1
|
Danner C, Karpenko Y, Mach RL, Mach-Aigner AR. Act1 out of Action: Identifying Reliable Reference Genes in Trichoderma reesei for Gene Expression Analysis. J Fungi (Basel) 2025; 11:396. [PMID: 40422730 DOI: 10.3390/jof11050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Trichoderma reesei is a well-established industrial enzyme producer and has been the subject of extensive research for various applications. The basis of many research studies is the analysis of gene expression, specifically with RT-qPCR, which requires stable reference genes for normalization to yield reliable results. Yet the commonly used reference genes, act1 and sar1, were initially chosen based on reports from the literature rather than systematic validation, raising concerns about their stability. Thus, properly evaluated reference genes for T. reesei are lacking. In this study, five potentially new reference genes were identified by analyzing publicly available transcriptome datasets of the T. reesei strains QM6a and Rut-C30. Their expression stability was then evaluated under relevant cultivation conditions using RT-qPCR and analyzed with RefFinder. The two most stable candidate reference genes were further validated by normalizing the expression of the well-characterized gene cbh1 and comparing the results to those obtained using act1 and sar1. Additionally, act1 and sar1 were normalized against the new reference genes to assess the variability in their expression. All five new reference genes exhibited a more stable expression than act1 and sar1. Both in silico and RT-qPCR analysis ranked the so far uncharacterized gene, bzp1, as the most stable. Further, we found that act1 and sar1 have strain- and condition-dependent expression variability, suggesting that they are unsuitable as universal reference genes in T. reesei. Based on these results, we propose to use the combination of bzp1 and tpc1 for the normalization in RT-qPCR analysis instead of act1 and sar1.
Collapse
Affiliation(s)
- Caroline Danner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Yuriy Karpenko
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| |
Collapse
|
2
|
Hu ZC, Dai HW, Gu BQ, Wang YS, Liu ZQ, Zheng YG. The combination of ultraviolet mutagenesis and PPX1 overexpression synergistically enhanced S-adenosyl-L-methionine synthesis in industrial Saccharomyces cerevisiae. Enzyme Microb Technol 2025; 185:110591. [PMID: 39893828 DOI: 10.1016/j.enzmictec.2025.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
S-adenosyl-L-methionine (SAM) is the only injectable drug among the hepatoprotective and choleretic drugs, which has remarkable efficacy and is favored by hepatopaths. The demand for SAM is constantly increasing in clinical settings. Therefore, many efforts have been made to increase SAM biosynthesis from L-methionine and ATP in Saccharomyces cerevisiae. This study aimed to construct a stable and high-accumulating SAM industrial strain through successive ultraviolet irradiation (UV) mutations coupled with three resistant (ethionine, nystatin, and cordycepin, respectively) screening procedures and metabolic engineering strategies. Following multiple UV mutagenesis, a higher production mutant strain ZJT15-33 was successfully obtained. In addition, the recombinant strain spe2△-PPX1 was derived from ZJT15-33 by deleting the SPE2 and overexpressing the PPX1, resulting in a 2.5-fold enhanced ATP accumulation, which promoted the synthesis of 2.41 g/L SAM in the shake-flask, representing an 11.4-fold enhancement over the original strain (0.21 g/L). Furthermore, 11.65 g/L SAM was accumulated with 113 mg/g DCW SAM content in a 5-L fermenter at 96 h, marking a 36.57 % increase compared to strain ZJT15-33 (8.53 g/L). These results indicated that UV mutagenesis combined with PPX1 overexpression could effectively improve SAM synthesis in S. cerevisiae, providing a feasible approach for developing highly SAM industrial production.
Collapse
Affiliation(s)
- Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Hong-Wei Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Bing-Qing Gu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
3
|
Alalam H, Šafhauzer M, Sunnerhagen P. New reporters for monitoring cellular NMD. RNA (NEW YORK, N.Y.) 2025; 31:600-611. [PMID: 39880586 PMCID: PMC11912909 DOI: 10.1261/rna.080272.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes. NMD is executed by a set of three core factors conserved in evolution, UPF1-3, as well as additional influencing proteins such as kinases. Monitoring NMD activity is challenging due to the difficulties in quantitating RNA decay rates in vivo, and consequently, it has also been problematic to identify new factors influencing NMD. Here, we developed a genetic selection system in yeast to capture new components affecting NMD status. The reporter constructs link NMD target sequences with nutrient-selectable genetic markers. By crossing these reporters into a genome-wide library of deletion mutants and quantitating colony growth on a selective medium, we robustly detect previously known NMD components in a high-throughput fashion. In addition, we identify novel mutations influencing NMD status and implicate ribosome recycling as important for NMD. By using our constructed combinations of promoters, NMD target sequences, and selectable markers, the system can also efficiently detect mutations with a minor effect, or in special environments. Furthermore, it can be used to explore how NMD acts on targets of different structures.
