pH). The appearance of brownish color precipitation was due to the interaction of silver nitrate confirming its oxidizing ability against arsenic. The strain showed arsenic processing ability at different temperatures, pH, and initial arsenic concentration which was 37% after 72 h and 48% after 96 h of incubation at optimum conditions with arsenite 250 mM/L (initial arsenic concentration). The maximum arsenic removal ability of strain CS2 was determined for 8 days, which was 32 and 46% in wastewater and distilled water, respectively. The heat-inactivated cells of the isolated strain showed a bioremediation efficiency (E) of 96% after 10 h. Genes cluster (9.6 kb) related to arsenite oxidation was found in Brevibacterium sp. strain CS2 after the genome analysis of isolated bacteria through illumine and nanopore sequencing technology. The arsenite oxidizing gene smaller subunit (aioB) on chromosomal DNA locus (Prokka_01508) was identified which plays a role in arsenite oxidation for energy metabolism. The presence of arsenic oxidizing genes and an efficient arsenic oxidizing potential of Brevibacterium sp. strain CS2 make it a potential candidate for green chemistry to eradicate arsenic from arsenic-contaminated wastewater.
Collapse
Affiliation(s)
- Shahid Sher
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
- Florida A&M University, School of Environment, Tallahassee, FL, USA
| | - Muhammad Tahir Ishaq
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
20
|
Zhang G, Zhang Z, Sajid S, Wei Q, Cai L. Hoeflea poritis sp. nov., isolated from a bleached scleractinian coral Porites lutea. Int J Syst Evol Microbiol 2023; 73. [PMID: 37861397 DOI: 10.1099/ijsem.0.006097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped, nonmotile and yellow-pigmented bacterium designated E7-10T was isolated from a bleached scleractinian coral Porites lutea. Strain E7-10T grew with 1.0-8.0 % (w/v) NaCl (optimum, 4.0 %), at 18-41 °C (optimum, 28 °C) and at pH 6.0-10.0 (optimum, pH 8.0). Phylogenetic analysis using 16S rRNA gene sequences revealed that E7-10T formed a lineage within the genus Hoeflea, but it was distinct from the closest species 'Hoeflea prorocentri' PM5-8T, showing 98.01 % sequence similarity. The predominant cellular fatty acids of E7-10T were summed feature 8 (26.7 %), C18 : 1 ω7c 11-methyl (26.2 %), C16 : 0 (20.8 %) and C19 : 0 cyclo ω8c (17.9 %). The major respiratory quinone was Q-10. The polar lipids mainly comprised phosphatidylethanolamine, two glycolipids and five phospholipids. The genome size of E7-10T was 5.58 Mb with G+C content 60.27 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between the genomes of strains E7-10T and PM5-8T were 19.50 and 75.95 %, respectively, which were both below the defined cutoff values (70 % and 95-96 %, respectively) for species delimitation. Thus, strain E7-10T represents a novel species within the genus Hoeflea, for which the name Hoeflea poritis sp. nov. is proposed. The type strain is E7-10T (=JCM 35852T=MCCC 1K08229T).
Collapse
Affiliation(s)
- Guoqiang Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, PR China
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| | - Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| | - Qiaoyan Wei
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, PR China
| |
Collapse
|
21
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Hu L, Cheng N, Wang Y, Zhang D, Xu K, Lv X, Long Y. Arsenate microbial reducing behavior regulated by the temperature fields in landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:366-375. [PMID: 37343443 DOI: 10.1016/j.wasman.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Attention should be paid to the As(V) reducing behavior in landfills under different temperature fields. In this study, microcosm tests were conducted using enrichment culture from a landfill. The results revealed that the reduction rate of As(V) was significantly affected by the temperature field, with the highest reduction rate observed at 50 °C, followed by 35 °C, 25 °C, and 10 °C. Different As cycling pathways were observed under various temperature fields. At room and medium temperatures, As4S4 was detected, indicating that both biomineralization and methylation processes occurred after As(V) reduction. However, only biogenic methylation was observed under high or low temperatures, indicating that the viability and adaptability of microorganisms varied depending on the temperature field and As contents. Pseudomonas was found to be the primary genus and dominant As(V) reduction bacteria (ARB) in all reactors. The study revealed that Pseudomonas accounted for a significant proportion of arsC genes, ranging from 87.29% to 97.59%, while arsCs genes were predominantly found in Bacillales and Closestridiales, with a contribution ranging from 89.17% to 96.59%. Interestingly, Bacillus and Clostridium were found to possess arsA genes in their metagenome-ssembled genome, resulting in a higher As(V) reducing rate under medium and high temperatures. These findings underscore the importance of temperature in modulating As(V) reducing behavior and As cycling, and could have implications for managing As pollution in landfill sites.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Na Cheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Dongchen Zhang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Xiaofei Lv
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
23
|
Mohsin H, Shafique M, Zaid M, Rehman Y. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01068-6. [PMID: 37326815 DOI: 10.1007/s12223-023-01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maria Shafique
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
24
|
Biełło KA, Cabello P, Rodríguez-Caballero G, Sáez LP, Luque-Almagro VM, Roldán MD, Olaya-Abril A, Moreno-Vivián C. Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by Pseudomonas pseudoalcaligenes CECT 5344. Int J Mol Sci 2023; 24:ijms24087232. [PMID: 37108394 PMCID: PMC10138600 DOI: 10.3390/ijms24087232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Wastewater from mining and other industries usually contains arsenic and cyanide, two highly toxic pollutants, thereby creating the need to develop bioremediation strategies. Here, molecular mechanisms triggered by the simultaneous presence of cyanide and arsenite were analyzed by quantitative proteomics, complemented with qRT-PCR analysis and determination of analytes in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes CECT 5344. Several proteins encoded by two ars gene clusters and other Ars-related proteins were up-regulated by arsenite, even during cyanide assimilation. Although some proteins encoded by the cio gene cluster responsible for cyanide-insensitive respiration decreased in the presence of arsenite, the nitrilase NitC required for cyanide assimilation was unaffected, thus allowing bacterial growth with cyanide and arsenic. Two complementary As-resistance mechanisms were developed in this bacterium, the extrusion of As(III) and its extracellular sequestration in biofilm, whose synthesis increased in the presence of arsenite, and the formation of organoarsenicals such as arseno-phosphoglycerate and methyl-As. Tetrahydrofolate metabolism was also stimulated by arsenite. In addition, the ArsH2 protein increased in the presence of arsenite or cyanide, suggesting its role in the protection from oxidative stress caused by both toxics. These results could be useful for the development of bioremediation strategies for industrial wastes co-contaminated with cyanide and arsenic.