Collapse
Affiliation(s)
- Hanna Alalam
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| | - Monika Šafhauzer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| |
Collapse
|
4
|
Wong RWK, Foo M, Lay JRS, Wai TLT, Moore J, Dutreux F, Molzahn C, Nislow C, Measday V, Schacherer J, Mayor T. Mining yeast diversity unveils novel targets for improved heterologous laccase production in Saccharomyces cerevisiae. Microb Cell Fact 2025; 24:60. [PMID: 40059166 PMCID: PMC11892151 DOI: 10.1186/s12934-025-02677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/17/2025] [Indexed: 05/13/2025] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a widely utilized host cell for recombinant protein production due to its well studied and annotated genome, its ability to secrete large and post-translationally modified proteins, fast growth and cost-effective culturing. However, recombinant protein yields from S. cerevisiae often fall behind that of other host systems. To address this, we developed a high-throughput screen of wild, industrial and laboratory S. cerevisiae isolates to identify strains with a natural propensity for greater recombinant protein production, specifically focussing on laccase multicopper oxidases from the fungi Trametes trogii and Myceliophthora thermophila. Using this method, we identified 20 non-laboratory strains with higher capacity to produce active laccase. Interestingly, lower levels of laccase mRNA were measured in most cases, indicating that the drivers of elevated protein production capacity lie beyond the regulation of recombinant gene expression. We characterized the identified strains using complementary genomic and proteomic approaches to reveal several potential pathways driving the improved expression phenotype. Gene ontology analysis suggests broad changes in cellular metabolism, specifically in genes/proteins involved in carbohydrate catabolism, thiamine biosynthesis, transmembrane transport and vacuolar degradation. Targeted deletions of the hexose transporter HXT11 and the Coat protein complex II interacting paralogs PRM8 and 9, involved in ER to Golgi transport, resulted in significantly improved laccase production from the S288C laboratory strain. Whereas the deletion of the Hsp110 SSE1 gene, guided by our proteomic analysis, also led to higher laccase activity, we did not observe major changes of the protein homeostasis network within the strains with higher laccase activity. This study opens new avenues to leverage the vast diversity of Saccharomyces cerevisiae for recombinant protein production, as well as offers new strategies and insights to enhance recombinant protein yields of current strains.
Collapse
Affiliation(s)
- Ryan Wei Kwan Wong
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Marissa Foo
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jasmine R S Lay
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tiffany L T Wai
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jackson Moore
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR, Strasbourg, 7156, France
| | - Cristen Molzahn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, Strasbourg, 7156, France
- Institut Universitaire de France (IUF), Paris, France
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Leitão MDC, Cabral LS, Piva LC, Queiroz PFDS, Gomes TG, de Andrade RV, Perez ALA, de Paiva KLR, Báo SN, Reis VCB, Moraes LMP, Togawa RC, Barros LMG, Torres FAG, Pappas Júnior GJ, Coelho CM. SHIP identifies genomic safe harbors in eukaryotic organisms using genomic general feature annotation. Sci Rep 2025; 15:7193. [PMID: 40021804 PMCID: PMC11871141 DOI: 10.1038/s41598-025-91249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Integrating foreign genes into loci, allowing their transcription without affecting endogenous gene expression, is the desirable strategy in genomic engineering. However, these loci, known as genomic safe harbors (GSHs), have been mainly identified by empirical methods. Furthermore, the most prominent available GSHs are localized within regions of high gene density, raising concerns about unstable expression. As synthetic biology is moving towards investigating polygenic modules rather than single genes, there is an increasing demand for tools to identify GSHs systematically. To expand the GSH repertoire, we present SHIP, an algorithm designed to detect potential GSHs in eukaryotes. Using the chassis organism Saccharomyces cerevisiae, five GSHs were experimentally curated based on data from DNA sequencing, stability, flow cytometry, qPCR, electron microscopy, RT-qPCR, and RNA-Seq assays. Our study places SHIP as a valuable tool for providing a list of promising candidates to assist in the experimental assessment of GSHs in eukaryotic organisms with available annotated genomes.
Collapse
Affiliation(s)
- Matheus de Castro Leitão
- Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Luiza Cesca Piva
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Taísa Godoy Gomes
- Department of Microbiology, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Sônia Nair Báo
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Guo C, Bin Z, Zhang P, Tang J, Wang L, Chen Y, Xiao D, Guo X. Efficient production of RNA in Saccharomyces cerevisiae through inducing high level transcription of functional ncRNA-SRG1. J Biotechnol 2025; 398:66-75. [PMID: 39638152 DOI: 10.1016/j.jbiotec.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
RNA (Ribonucleic Acid) is an essential component of organisms and is widely used in the food and pharmaceutical industries. Saccharomyces cerevisiae, recognized as a safe strain, is widely used for RNA production. In this study, the S. cerevisiae W303-1a was used as a starting strain and molecular modifications were made to the functional ncRNA-SRG1 to evaluate the effect on RNA production. At the same time, its transcriptionally associated helper genes (Spt2, Spt6 and Cha4) were overexpressed and the culture medium was supplemented with serine to induce SRG1 transcription, to increase SRG1 transcription levels and investigate its effect on intracellular RNA levels. The results showed that the intracellular RNA content of the recombinant strain W303-1a-SRG1 was 10.27 %, an increase of 11.15 % compared to the starting strain (W303-1a, with an intracellular RNA content of 9.24 %). On this basis, a gene co-overexpression strain-W303-1a-SRG1-Spt6 was constructed. Simultaneously, the addition of 2 % serine strategy was used to increase the transcription level of SRG1 and RNA content of the recombinant strain. The intracellular RNA of the recombinant strain reached 11.41 %, an increase of 23.38 % compared to the starting strain (W303-1a, without serine supplementation). In addition, the growth performance of the strain was assessed by measuring the SRG1 transcription level in the strain and plotting the growth curve. Therefore, we found that improving the transcription level of ncRNA can be used as a new idea to construct S. cerevisiae with high RNA content, which provides a strong help for subsequent research in related fields. This work provides a new strategy for increasing the nucleic acid content of S. cerevisiae.
Collapse
Affiliation(s)
- Can Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China
| | - Zhiqiang Bin
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China
| | - Pengjie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China
| | - Jing Tang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China
| | - Lianqing Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China.
| |
Collapse
|
7
|
Song L, Cui L, Li H, Zhang N, Yang W. Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity. J Fungi (Basel) 2025; 11:80. [PMID: 39852499 PMCID: PMC11766619 DOI: 10.3390/jof11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Wheat leaf rust caused by Puccinia triticina (Pt) is a prevalent disease worldwide, seriously threatening wheat production. Pt acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of Pt and effective control of leaf rust. Herein, we report a wheat leaf rust candidate effector protein Pt48115 that is highly expressed in the late stages of infection during wheat-Pt interaction. Pt48115 contains a signal peptide with a secretory function and a transit peptide that can translocate Pt48115 to the host chloroplasts. The amino acid sequence polymorphism analysis of Pt48115 in seven different leaf rust races showed that it was highly conserved. Pt48115 inhibited cell death induced by Bcl-2-associated X protein (BAX) from mice or infestans 1 (INF1) from Phytophthora infestans in Nicotiana benthamiana and by DC3000 in wheat, and its 145-175 amino acids of the C-terminal are critical for its function. Furthermore, Pt48115 inhibited callose deposition and reactive oxygen species accumulation in the wheat cultivar Thatcher, demonstrating that it is an effector that enhances Pt virulence by suppressing wheat defense responses. Our findings lay a foundation for future studies on the pathogenesis of Pt during wheat-fungus interaction.
Collapse
Affiliation(s)
| | | | | | - Na Zhang
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China; (L.S.); (L.C.); (H.L.)
| | - Wenxiang Yang
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China; (L.S.); (L.C.); (H.L.)
| |
Collapse
|
8
|
Thomas PB, Kaluç N, Çavlı IN, Tuna BG. Slx5/Slx8 SUMO-targeted ubiquitin ligase deficiency shortens lifespan due to increased mutation accumulation in yeast. FEMS Microbiol Lett 2025; 372:fnae109. [PMID: 39730145 DOI: 10.1093/femsle/fnae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress. Small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) play a critical role in mediating an adaptive response to various stresses. In this study, we investigated the effect of a STUbL, Slx5/Slx8, on CLS in budding yeast. We showed that both SLX5 and SLX8 deletions accelerate chronological aging, resulting in a decreased maximum and mean lifespan. slx5Δ cells were capable of entering or maintaining a quiescent state during aging. On the other hand, aging slx5Δ and slx8Δ cells had both increased spontaneous mutation accumulation. Our data together indicate that Slx5/Slx8 STUbL is required for normal rate of aging by preventing increased spontaneous mutation accumulation during aging.
Collapse
Affiliation(s)
- Pınar B Thomas
- Department of Medical Biology and Genetics, Faculty of Medicine, Maltepe University, Istanbul, 34857, Turkey
| | - Nur Kaluç
- Department of Medical Biology, Hamidiye Faculty of Medicine, University of Health Sciences, İstanbul, 34668, Turkey
| | - Irmak N Çavlı
- Department of Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, 34820, Turkey
| | - Bilge G Tuna
- Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, 34755, Turkey
| |
Collapse
|
9
|
Brewis HT, Stirling PC, Kobor MS. Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae. PLoS Genet 2025; 21:e1011566. [PMID: 39836664 PMCID: PMC11761084 DOI: 10.1371/journal.pgen.1011566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/24/2025] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S. cerevisiae, is an evolutionarily conserved H2A histone variant that is predominantly incorporated at transcription start sites by the SWR1-complex (SWR1-C). While H2A.Z has often been implicated in transcription regulation, htz1Δ mutants exhibit minimal changes in gene expression compared to wild-type. However, given that growth defects of htz1Δ mutants are alleviated by simultaneous deletion of SWR1-C subunits, previous work examining the role of H2A.Z in gene expression regulation may be confounded by deleterious activity caused by SWR1-C when missing its H2A.Z substrate (apo-SWR1-C). Furthermore, as H2A.Z mutants only display significant growth defects in genotoxic stress conditions, a more substantive role for H2A.Z in gene expression may only be uncovered after exposure to cellular stress. To explore this possibility, we generated mRNA transcript profiles for wild-type, htz1Δ, swr1Δ, and htz1Δswr1Δ mutants before and after exposure to hydroxyurea (HU), which induces DNA replication stress. Our data showed that H2A.Z played a more prominent role in gene activation than repression during HU exposure, and its incorporation was important for proper upregulation of several HU-induced genes. We also observed that apo-SWR1-C contributed to gene expression defects in the htz1Δ mutant, particularly for genes involved in phosphate homeostasis regulation. Furthermore, mapping H2A.Z incorporation before and after treatment with HU revealed that decreases in H2A.Z enrichment at transcription start sites was correlated with, but generally not required for, the upregulation of genes during HU exposure. Together this study characterized the regulatory effects of H2A.Z incorporation during the transcriptional response to HU.
Collapse
Affiliation(s)
- Hilary T. Brewis
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C. Stirling
- Department of Medical Genetics, Terry Fox Laboratory, BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Nakatani M, Ohtani R, Umezawa K, Uchise T, Matsuo Y, Fukuta Y, Obata E, Katabuchi A, Kizaki K, Kitazume H, Ohashi M, Johzuka K, Kurata A, Uegaki K. Characterization and application of Lachancea thermotolerans isolates for sake brewing. J Biosci Bioeng 2025; 139:30-35. [PMID: 39489649 DOI: 10.1016/j.jbiosc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Non-conventional yeasts are increasingly being used in the production of fermented beverages owing to their ability to create unique and high-quality products. The yeast Lachancea thermotolerans is of great industrial significance, particularly in the production of l(+)-lactic acid, which is beneficial for acidifying wine, beer, and potentially sake. To explore its potential in sake brewing, three L. thermotolerans strains were isolated from natural environments and their physiological and fermentative characteristics were examined. The isolates surpassed the L. thermotolerans type strain (NBRC 1985) in lactic acid production under various culture conditions and exhibited comparable growth rates to that of Saccharomyces cerevisiae at 15-20 °C. Sake brewing tests using these isolates yielded approximately 3500 ppm of lactic acid, with a slightly lower production of aroma components compared to that produced by sake yeast, and an ethanol content of approximately 11-12 % was obtained. Reverse transcription-quantitative polymerase chain reaction revealed variable expression in putative lactate dehydrogenase genes depending on the culture conditions. Our findings suggest that L. thermotolerans strains can be used in sake brewing to produce unique sake.