Collapse
Affiliation(s)
- Karolina A Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
25
|
Mejia MP, Rojas CA, Curd E, Renshaw MA, Edalati K, Shih B, Vincent N, Lin M, Nguyen PH, Wayne R, Jessup K, Parker SS. Soil Microbial Community Composition and Tolerance to Contaminants in an Urban Brownfield Site. MICROBIAL ECOLOGY 2023; 85:998-1012. [PMID: 35802172 PMCID: PMC10156844 DOI: 10.1007/s00248-022-02061-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/21/2022] [Indexed: 05/04/2023]
Abstract
Brownfields are unused sites that contain hazardous substances due to previous commercial or industrial use. The sites are inhospitable for many organisms, but some fungi and microbes can tolerate and thrive in the nutrient-depleted and contaminated soils. However, few studies have characterized the impacts of long-term contamination on soil microbiome composition and diversity at brownfields. This study focuses on an urban brownfield-a former rail yard in Los Angeles that is contaminated with heavy metals, volatile organic compounds, and petroleum-derived pollutants. We anticipate that heavy metals and organic pollutants will shape soil microbiome diversity and that several candidate fungi and bacteria will be tolerant to the contaminants. We sequence three gene markers (16S ribosomal RNA, 18S ribosomal RNA, and the fungal internal transcribed spacer (FITS)) in 55 soil samples collected at five depths to (1) profile the composition of the soil microbiome across depths; (2) determine the extent to which hazardous chemicals predict microbiome variation; and (3) identify microbial taxonomic groups that may metabolize these contaminants. Detected contaminants in the samples included heavy metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, and volatile organic compounds. Bacterial, eukaryotic, and fungal communities all varied with depth and with concentrations of arsenic, chromium, cobalt, and lead. 18S rRNA microbiome richness and fungal richness were positively correlated with lead and cobalt levels, respectively. Furthermore, bacterial Paenibacillus and Iamia, eukaryotic Actinochloris, and fungal Alternaria were enriched in contaminated soils compared to uncontaminated soils and represent taxa of interest for future bioremediation research. Based on our results, we recommend incorporating DNA-based multi-marker microbial community profiling at multiple sites and depths in brownfield site assessment standard methods and restoration.
Collapse
Affiliation(s)
- Maura Palacios Mejia
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Connie A Rojas
- Ecology, Evolution, and Behavior Program, Michigan State University, Lansing, MI, USA
| | - Emily Curd
- Natural Science, Landmark College, Putney, VT, USA
| | - Mark A Renshaw
- Cherokee Federal, USGS Wetland and Aquatic Research Center, Gainesville, FL, USA
| | - Kiumars Edalati
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beverly Shih
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nitin Vincent
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Meixi Lin
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peggy H Nguyen
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Wayne
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
26
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
27
|
Bei Q, Yang T, Ren C, Guan E, Dai Y, Shu D, He W, Tian H, Wei G. Soil pH determines arsenic-related functional gene and bacterial diversity in natural forests on the Taibai Mountain. ENVIRONMENTAL RESEARCH 2023; 220:115181. [PMID: 36586710 DOI: 10.1016/j.envres.2022.115181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Arsenic-related functional genes are ubiquitous in microbes, and their distribution and abundance are influenced by edaphic factors. In arsenic-contaminated soils, soil arsenic content and pH determine the distribution of arsenic metabolizing microorganisms. In the uncontaminated natural ecosystems, however, it remains understudied for the key variable factor in determining the variation of bacterial assembly and mediating the arsenic biogeographical cycles. Here, we selected natural forest soils from southern and northern slopes along the altitudinal gradient of Taibai Mountain, China. The arsenic-related functional genes and soil bacterial community was examined using GeoChip 5.0 and high-throughput sequencing of 16S rRNA genes, respectively. It was found that arsenic-related functional genes were ubiquitous in tested forest soils. The gene arsB has the highest relative abundance, followed by arsC, aoxB, arrA, arsM, and arxA. The arsenic-related functional genes distribution on two slopes were decoupled from their corresponding bacterial community. Though there are higher abundance of bacterial communities on the northern slope than that on the southern slope, for arsenic-related functional genes, the abundance has the contrary trend which showing the more arsenic-related functional genes on the southern slope. In the top ten phyla, Proteobacteria and Actinobacteria were dominant phyla which affected the abundance of arsenic-related functional genes. Redundancy analysis and variance partitioning analysis indicated that soil pH, organic matter and altitude jointly determined the arsenic-related functional genes diversity in the two slopes of Taibai Mountain, and soil pH was a key factor. This indicates that the lower pH may shape more microbes with arsenic metabolic capacity. These findings suggested that soil pH plays a significant role in regulating the distribution of arsenic-related functional microorganisms, even for a forest ecosystem with an altitudinal gradient, and remind us the importance of pH in microbe mediated arsenic transformation.
Collapse
Affiliation(s)
- Qi Bei
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tiantian Yang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Enxiao Guan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Yunchao Dai
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Rios-Valenciana EE, Moreno-Perlin T, Briones-Gallardo R, Sierra-Alvarez R, Celis LB. The key role of biogenic arsenic sulfides in the removal of soluble arsenic and propagation of arsenic mineralizing communities. ENVIRONMENTAL RESEARCH 2023; 220:115124. [PMID: 36563982 DOI: 10.1016/j.envres.2022.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Biogeochemical processes govern the transport and availability of arsenic in sediments. However, little is known about the transition from indigenous communities to cultivable consortia when exposed to high arsenic concentrations. Such cultivable communities could be exploited for arsenic bioremediation of waste streams and polluted sites. Thus, it is crucial to understand the dynamics and selective pressures that shape the communities during the development of customized bacterial consortia. First, from the arsenic partitioning of two sediments with high arsenic concentrations, we found that up to 55% of arsenic was bioavailable because it was associated with the soluble, carbonate, and ionically exchangeable fractions. Next, we prepared sediment enrichment cultures under arsenate- and sulfate-reducing conditions to precipitate arsenic sulfide biominerals and analyze the communities. The produced biominerals were used as the inoculum to develop bacterial consortia via successive transfers. Tracking of the 16S rRNA gene in the fresh sediments, sediment enrichments, biogenic minerals, and bacterial consortia revealed differences in the bacterial communities. Removing the sediment caused a substantial decrease in diversity and shifts toward the dominance of the Firmicutes phylum to the detriment of Proteobacteria. In agreement with the 16S rRNA gene results, the sequencing of the arrA gene confirmed the presence of phylotypes closely related to Desulfosporosinus sp. Y5 (100% similarity), highlighting the pivotal role of this genus in the removal of soluble arsenic. Here, we demonstrated for the first time that besides being important as arsenic sinks, the biogenic arsenic sulfide minerals are reservoirs of arsenic resistant/respiring bacteria and can be used to culture them.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Tonatiuh Moreno-Perlin
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma Del Estado de Morelos, Avenida Universidad 1001, Chamilpa, 62210, Cuernavaca, Mor, Mexico
| | - Roberto Briones-Gallardo
- Facultad de Ingeniería-Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
29
|
Uddin MJ, Haque F, Jabeen I, Shuvo SR. Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Can J Microbiol 2023; 69:44-52. [PMID: 36332226 DOI: 10.1139/cjm-2022-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L-1 sodium arsenite, 400 mmol L-1 sodium arsenate, 5 mmol L-1 manganese sulfate, 3 mmol L-1 lead nitrate, 2.5 mmol L-1 cobalt chloride, 2.5 mmol L-1 cadmium acetate, and 2.5 mmol L-1 chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain.
Collapse
Affiliation(s)
- Mohammed Jafar Uddin
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Farhana Haque
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Ishrat Jabeen
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Sabbir R Shuvo
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
30
|
Castro-Severyn J, Pardo-Esté C, Araya-Durán I, Gariazzo V, Cabezas C, Valdés J, Remonsellez F, Saavedra CP. Biochemical, genomic and structural characteristics of the Acr3 pump in Exiguobacterium strains isolated from arsenic-rich Salar de Huasco sediments. Front Microbiol 2022; 13:1047283. [PMID: 36406427 PMCID: PMC9671657 DOI: 10.3389/fmicb.2022.1047283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Arsenic is a highly toxic metalloid of major concern for public safety. However, microorganisms have several resistance mechanisms, particularly the expression of arsenic pumps is a critical component for bacterial ability to expel it and decrease intracellular toxicity. In this study, we aimed to characterize the biochemical, structural, and genomic characteristics of the Acr3 pump among a group of Exiguobacterium strains isolated from different sites of the arsenic-rich Salar de Huasco (SH) ecosystem. We also determined whether the differences in As(III) resistance levels presented by the strains could be attributed to changes in the sequence or structure of this protein. In this context, we found that based on acr3 sequences the strains isolated from the SH grouped together phylogenetically, even though clustering based on gene sequence identity did not reflect the strain’s geographical origin. Furthermore, we determined the genetic context of the acr3 sequences and found that there are two versions of the organization of acr3 gene clusters, that do not reflect the strain’s origin nor arsenic resistance level. We also contribute to the knowledge regarding structure of the Acr3 protein and its possible implications on the functionality of the pump, finding that although important and conserved components of this family of proteins are present, there are several changes in the amino acidic sequences that may affect the interactions among amino acids in the 3D model, which in fact are evidenced as changes in the structure and residues contacts. Finally, we demonstrated through heterologous expression that the Exiguobacterium Acr3 pump does indeed improve the organisms As resistance level, as evidenced in the complemented E. coli strains. The understanding of arsenic detoxification processes in prokaryotes has vast biotechnological potential and it can also provide a lot of information to understand the processes of evolutionary adaptation.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ingrid Araya-Durán
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- *Correspondence: Claudia P. Saavedra,
| |
Collapse
|
31
|
Song X, Li Y, Stirling E, Zhao K, Wang B, Zhu Y, Luo Y, Xu J, Ma B. AsgeneDB: a curated orthology arsenic metabolism gene database and computational tool for metagenome annotation. NAR Genom Bioinform 2022; 4:lqac080. [PMID: 36330044 PMCID: PMC9623898 DOI: 10.1093/nargab/lqac080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Arsenic (As) is the most ubiquitous toxic metalloid in nature. Microbe-mediated As metabolism plays an important role in global As biogeochemical processes, greatly changing its toxicity and bioavailability. While metagenomic sequencing may advance our understanding of the As metabolism capacity of microbial communities in different environments, accurate metagenomic profiling of As metabolism remains challenging due to low coverage and inaccurate definitions of As metabolism gene families in public orthology databases. Here we developed a manually curated As metabolism gene database (AsgeneDB) comprising 400 242 representative sequences from 59 As metabolism gene families, which are affiliated with 1653 microbial genera from 46 phyla. AsgeneDB achieved 100% annotation sensitivity and 99.96% annotation accuracy for an artificial gene dataset. We then applied AsgeneDB for functional and taxonomic profiling of As metabolism in metagenomes from various habitats (freshwater, hot spring, marine sediment and soil). The results showed that AsgeneDB substantially improved the mapping ratio of short reads in metagenomes from various environments. Compared with other databases, AsgeneDB provides more accurate, more comprehensive and faster analysis of As metabolic genes. In addition, we developed an R package, Asgene, to facilitate the analysis of metagenome sequencing data. Therefore, AsgeneDB and the associated Asgene package will greatly promote the study of As metabolism in microbial communities in various environments.