Collapse
Affiliation(s)
- Miyu Nakatani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rina Ohtani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kiwamu Umezawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Taiyo Uchise
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yoshifumi Matsuo
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, Shiga 520-3004, Japan
| | - Yasuhisa Fukuta
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Eri Obata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Aruma Katabuchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kento Kizaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hana Kitazume
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masataka Ohashi
- Nara Prefecture Institute of Industrial Development, 129-1 Kashiwagi, Nara 630-8031, Japan
| | - Katsuki Johzuka
- Astrobiology Center, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Atsushi Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koichi Uegaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
11
|
Cooper DG, Liu S, Grunkemeyer E, Fassler JS. The Role of Med15 Sequence Features in Transcription Factor Interactions. Mol Cell Biol 2024; 45:59-78. [PMID: 39717019 DOI: 10.1080/10985549.2024.2436672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Saccharomyces cerevisiae Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles. We found that individual Med15 activities were influenced by the number of activator binding domains (ABDs) and adjacent polyglutamine tract composition. Robust Med15 activity required at least the Q1 tract and the length of that tract modulated activity in a context-dependent manner. Reduced Msn2-dependent transcriptional activation due to Med15 Q1 tract variation correlated with reduced Msn2:Med15 interaction strength, but interaction strength did not always mirror phase separation propensity. We also observed that distant glutamine tracts and Med15 phosphorylation affected the activities of the KIX domain, and interaction studies revealed that intramolecular interactions may affect some Med15-transcription factor interactions.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana, USA
| | - Shulin Liu
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Cleere MM, Gardner KH. Optogenetic Control of Phosphate-Responsive Genes Using Single-Component Fusion Proteins in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:4085-4098. [PMID: 39531032 DOI: 10.1021/acssynbio.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Blue light illumination can be detected by light-oxygen-voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here, we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionalities that they can deliver and the biological questions that can be probed.
Collapse
Affiliation(s)
- Matthew M Cleere
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
- Biochemistry, Chemistry, and Biology Ph.D. Programs, Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
13
|
Xiong L, Wang YT, Zhou MH, Takagi H, Qin J, Zhao XQ. Overexpression of arginase gene CAR1 renders yeast Saccharomyces cerevisiae acetic acid tolerance. Synth Syst Biotechnol 2024; 9:723-732. [PMID: 38882181 PMCID: PMC11178985 DOI: 10.1016/j.synbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Acetic acid is a common inhibitor present in lignocellulose hydrolysate, which inhibits the ethanol production by yeast strains. Therefore, the cellulosic ethanol industry requires yeast strains that can tolerate acetic acid stress. Here we demonstrate that overexpressing a yeast native arginase-encoding gene, CAR1, renders Saccharomyces cerevisiae acetic acid tolerance. Specifically, ethanol yield increased by 27.3% in the CAR1-overexpressing strain compared to the control strain under 5.0 g/L acetic acid stress. The global intracellular amino acid level and compositions were further analyzed, and we found that CAR1 overexpression reduced the total amino acid content in response to acetic acid stress. Moreover, the CAR1 overexpressing strain showed increased ATP level and improved cell membrane integrity. Notably, we demonstrated that the effect of CAR1 overexpression was independent of the spermidine and proline metabolism, which indicates novel mechanisms for enhancing yeast stress tolerance. Our studies also suggest that CAR1 is a novel genetic element to be used in synthetic biology of yeast for efficient production of fuel ethanol.
Collapse
Affiliation(s)
- Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Ting Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Hai Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Cleere MM, Gardner KH. Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605841. [PMID: 39131330 PMCID: PMC11312615 DOI: 10.1101/2024.08.02.605841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here, we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionalities they can deliver and biological questions that can be probed.
Collapse
Affiliation(s)
- Matthew M. Cleere
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10016
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Biochemistry, Chemistry, and Biology Ph.D. Programs, Graduate Center, City University of New York, New York, NY 10016
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
| |
Collapse
|
15
|
Yu X, Yu J, Wang D, Liu S, Wang K, Zhao M, Chen P, Wang Y, Wang Y, Zhang M. A Novel Biosynthetic Strategy for Ginsenoside Ro: Construction of a Metabolically Engineered Saccharomyces cerevisiae Strain Using a Newly Identified UGAT Gene from Panax ginseng as the Key Enzyme Gene and Optimization of Fermentation Conditions. Int J Mol Sci 2024; 25:11331. [PMID: 39457113 PMCID: PMC11509030 DOI: 10.3390/ijms252011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ginsenoside Ro, as one of the few oleanane-type ginsenosides, is well known for its unique molecular structure and biological activities. Currently, research on the biosynthesis of ginsenoside Ro is still in its early stages. Therefore, the establishment of a new ginsenoside Ro cell factory is of great significance for the in-depth development and utilization of genes related to ginsenoside Ro synthesis, as well as for the exploration of pathways to obtain ginsenoside Ro. In this study, we cloned endogenous constitutive promoters, terminators, and other genetic elements from S. cerevisiae BY4741. These elements were then sequentially assembled with the uridine diphosphate glucuronic acid transferase gene identified in our previously study (PgUGAT252645) and several other reported key enzyme genes, to construct DNA fragments used for integration into the genome of S. cerevisiae BY4741. By sequentially transferring these DNA fragments into chemically competent cells of engineering strains and conducting screening and target product detection, we successfully constructed an engineered S. cerevisiae strain (BY-Ro) for ginsenoside Ro biosynthesis using S. cerevisiae BY4741 as the host cell. Strain BY-Ro produced 253.32 μg/L of ginsenoside Ro under optimal fermentation conditions. According to subsequent measurements and calculations, this equates to 0.033 mg/g DCW, corresponding to approximately 31% of the ginsenoside Ro content found in plant samples. This study not only included a deeper investigation into the function of PgUGAT252645 but also provides a novel engineering platform for ginsenoside Ro biosynthesis.
Collapse
Affiliation(s)
- Xiaochen Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Jinghui Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Dinghui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Wang H, Hou J, Wang D, Shi H, Gong L, Lv X, Liu J. Effect of low frequency alternating magnetic field for erythritol production in Yarrowia lipolytica. Arch Microbiol 2024; 206:392. [PMID: 39230673 DOI: 10.1007/s00203-024-04115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.
Collapse
Affiliation(s)
- Hong Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiayang Hou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Dongxu Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Hu Shi
- Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Luqian Gong
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xuemeng Lv
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jinlong Liu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
17
|
Druseikis ME, Covo S. Synthetic lethality between toxic amino acids, RTG-target genes and chaperones in Saccharomyces cerevisiae. Yeast 2024; 41:549-559. [PMID: 39078098 DOI: 10.1002/yea.3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The toxicity of non-proteinogenic amino acids has been known for decades. Numerous reports describe their antimicrobial/anticancer potential. However, these molecules are often toxic to the host as well; thus, a synthetic lethality approach that reduces the dose of these toxins while maintaining toxicity can be beneficial. Here we investigate synthetic lethality between toxic amino acids, the retrograde pathway, and molecular chaperones. In Saccharomyces cerevisiae, mitochondrial retrograde (RTG) pathway activation induces transcription of RTG-target genes to replenish alpha-ketoglutarate and its downstream product glutamate; both metabolites are required for arginine and lysine biosynthesis. We previously reported that tolerance of canavanine, a toxic arginine derivative, requires an intact RTG pathway, and low-dose canavanine exposure reduces the expression of RTG-target genes. Here we show that only a few of the examined chaperone mutants are sensitive to sublethal doses of canavanine. To predict synthetic lethality potential between RTG-target genes and chaperones, we measured the expression of RTG-target genes in canavanine-sensitive and canavanine-tolerant chaperone mutants. Most RTG-target genes were induced in all chaperone mutants starved for arginine; the same trend was not observed under lysine starvation. Canavanine exposure under arginine starvation attenuated and even reversed RTG-target-gene expression in the tested chaperone mutants. Importantly, under nearly all tested genetic and pharmacological conditions, the expression of IDH1 and/or IDH2 was induced. In agreement, idh1 and idh2 mutants are sensitive to canavanine and thialysine and show synthetic growth inhibition with chaperone mutants. Overall, we show that inhibiting molecular chaperones, RTG-target genes, or both can sensitize cells to low doses of toxic amino acids.
Collapse
Affiliation(s)
- Marina E Druseikis
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Samadlouie HR, Gharanjik S, Vatandost A, Tarvigi SMG. Interrelationship among substrate utilization, metabolic productions, and housekeeping-related gene expression levels in Mortierella alpine CBS 754.68. J Microbiol Methods 2024; 223:106987. [PMID: 38960329 DOI: 10.1016/j.mimet.2024.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The impacts of Magnesium oxide nanoparticles (MgONPs) on the expression of 10 potential housekeeping genes of Mortierella alpine were assayed. Actin emerged as the good candidate when Mortierella alpine entered the death phase subsequent to the growth phase while Dihydropteridine reductase and 28 s were identified as suitable candidates when Mortierella alpine remained in the growth phase.
Collapse
Affiliation(s)
- Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Abdolah Vatandost
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Side Maryam Ghasemi Tarvigi
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
19
|
Hernández-Vásquez CI, García-García JH, Pérez-Ortega ER, Martínez-Segundo AG, Damas-Buenrostro LC, Pereyra-Alférez B. Expression patterns of Mal genes and association with differential maltose and maltotriose transport rate of two Saccharomyces pastorianus yeasts. Appl Environ Microbiol 2024; 90:e0039724. [PMID: 38975758 PMCID: PMC11267901 DOI: 10.1128/aem.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.
Collapse
Affiliation(s)
- César I. Hernández-Vásquez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Jorge H. García-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | | | | | | | - Benito Pereyra-Alférez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| |
Collapse
|
20
|
Li P, Song W, Wang Y, Li X, Wu S, Li B, Zhang C. Effects of Heterologous Expression of Genes Related L-Malic acid Metabolism in Saccharomyces uvarum on Flavor Substances Production in Wine. Foods 2024; 13:2038. [PMID: 38998544 PMCID: PMC11241653 DOI: 10.3390/foods13132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
During malolactic fermentation (MLF) of vinification, the harsh L-malic acid undergoes transformation into the milder L-lactic acid, and via decarboxylation reactions it is catalyzed by malolactic enzymes in LAB. The use of bacterial malolactic starter cultures, which usually present challenges in the industry as the suboptimal conditions after alcoholic fermentation (AF), including nutrient limitations, low temperatures, acidic pH levels, elevated alcohol, and sulfur dioxide concentrations after AF, lead to "stuck" or "sluggish" MLF and spoilage of wines. Saccharomyces uvarum has interesting oenological properties and provides a stronger aromatic intensity than Saccharomyces cerevisiae in AF. In the study, the biological pathways of deacidification were constructed in S. uvarum, which made the S. uvarum carry out the AF and MLF simultaneously, as different genes encoding malolactic enzyme (mleS or mleA), malic enzyme (MAE2), and malate permease (melP or MAE1) from Schizosaccharomyces pombe, Lactococcus lactis, Oenococcus oeni, and Lactobacillus plantarum were heterologously expressed. For further inquiry, the effect of L-malic acid metabolism on the flavor balance in wine, the related flavor substances, higher alcohols, and esters production, were detected. Of all the recombinants, the strains WYm1SN with coexpression of malate permease gene MAE1 from S. pombe and malolactic enzyme gene mleS from L. lactis and WYm1m2 with coexpression of gene MAE1 and malate permease gene MAE2 from S. pombe could reduce the L-malic acid contents to about 1 g/L, and in which the mutant WYm1SN exhibited the best effect on the flavor quality improvement.