Collapse
Affiliation(s)
- Xinwei Song
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yiqun Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100000, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210000, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China
| | - Bin Ma
- To whom correspondence should be addressed. Tel: +86 13282198979;
| |
Collapse
|
32
|
Song D, Zhu S, Chen L, Zhang T, Zhang L. The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120085. [PMID: 36058313 DOI: 10.1016/j.envpol.2022.120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms.
Collapse
Affiliation(s)
- Dongdong Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Ting Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
33
|
Hu L, Qian Y, Ci M, Long Y, Zheng H, Xu K, Wang Y. Localized intensification of arsenic methylation within landfill leachate-saturated zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156979. [PMID: 35764148 DOI: 10.1016/j.scitotenv.2022.156979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Leachate-saturated zone (LSZ) of landfills is a complicated biogeochemical hotspot due to the continuous input of electron donors and acceptors from the top refuse layer with leachate migration. In this study, the methylation behavior of the arsenic (As) was investigated. The results indicate that As-methylation processes are influenced by temperature fields in LSZ. The dimethylarsinic acid biotransformation capability can be enhanced with an increase in temperature. Microbial diversity, quantification of functional gene (arsM), and co-occurrence network analysis further characterized the drivers of As methylation in LSZ. As-biogeochemical cycle pathways, as well as As-functional gene distribution among different temperature fields, were modeled on the basis of KEGG annotation. Binning analysis was further employed to assemble As-methylated metagenomes, enabling the identification of novel species for As methylation in landfills. Then, 87 high-quality draft metagenome-assembled genomes (MAGs) were reconstructed from LSZ refuse samples; nearly 15 % (13 of 87) belonged to putative As-methylates functional MAGs. Combined with the model of the As-biogeochemical cycle, nine putative functional species could complete methylation processes alone. The findings of this study highlighted the temperature influence on the As-methylation behavior in LSZ and could facilitate the management of As contamination in landfills.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Haozhe Zheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
34
|
Cloning and functional characterization of arsenite oxidase (aoxB) gene associated with arsenic transformation in Pseudomonas sp. strain AK9. Gene X 2022; 850:146926. [DOI: 10.1016/j.gene.2022.146926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
|
35
|
Bhardwaj A. Understanding the diversified microbial operon framework coupled to arsenic transformation and expulsion. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Kopf A, Bunk B, Coldewey SM, Gunzer F, Riedel T, Schröttner P. Comparative Genomic Analysis of the Human Pathogen Wohlfahrtiimonas Chitiniclastica Provides Insight Into the Identification of Antimicrobial Resistance Genotypes and Potential Virulence Traits. Front Cell Infect Microbiol 2022; 12:912427. [PMID: 35873140 PMCID: PMC9301364 DOI: 10.3389/fcimb.2022.912427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest that Wohlfahrtiimonas chitiniclastica may be the cause of several diseases in humans including sepsis and bacteremia making the bacterium as a previously underappreciated human pathogen. However, very little is known about the pathogenicity and genetic potential of W. chitiniclastica; therefore, it is necessary to conduct systematic studies to gain a deeper understanding of its virulence characteristics and treatment options. In this study, the entire genetic repertoire of all publicly available W. chitiniclastica genomes was examined including in silico characterization of bacteriophage content, antibiotic resistome, and putative virulence profile. The pan-genome of W. chitiniclastica comprises 3819 genes with 1622 core genes (43%) indicating a putative metabolic conserved species. Furthermore, in silico analysis indicated presumed resistome expansion as defined by the presence of genome-encoded transposons and bacteriophages. While macrolide resistance genes macA and macB are located within the core genome, additional antimicrobial resistance genotypes for tetracycline (tetH, tetB, and tetD), aminoglycosides (ant(2'')-Ia, aac(6')-Ia,aph(3'')-Ib, aph(3')-Ia, and aph(6)-Id)), sulfonamide (sul2), streptomycin (strA), chloramphenicol (cat3), and beta-lactamase (blaVEB) are distributed among the accessory genome. Notably, our data indicate that the type strain DSM 18708T does not encode any additional clinically relevant antibiotic resistance genes, whereas drug resistance is increasing within the W. chitiniclastica clade. This trend should be monitored with caution. To the best of our knowledge, this is the first comprehensive genome analysis of this species, providing new insights into the genome of this opportunistic human pathogen.