Collapse
Affiliation(s)
- Ping Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenjun Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yumeng Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xin Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Shankai Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Bingjuan Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
21
|
Isoda T, Takeda E, Hosokawa S, Hotta-Ren S, Ohsumi Y. Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience 2024; 27:109810. [PMID: 38832010 PMCID: PMC11145338 DOI: 10.1016/j.isci.2024.109810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
The mechanisms governing autophagy of proteins and organelles have been well studied, but how other cytoplasmic components such as RNA and polysaccharides are degraded remains largely unknown. In this study, we examine autophagy of glycogen, a storage form of glucose. We find that cells accumulate glycogen in the cytoplasm during nitrogen starvation and that this carbohydrate is rarely observed within autophagosomes and autophagic bodies. However, sequestration of glycogen by autophagy is observed following prolonged nitrogen starvation. We identify a yet-uncharacterized open reading frame, Yil024c (herein Atg45), as encoding a cytosolic receptor protein that mediates autophagy of glycogen (glycophagy). Furthermore, we show that, during sporulation, Atg45 is highly expressed and is associated with an increase in glycophagy. Our results suggest that cells regulate glycophagic activity by controlling the expression level of Atg45.
Collapse
Affiliation(s)
- Takahiro Isoda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Frontier Research Center, POLA Chemical Industries, Inc, Yokohama 244-0812, Japan
| | - Eigo Takeda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Sachiko Hosokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shukun Hotta-Ren
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
22
|
Lin Y, Zhang N, Lin Y, Gao Y, Li H, Zhou C, Meng W, Qin W. Transcriptomic and metabolomic correlation analysis: effect of initial SO 2 addition on higher alcohol synthesis in Saccharomyces cerevisiae and identification of key regulatory genes. Front Microbiol 2024; 15:1394880. [PMID: 38803372 PMCID: PMC11128613 DOI: 10.3389/fmicb.2024.1394880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Higher alcohols are volatile compounds produced during alcoholic fermentation that affect the quality and safety of the final product. This study used a correlation analysis of transcriptomics and metabolomics to study the impact of the initial addition of SO2 (30, 60, and 90 mg/L) on the synthesis of higher alcohols in Saccharomyces cerevisiae EC1118a and to identify key genes and metabolic pathways involved in their metabolism. Methods Transcriptomics and metabolomics correlation analyses were performed and differentially expressed genes (DEGs) and differential metabolites were identified. Single-gene knockouts for targeting genes of important pathways were generated to study the roles of key genes involved in the regulation of higher alcohol production. Results We found that, as the SO2 concentration increased, the production of total higher alcohols showed an overall trend of first increasing and then decreasing. Multi-omics correlation analysis revealed that the addition of SO2 affected carbon metabolism (ko01200), pyruvate metabolism (ko00620), glycolysis/gluconeogenesis (ko00010), the pentose phosphate pathway (ko00030), and other metabolic pathways, thereby changing the precursor substances. The availability of SO2 indirectly affects the formation of higher alcohols. In addition, excessive SO2 affected the growth of the strain, leading to the emergence of a lag phase. We screened the ten most likely genes and constructed recombinant strains to evaluate the impact of each gene on the formation of higher alcohols. The results showed that ADH4, SER33, and GDH2 are important genes of alcohol metabolism in S. cerevisiae. The isoamyl alcohol content of the EC1118a-ADH4 strain decreased by 21.003%; The isobutanol content of the EC1118a-SER33 strain was reduced by 71.346%; and the 2-phenylethanol content of EC1118a-GDH2 strain was reduced by 25.198%. Conclusion This study lays a theoretical foundation for investigating the mechanism of initial addition of SO2 in the synthesis of higher alcohols in S. cerevisiae, uncovering DEGs and key metabolic pathways related to the synthesis of higher alcohols, and provides guidance for regulating these mechanisms.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Na Zhang
- College of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Yonghong Lin
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yinhao Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongxing Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cuixia Zhou
- College of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Wu Meng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Weishuai Qin
- College of Biology and Brewing Engineering, Taishan University, Taian, China
| |
Collapse
|
23
|
Rashid Z, Nabi A, Nabi N, Lateef I, Nisa Q, Fayaz T, Gulzar G, Bashir A, Shah MD, Zargar SM, Khan I, Nahvi AI, Itoo H, Shah RA, Padder BA. Selection of stable reference genes for qPCR expression of Colletotrichum lindemuthianum, the bean anthracnose pathogen. Fungal Biol 2024; 128:1771-1779. [PMID: 38796261 DOI: 10.1016/j.funbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Phaseolus vulgaris L., commonly known as the common bean, is a highly nutritious crop often called the "poor man's meat". However, it is susceptible to various diseases throughout the cropping season, with anthracnose caused by Colletotrichum lindemuthianum being a significant threat that leads to substantial losses. There is still a lack of understanding about the molecular basis of C. lindemuthianum pathogenicity. The first step in understanding this is to identify pathogenicity genes that express more during infection of common beans. A reverse transcription quantitative real-time PCR (qPCR) method can be used for virulence gene expression. However, this approach requires selecting appropriate reference genes to normalize relative gene expression data. Currently, there is no reference gene available for C. lindemuthianum. In this study, we selected eight candidate reference genes from the available genome of C. lindemuthianum to bridge the gap. These genes were ACT (Actin), β-tub (β-tubulin), EF (Elongation Factor), Cyt C (Cytochrome C), His H3 (Histone H3), CHS1 (Chitin synthetase), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and abfA (Alpha-l-Arabinofuranosidase A). The primers for these candidate reference genes were able to amplify cDNA only from the pathogen, demonstrating their specificity. The qPCR efficiency of the primers ranged from 80% to 103%. We analyzed the stability of gene expression in C. lindemuthianum by exposing the mycelium to nine different stress conditions. We employed algorithms, such as GeNorm, NormFinder, BestKeeper, and RefFinder tools, to identify the most stable gene. The analysis using these tools revealed that EF, GAPDH, and β-tub most stable genes, while ACT and CHS1 showed relatively low expression stability. A large number of potential effector genes have been identified through bioinformatics analysis in C. lindemuthianum. The stable genes for qPCR (EF and GAPDH) discovered in this study will aid the scientific community in determining the relative expression of C. lindemuthianum effector genes.
Collapse
Affiliation(s)
- Zainab Rashid
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Naziya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Tabia Fayaz
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Gazala Gulzar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Adfar Bashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Research Center for Residue and Quality Control Analysis, SKUAST-Kashmir, 190025, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Imran Khan
- Division of Agricultural Statistics, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Afsah Iqbal Nahvi
- Extension Training Centre, Malangpora, Pulwama, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - H Itoo
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rafiq A Shah
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
24
|
Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep 2024; 25:2071-2096. [PMID: 38565738 PMCID: PMC11014988 DOI: 10.1038/s44319-024-00113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | |
Collapse
|
25
|
Wang XQ, Yuan B, Zhang FL, Liu CG, Auesukaree C, Zhao XQ. Novel Roles of the Greatwall Kinase Rim15 in Yeast Oxidative Stress Tolerance through Mediating Antioxidant Systems and Transcriptional Regulation. Antioxidants (Basel) 2024; 13:260. [PMID: 38539794 PMCID: PMC10967648 DOI: 10.3390/antiox13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.
Collapse
Affiliation(s)
- Xue-Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| |
Collapse
|
26
|
Cautereels C, Smets J, Bircham P, De Ruysscher D, Zimmermann A, De Rijk P, Steensels J, Gorkovskiy A, Masschelein J, Verstrepen KJ. Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast. Nat Commun 2024; 15:1112. [PMID: 38326309 PMCID: PMC10850122 DOI: 10.1038/s41467-024-44997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Microbes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene. However, despite progress in metabolic modeling, the optimization of gene expression still heavily relies on trial-and-error. Here, we report an approach for in vivo, multiplexed Gene Expression Modification by LoxPsym-Cre Recombination (GEMbLeR). GEMbLeR exploits orthogonal LoxPsym sites to independently shuffle promoter and terminator modules at distinct genomic loci. This approach facilitates creation of large strain libraries, in which expression of every pathway gene ranges over 120-fold and each strain harbors a unique expression profile. When applied to the biosynthetic pathway of astaxanthin, an industrially relevant antioxidant, a single round of GEMbLeR improved pathway flux and doubled production titers. Together, this shows that GEMbLeR allows rapid and efficient gene expression optimization in heterologous biosynthetic pathways, offering possibilities for enhancing the performance of microbial cell factories.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter Bircham
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Dries De Ruysscher
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Joleen Masschelein
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium.
| |
Collapse
|
27
|
Fu W, Wang S, Ouyang Q, Luo C. A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level. Integr Biol (Camb) 2024; 16:zyae011. [PMID: 38900168 DOI: 10.1093/intbio/zyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Oxygen levels vary in the environment. Oxygen availability has a major effect on almost all organisms, and oxygen is far more than a substrate for energy production. However, less is known about related biological processes under hypoxic conditions and about the adaptations to changing oxygen concentrations. The yeast Saccharomyces cerevisiae can adapt its metabolism for growth under different oxygen concentrations and can grow even under anaerobic conditions. Therefore, we developed a microfluidic device that can generate serial, accurately controlled oxygen concentrations for single-cell studies of multiple yeast strains. This device can construct a broad range of oxygen concentrations, [O2] through on-chip gas-mixing channels from two gases fed to the inlets. Gas diffusion through thin polydimethylsiloxane (PDMS) can lead to the equilibration of [O2] in the medium in the cell culture layer under gas cover regions within 2 min. Here, we established six different and stable [O2] varying between ~0.1 and 20.9% in the corresponding layers of the device designed for multiple parallel single-cell culture of four different yeast strains. Using this device, the dynamic responses of different yeast transcription factors and metabolism-related proteins were studied when the [O2] decreased from 20.9% to serial hypoxic concentrations. We showed that different hypoxic conditions induced varying degrees of transcription factor responses and changes in respiratory metabolism levels. This device can also be used in studies of the aging and physiology of yeast under different oxygen conditions and can provide new insights into the relationship between oxygen and organisms. Integration, innovation and insight: Most living cells are sensitive to the oxygen concentration because they depend on oxygen for survival and proper cellular functions. Here, a composite microfluidic device was designed for yeast single-cell studies at a series of accurately controlled oxygen concentrations. Using this device, we studied the dynamic responses of various transcription factors and proteins to changes in the oxygen concentration. This study is the first to examine protein dynamics and temporal behaviors under different hypoxic conditions at the single yeast cell level, which may provide insights into the processes involved in yeast and even mammalian cells. This device also provides a base model that can be extended to oxygen-related biology and can acquire more information about the complex networks of organisms.