Collapse
Affiliation(s)
- Anna Kopf
- Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
- Clinic for Hematology and Oncology, Carl-Thiem-Klinikum, Cottbus, Germany
| | - Boyke Bunk
- German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute DSMZ, Braunschweig, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Florian Gunzer
- Department of Hospital Infection Control, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Thomas Riedel
- German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
37
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
38
|
Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol Res 2022; 258:126990. [DOI: 10.1016/j.micres.2022.126990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
39
|
Al-Ansari MM. Influence of blue light on effective removal of arsenic by photosynthetic bacterium Rhodobacter sp. BT18. CHEMOSPHERE 2022; 292:133399. [PMID: 34952019 DOI: 10.1016/j.chemosphere.2021.133399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As) contamination in an ecosystem has been a serious threat for the ecosystem as well as human health. Thus, the present study was established an eco-friendly remediation of As by using As resistant Rhodobacter sp. Accordingly, the growth of Rhodobacter sp. in As stress environment was assessed. Expectedly, enhanced growth order of the Rhodobacter sp., under As stress was found to be control >50 > 100 > 200 > 300 > 400 > 500 mg/L of As. In addition, the present study explored the influence of various light sources (Yellow, light blue, red, green and white) on growth and As removal mechanisms of Rhodobacter sp. The growth profile of the bacteria indicated that the light blue source showed an enhanced growth at 72 h of incubation. Based on optimization experiments, an increased As removal percentage rate was found to be at 87.5% at pH 7.0, 3% of glucose, 1% of citrate supplemented in the medium. The As resistant genetic pattern for arsenic transformation, the genes arsenate reductase (arsC), arsenite oxidase (aio) was investigated. To study the transcript level expression of arsC and aio genes were performed after exposure to different concentrations of As (50, 100, 150, and 200 mg/L) at different time intervals (24, 48, 72 and 96 h). The results showed that both arsC and aio were up regulated from 24 to 72 h and the down regulation was observed at 96 h. The obtained results indicated that the Rhodobacter sp., possess significant AS tolerance and removal potential would make it is a noteworthy candidate for future As remediation practices.
Collapse
Affiliation(s)
- Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
40
|
Zhang T, Chen X, Wang Y, Li L, Sun Y, Wang Y, Zeng X. The stability of poorly crystalline arsenical ferrihydrite after long-term soil suspension incubation. CHEMOSPHERE 2022; 291:132844. [PMID: 34767854 DOI: 10.1016/j.chemosphere.2021.132844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
2- Line ferrihydrite (Fh) is widely used as a robust amendment for rapid arsenic removal or remediation in water or soil. However, the poorly crystalline phase of Fh is unstable and leads to arsenic leaching after long-term submergence in reductive aquatic and soil environments. In this study, the synthesized As(V)-bound Fh was characterized by various spectral approaches to investigate the factors that may affect the variation in As(V)-Fh in long-term continuously submerged soil suspensions. The X-ray diffraction (XRD) results showed that hematite was the main product and that goethite was the byproduct after 360 d of incubation. Approximately 12-17% and 4-5% Fh were transformed at As/Fe mole ratios of 0.005 and 0.05, respectively. After 360 d of incubation, the hematite morphology was clearly observed by scanning electron microscopy (SEM), and the As(V)-Fh surface areas were also decreased by 17.3-27.6% and 11.9-16.6% for As/Fe mole ratios of 0.005 and 0.05, respectively. In a comparison of the two tested soils (soils sampled in Sichuan Province (SC) and Hunan Province (HN)), As(V)-Fh transformed faster in HN soil suspensions, and more hematite and goethite were formed. Furthermore, during the incubation period, As(V) was transformed to As(III), and both species were released into the suspension from the As(V)-Fh surface. It was suggested that soil pH and Fe(II) concentration were key factors controlling the As(V)-Fh transformation process, and the differences between the two soils were due to the different soil pH values and contents of available Fe. Arsenic release was mainly caused by Fh transformation and ligand competition with soil organic matter (SOM).
Collapse
Affiliation(s)
- Tuo Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinyi Chen
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yu Wang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Yuanyuan Sun
- Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Yanan Wang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Xibai Zeng
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
41
|
Hu L, Zhang D, Qian Y, Nie Z, Long Y, Shen D, Fang C, Yao J. Microbes drive changes in arsenic species distribution during the landfill process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118322. [PMID: 34634411 DOI: 10.1016/j.envpol.2021.118322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Landfills are considered an anthropogenic source of arsenic (As). The As species mediated by microbes in landfills vary significantly in toxicity. Based on random matrix theory, 16S rRNA genes were used to construct four microbial networks associated with different stages over 12 years of landfill ages. The results indicated that network size and microbial structure varied with landfill age. According to the network scores, about 208 taxa were identified as putative keystones for the whole landfill; the majority of them were Firmicutes, which accounted for 66.8% of all specialists. Random Forest analysis was performed to predict the keystone taxa most responsible for As species distribution under different landfill conditions; 17, 10 and 14 keystone taxa were identified as drivers affecting As species distribution at early, middle, and later landfill stages, respectively.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Dongchen Zhang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Zhiyuan Nie
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jun Yao
- College of Life Science, Taizhou University, Jiaojiang, 318000, China
| |
Collapse
|
42
|
Chen F, Luo Y, Li C, Wang J, Chen L, Zhong X, Zhang B, Zhu Q, Zou R, Guo X, Zhou Y, Guo L. Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112934. [PMID: 34755630 DOI: 10.1016/j.ecoenv.2021.112934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Long-term consumption of arsenic-contaminated rice has become a public health issue that urgently needs to be addressed. In this study, mice were exposed to arsenic in rice (low dose, 0.91 mg/kg; medium dose, 9.1 mg/kg) for 30 days and 60 days, respectively, and the effects on pathological structures of spleen and skin, as well as the structure of the fecal microbiome were examined. The findings revealed dose/time cumulative effects on pathological changes, with even a low dose exposure for 30 days causing destruction of splenic follicular structure and thickening of dermal keratinized and epidermal layers. The Firmicutes/Bacteroidetes ratio in the community and the positive/negative ratio in network links were higher in arsenic groups, suggesting that arsenic resulted in a less healthy and unstable microbiome for the host. Thus lifetime consumption of arsenic in rice may have potential health effects on humans and must be carefully assessed to safeguard human health. Furthermore, in arsenic groups, arsenic-resistant bacteria or arsenic hazards remediation bacteria changed to be the dominant bacteria and acted as the core bacteria in the network modules. Some microbial arsenic transforming genes (arsC, arsR, arsA, ACR3, and aoxB) differed, indicating that the gut microbiome changed to withstand arsenic stress. Furthermore, Faecalibaculum, Lachnospiraceae_NK4A136_group, Angelakisella, Ruminiclostridium, and Desulfovibrionaceae are positively associated with arsenic dosage and may be useful in the early detection of arsenicals.
Collapse
Affiliation(s)
- Fubin Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China..
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Qijiong Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Rong Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Xuming Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Yubin Zhou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| |
Collapse
|
43
|
Parsania S, Mohammadi P, Soudi MR. Biotransformation and removal of arsenic oxyanions by Alishewanella agri PMS5 in biofilm and planktonic states. CHEMOSPHERE 2021; 284:131336. [PMID: 34217924 DOI: 10.1016/j.chemosphere.2021.131336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Arsenic oxyanions are toxic chemicals that impose a high risk to humans and other living organisms in the environment. The present study investigated indigenous heterotrophic bacteria in the tailings dam effluent (TDE) of a gold mining factory. Thirty-seven arsenic resistant bacteria were cultured on Reasoner's 2A agar supplemented with arsenic salts through filtration. One strain encoded as PMS5 with the highest resistance to 140-mM sodium arsenite and 600-mM sodium arsenate in tryptic soy broth was selected for further investigations. According to phenotypic examinations and 16S rDNA sequence analysis, PMS5 belonged to the genus Alishewanella and was sensitive to most of the examined antibiotics. The biosorption and bioaccumulation abilities of arsenic salts were observed in this isolate based on Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) and biosorption and bioaccumulation data. PMS5 was also found to cause the volatilization and biotransformation of arsenic oxyanions through their oxidation and reduction. Moreover, the contribution of PMS5 to arsenic (3+, 5+) bioprocessing under oligotrophic conditions was confirmed in fixed-bed reactors fed with the TDE of the gold factory (R1) and synthetic water containing As5+ (R2). According to biofilm assays such as biofilm staining, cell count, detachment assay and SEM, the arsenic significantly reduced the biofilm density of the examined reactors compared to that of the control (R3). Arsenate reduction and arsenite oxidation under bioreactor conditions were respectively obtained as 75.5-94.7% and 8%. Furthermore, negligible arsenic volatilization (1.2 ppb) was detected.
Collapse
Affiliation(s)
- Somayeh Parsania
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
44
|
Somenahally AC, Loeppert RH, Zhou J, Gentry TJ. Niche Differentiation of Arsenic-Transforming Microbial Groups in the Rice Rhizosphere Compartments as Impacted by Water Management and Soil-Arsenic Concentrations. Front Microbiol 2021; 12:736751. [PMID: 34803950 PMCID: PMC8602891 DOI: 10.3389/fmicb.2021.736751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, pore water, and grain samples. Results confirmed several As-biotransformation processes in the rice rhizosphere compartments, and distinct assemblage of As-reducing and methylating bacteria was observed between the root-plaque and rhizosphere. Results confirmed higher potential for microbial As-reduction and As-methylation in continuously flooded, long term As-contaminated fields, which accumulated highest concentrations of AsIII and methyl-As concentrations in pore water and rice grains. Water management treatment significantly altered As-speciation in the rhizosphere, and intermittent flooding reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different microbial functional groups demonstrating niche separation. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial functional groups. It was also evident that As transformation was coupled to different biogeochemical cycling processes (nutrient assimilation, carbon metabolism etc.) in the compartments and between treatments, revealing functional non-redundancy of rice-rhizosphere microbiome in response to local biogeochemical conditions and As contamination. This study provided novel insights on As-biotransformation processes and their implications on As-chemistry at the root-soil interface and their responses to water management, which could be applied for mitigating As-bioavailability and accumulation in rice grains.
Collapse
Affiliation(s)
- Anil C Somenahally
- Texas A&M AgriLife Research, Overton, TX, United States.,Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Richard H Loeppert
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Terry J Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
45
|
Diba F, Khan MZH, Uddin SZ, Istiaq A, Shuvo MSR, Ul Alam ASMR, Hossain MA, Sultana M. Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency. Sci Rep 2021; 11:21312. [PMID: 34716390 PMCID: PMC8556249 DOI: 10.1038/s41598-021-00745-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Arsenotrophic bacteria play an essential role in lowering arsenic contamination by converting toxic arsenite [As (III)] to less toxic and less bio-accumulative arsenate [As (V)]. The current study focused on the qualitative and electrocatalytic detection of the arsenite oxidation potential of an arsenite-oxidizing bacteria A. xylosoxidans BHW-15 (retrieved from As-contaminated tube well water), which could significantly contribute to arsenic detoxification, accumulation, and immobilization while also providing a scientific foundation for future electrochemical sensor development. The minimum inhibitory concentration (MIC) value for the bacteria was 15 mM As (III). Scanning Electron Microscopy (SEM) investigation validated its intracellular As uptake capacity and demonstrated a substantial association with the MIC value. During the stationary phase, the strain’s As (III) transformation efficiency was 0.0224 mM/h. Molecular analysis by real-time qPCR showed arsenite oxidase (aioA) gene expression increased 1.6-fold in the presence of As (III) compared to the untreated cells. The immobilized whole-cell also showed As (III) conversion up to 18 days. To analyze the electrochemical oxidation in water, we developed a modified GCE/P-Arg/ErGO-AuNPs electrode, which successfully sensed and quantified conversion of As (III) into As (V) by accepting electrons; implying a functional As oxidase enzyme activity in the cells. To the best of our knowledge, this is the first report on the electrochemical observation of the As-transformation mechanism with Achromobactersp. Furthermore, the current work highlighted that our isolate might be employed as a promising candidate for arsenic bioremediation, and information acquired from this study may be helpful to open a new window for the development of a cost-effective, eco-friendly biosensor for arsenic species detection in the future.
Collapse
Affiliation(s)
- Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Institute of Tissue Banking and Biomaterial Research (ITBBR), Atomic Energy Research Establishment (AERE), Savar, Dhaka, 1349, Bangladesh
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Salman Zahir Uddin
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
46
|
Zhang C, Xiao X, Zhao Y, Zhou J, Sun B, Liang Y. Patterns of microbial arsenic detoxification genes in low-arsenic continental paddy soils. ENVIRONMENTAL RESEARCH 2021; 201:111584. [PMID: 34186083 DOI: 10.1016/j.envres.2021.111584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Microbes mediate the arsenic detoxification in paddy soils, determining the fate of arsenic in soils and its availability to rice plants, yet little is known about the structures and abundances of functional genes as well as the driving forces in low-arsenic paddy fields. To depict the arsenic detoxification functional gene patterns, 429 soil samples were collected from 39 paddy fields across four climatic zones in China, with the arsenic contents ranged from 9.76 to 19.74 mg kg-1. GeoChip, a microarray-based metagenomic technique, was used to analyze the functional genes involved in arsenic detoxification. A total of three arsenic detoxification gene families were detected, aoxB, arxA (arsenite oxidase), and arsM (methyltransferase). Both the diversity and abundance of functional genes varied significantly among sampling sites (p < 0.05) and decreased along the arsenic gradient. Arsenic detoxification genes were carried by bacteria, archaea, and eukaryotes. Redundancy analysis showed that soil samples were grouped according to both climatic zones they located in and arsenic gradients at the continental scale. Soil pH, average annual temperature (AAT), arsenic, annual average precipitation (AAP), and CEC were the most important factors in shaping the functional structure. Structural equation modeling showed that AAT (r = 0.21), pH (r = -0.20), and arsenic contents (r = -0.11) directly affected the arsenic detoxification gene abundances. These findings provide an overall picture of microbial communities involved in arsenic detoxification in paddy soils and reveal the importance of climatic factors in shaping functional genes across a large spatial scale.
Collapse
Affiliation(s)
- Chi Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xian Xiao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yuan Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, And School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
47
|
Rebelo A, Mourão J, Freitas AR, Duarte B, Silveira E, Sanchez-Valenzuela A, Almeida A, Baquero F, Coque TM, Peixe L, Antunes P, Novais C. Diversity of metal and antibiotic resistance genes in Enterococcus spp. from the last century reflects multiple pollution and genetic exchange among phyla from overlapping ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147548. [PMID: 34000557 DOI: 10.1016/j.scitotenv.2021.147548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As), mercury (Hg), and copper (Cu) are among the major historical and contemporary metal pollutants linked to global anthropogenic activities. Enterococcus have been considered indicators of fecal pollution and antibiotic resistance for years, but its largely underexplored metallome precludes understanding their role as metal pollution bioindicators as well. Our goal was to determine the occurrence, diversity, and phenotypes associated with known acquired genes/operons conferring tolerance to As, Hg or Cu among Enterococcus and to identify their genetic context (381 field isolates from diverse epidemiological and genetic backgrounds; 3547 enterococcal genomes available in databases representing a time span during 1900-2019). Genes conferring tolerance to As (arsA), Hg (merA) or Cu (tcrB) were used as biomarkers of widespread metal tolerance operons. Different variants of metal tolerance (MeT) genes (13 arsA, 6 merA, 1 tcrB) were more commonly recovered from the food-chain (arsA, tcrB) or humans (merA), and were shared with 49 other bacterial taxa. Comparative genomics analysis revealed that MeT genes occurred in heterogeneous operons, at least since the 1900s, with an increasing accretion of antibiotic resistance genes since the 1960's, reflecting diverse antimicrobial pollution. Multiple MeT genes were co-located on the chromosome or conjugative plasmids flanked by elements with high potential for recombination, often along with antibiotic resistance genes. Phenotypic analysis of some isolates carrying MeT genes revealed up to 128× fold increase in the minimum inhibitory concentrations to metals. The main distribution of functional MeT genes among Enterococcus faecium and Enterococcus faecalis from different sources, time spans, and clonal lineages, and their ability to acquire diverse genes from multiple taxa bacterial communities places these species as good candidates to be used as model organisms in future projects aiming at the identification and quantification of bioindicators of metal polluted environments by anthropogenic activities.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal; Área Técnico-científica de Saúde Ambiental, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal
| | - Joana Mourão
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal; Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Portugal; Instituto de Investigação Interdisciplinar, Universidade de Coimbra, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Coimbra, Portugal; Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | - Antonio Sanchez-Valenzuela
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Fernando Baquero
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
48
|
Castro-Severyn J, Pardo-Esté C, Mendez KN, Fortt J, Marquez S, Molina F, Castro-Nallar E, Remonsellez F, Saavedra CP. Living to the High Extreme: Unraveling the Composition, Structure, and Functional Insights of Bacterial Communities Thriving in the Arsenic-Rich Salar de Huasco Altiplanic Ecosystem. Microbiol Spectr 2021; 9:e0044421. [PMID: 34190603 PMCID: PMC8552739 DOI: 10.1128/spectrum.00444-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Microbial communities inhabiting extreme environments such as Salar de Huasco (SH) in northern Chile are adapted to thrive while exposed to several abiotic pressures and the presence of toxic elements such as arsenic (As). Hence, we aimed to uncover the role of As in shaping bacterial composition, structure, and functional potential in five different sites in this altiplanic wetland using a shotgun metagenomic approach. The sites exhibit wide gradients of As (9 to 321 mg/kg), and our results showed highly diverse communities and a clear dominance exerted by the Proteobacteria and Bacteroidetes phyla. Functional potential analyses show broadly convergent patterns, contrasting with their great taxonomic variability. As-related metabolism, as well as other functional categories such as those related to the CH4 and S cycles, differs among the five communities. Particularly, we found that the distribution and abundance of As-related genes increase as the As concentration rises. Approximately 75% of the detected genes for As metabolism belong to expulsion mechanisms; arsJ and arsP pumps are related to sites with higher As concentrations and are present almost exclusively in Proteobacteria. Furthermore, taxonomic diversity and functional potential are reflected in the 12 reconstructed high-quality metagenome assembled genomes (MAGs) belonging to the Bacteroidetes (5), Proteobacteria (5), Cyanobacteria (1), and Gemmatimonadetes (1) phyla. We conclude that SH microbial communities are diverse and possess a broad genetic repertoire to thrive under extreme conditions, including increasing concentrations of highly toxic As. Finally, this environment represents a reservoir of unknown and undescribed microorganisms, with great metabolic versatility, which needs further study. IMPORTANCE As microbial communities inhabiting extreme environments are fundamental for maintaining ecosystems, many studies concerning composition, functionality, and interactions have been carried out. However, much is still unknown. Here, we sampled microbial communities in the Salar de Huasco, an extreme environment subjected to several abiotic stresses (high UV radiation, salinity and arsenic; low pressure and temperatures). We found that although microbes are taxonomically diverse, functional potential seems to have an important degree of convergence, suggesting high levels of adaptation. Particularly, arsenic metabolism showed differences associated with increasing concentrations of the metalloid throughout the area, and it effectively exerts a significant pressure over these organisms. Thus, the significance of this research is that we describe highly specialized communities thriving in little-explored environments subjected to several pressures, considered analogous of early Earth and other planets, that have the potential for unraveling technologies to face the repercussions of climate change in many areas of interest.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katterinne N. Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Fortt
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Sebastian Marquez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
49
|
Tashan H, Harighi B, Rostamzadeh J, Azizi A. Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:696750. [PMID: 34367218 PMCID: PMC8341903 DOI: 10.3389/fpls.2021.696750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
The present investigation was carried out to isolate arsenic (As)-resistant endophytic bacteria from the roots of alfalfa and chickpea plants grown in arsenic-contamination soil, characterize their As tolerance ability, plant growth-promoting characteristics, and their role to induce As resistance by the plant. A total of four root endophytic bacteria were isolated from plants grown in As-contaminated soil (160-260-mg As kg-1 of soil). These isolates were studied for plant growth-promoting (PGP) characteristics through siderophore, phosphate solubilization, nitrogen fixation, protease, and lipase production, and the presence of the arsenate reductase (arsC) gene. Based on 16S rDNA sequence analysis, these isolates belong to the genera Acinetobacter, Pseudomonas, and Rahnella. All isolates were found As tolerant, of which one isolate, Pseudomonas sp. QNC1, showed the highest tolerance up to 350-mM concentration in the LB medium. All isolates exhibited phosphate solubilization activity. Siderophore production activity was shown by only Pseudomonas sp. QNC1, while nitrogen fixation activity was shown by only Rahnella sp. QNC2 isolate. Acinetobacter sp. QNA1, QNA2, and Rahnella sp. QNC2 exhibited lipase production, while only Pseudomonas sp. QNC1 was able to produce protease. The presence of the arsC gene was detected in all isolates. The effect of endophytic bacteria on biomass production of alfalfa and chickpea in five levels of arsenic concentrations (0-, 10-, 50-, 75-, and 100-mg kg-1 soil) was evaluated. The fresh and dry weights of roots of alfalfa and chickpea plants were decreased as the arsenic concentration of the soil was increased. Results indicate that the fresh and dry root weights of alfalfa and chickpea plants were significantly higher in endophytic bacteria-treated plants compared with non-treated plants. Inoculation of chickpea plants with Pseudomonas sp. QNC1 and Rahnella sp. QNC2 induced lower NPR3 gene expression in chickpea roots grown in soil with the final concentration of 100-mg kg-1 sodium arsenate compared with the non-endophyte-treated control. The same results were obtained in Acinetobacter sp. QNA2-treated alfalfa plants grown in the soil plus 50-mg kg-1 sodium arsenate. These results demonstrated that arsenic-resistant endophytic bacteria are potential candidates to enhance plant-growth promotion in As contamination soils. Characterization of bacterial endophytes with plant growth potential can help us apply them to improve plant yield under stress conditions.
Collapse
Affiliation(s)
- Hazhir Tashan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
50
|
Tripti K, Shardendu S. Efficiency of arsenic remediation from growth medium through Bacillus licheniformis modulated by phosphate (PO 4) 3- and nitrate (NO 3) - enrichment. Arch Microbiol 2021; 203:4081-4089. [PMID: 34052893 DOI: 10.1007/s00203-021-02392-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 10/20/2022]
Abstract
Bacillus licheniformis DAS-1 and DAS-2 were found as potent tool for removal/uptake of arsenic [As(V) and As(III)] and reduction [(As(V) to As(III)] of arsenic from the liquid growth medium in our previous studies. Present work gives light on modulation of arsenic remediation (in terms of uptake and reduction) by two selected essential soil nutrients, phosphate (PO4)3- and nitrate (NO3)-. PO43- has structural analogy with arsenate [AsO43-/As(V)] that compete with cell uptake of As(V). It was found that enrichment of 0.75 mM of PO43- had significantly moderated the As(V) toxicity in liquid broth culture by retarding As(V) uptake. Lowering level of PO43- can lead to increase in As(V) removal from medium and vice versa. NO3- has strong oxidant properties which controls As(III) oxidation into As(V) in medium that resulted less toxicity favouring growth of bacteria and also more uptake via phosphate transporters. Hence, accelerated As(III) uptake has shown on enrichment of 0.5 mM of NO3- in medium. All the results of work give evidence that appropriate enrichment of PO43- and NO3- into liquid growth medium, can significantly contribute in alteration of efficiency for arsenic removal/uptake and reduction by bacteria from the medium.
Collapse
Affiliation(s)
- Kumari Tripti
- Laboratory of Environment and Biotechnology, Department of Botany, Patna Science College, Patna University, Patna, 800005, India.
| | - Shardendu Shardendu
- Laboratory of Environment and Biotechnology, Department of Botany, Patna Science College, Patna University, Patna, 800005, India
| |
Collapse
|