Collapse
Affiliation(s)
- Wei Fu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shujing Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
28
|
Yue Y, Wang X, Xia Z, Deng Z, Wang D, Li Y, Yin H, Li D. Bark transcriptome analyses reveals molecular mechanisms involved in tapping panel dryness occurrence and development in rubber tree (Hevea brasiliensis). Gene 2024; 892:147894. [PMID: 37832804 DOI: 10.1016/j.gene.2023.147894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Tapping panel dryness (TPD) has become the mostimportant limiting factor for increasing natural rubber yield, whereas illuminating the molecular mechanisms underlying TPD is the prerequisite for solving the problem of TPD. However, molecular mechanisms underlying TPD are largely unknown. In this study, healthy and different stages of TPD-affected rubber trees were utilized to analyze TPD for the first time. We found that the changing tendencies of key latex physiological parameters were closely related to TPD occurrence and development. To reveal the molecular mechanisms underlying TPD, we sequenced and compared bark transcriptomes among healthy rubber tree, and TPD-affected ones at initial and advanced stages. In total, 8607 genes were identified as TPD-related genes in contrast to healthy rubber tree. According to gene expression profiles, the five samples were divided into three groups including healthy rubber tree, and TPD-affected rubber tree in the initial and advanced stages, which was consistent with the stages of TPD occurrence and development. Interestingly, only asmall proportionof the TPD-related genes were constantly down- or up-regulated with TPD occurrence and development. The TPD-related genes in KEGG pathways significantly enriched were closely associated with protein metabolism, cell division and differentiation, PCD, stress responses, terpene biosynthesis, and various metabolism processes. Moreover, overexpression of HbAPX2 identified as a TPD-related gene enhanced oxidative stress tolerance in S. cerevisiae. The typical symptoms of TPD, partial or complete dry zone (no latex flow) on tapping panel, might attribute to lower IPP available for rubber biosynthesis, and downregulation of the genes in post-IPP steps of rubber biosynthesis and the genes involved in latex flow. Our results not only provide new insights into molecular mechanisms underlying TPD occurrence and development but also contribute to developing effective measures to control TPD in rubber trees.
Collapse
Affiliation(s)
- Yifan Yue
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhihui Xia
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, Hainan 570228, China.
| | - Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Difei Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yao Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, Hainan 570228, China.
| | - Han Yin
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, Hainan 570228, China.
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
29
|
Zhao Y, Coelho C, Hughes AL, Lazar-Stefanita L, Yang S, Brooks AN, Walker RSK, Zhang W, Lauer S, Hernandez C, Cai J, Mitchell LA, Agmon N, Shen Y, Sall J, Fanfani V, Jalan A, Rivera J, Liang FX, Bader JS, Stracquadanio G, Steinmetz LM, Cai Y, Boeke JD. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 2023; 186:5220-5236.e16. [PMID: 37944511 DOI: 10.1016/j.cell.2023.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/03/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sandy Yang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, the University of Edinburgh, Edinburgh EH9 3BF
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Cindy Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Yue Shen
- BGI, Shenzhen, Beishan, Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI, Shenzhen, Shenzhen 518120, China
| | - Joseph Sall
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Viola Fanfani
- School of Biological Sciences, the University of Edinburgh, Edinburgh EH9 3BF
| | - Anavi Jalan
- Department of Biology, New York University, New York, NY, USA
| | - Jordan Rivera
- Department of Biology, New York University, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, NY 11201, USA.
| |
Collapse
|
30
|
Williams TC, Kroukamp H, Xu X, Wightman EL, Llorente B, Borneman AR, Carpenter AC, Van Wyk N, Meier F, Collier TR, Espinosa MI, Daniel EL, Walker RS, Cai Y, Nevalainen HK, Curach NC, Deveson IW, Mercer TR, Johnson DL, Mitchell LA, Bader JS, Stracquadanio G, Boeke JD, Goold HD, Pretorius IS, Paulsen IT. Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects. CELL GENOMICS 2023; 3:100379. [PMID: 38020977 PMCID: PMC10667330 DOI: 10.1016/j.xgen.2023.100379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.
Collapse
Affiliation(s)
- Thomas C. Williams
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Heinrich Kroukamp
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Xin Xu
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Elizabeth L.I. Wightman
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Briardo Llorente
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
- The Australian Genome Foundry, Sydney, NSW, Australia
| | - Anthony R. Borneman
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia
- School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexander C. Carpenter
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Niel Van Wyk
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Felix Meier
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Thomas R.V. Collier
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Monica I. Espinosa
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Elizabeth L. Daniel
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Roy S.K. Walker
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Helena K.M. Nevalainen
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Natalie C. Curach
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Bioplatforms Australia, Research Park Drive, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Ira W. Deveson
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Timothy R. Mercer
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Daniel L. Johnson
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Giovanni Stracquadanio
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Hugh D. Goold
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia
| | - Isak S. Pretorius
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- The Australian Genome Foundry, Sydney, NSW, Australia
| |
Collapse
|
31
|
Duy DL, Kim N. Yeast transcription factor Msn2 binds to G4 DNA. Nucleic Acids Res 2023; 51:9643-9657. [PMID: 37615577 PMCID: PMC10570036 DOI: 10.1093/nar/gkad684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Sequences capable of forming quadruplex or G4 DNA are prevalent in the promoter regions. The transformation from canonical to non-canonical secondary structure apparently regulates transcription of a number of human genes. In the budding yeast Saccharomyces cerevisiae, we identified 37 genes with a G4 motif in the promoters including 20 genes that contain stress response element (STRE) overlapping a G4 motif. STRE is the binding site of stress response regulators Msn2 and Msn4, transcription factors belonging to the C2H2 zinc-finger protein family. We show here that Msn2 binds directly to the G4 DNA structure through its zinc-finger domain with a dissociation constant similar to that of STRE-binding and that, in a stress condition, Msn2 is enriched at G4 DNA-forming loci in the yeast genome. For a large fraction of genes with G4/STRE-containing promoters, treating with G4-ligands led to significant elevations in transcription levels. Such transcriptional elevation was greatly diminished in a msn2Δ msn4Δ background and was partly muted when the G4 motif was disrupted. Taken together, our data suggest that G4 DNA could be an alternative binding site of Msn2 in addition to STRE, and that G4 DNA formation could be an important element of transcriptional regulation in yeast.
Collapse
Affiliation(s)
- Duong Long Duy
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
32
|
Oneissi M, Cruz MR, Ramírez-Zavala B, Lindemann-Perez E, Morschhäuser J, Garsin DA, Perez JC. Host-derived reactive oxygen species trigger activation of the Candida albicans transcription regulator Rtg1/3. PLoS Pathog 2023; 19:e1011692. [PMID: 37769015 PMCID: PMC10564244 DOI: 10.1371/journal.ppat.1011692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
The signals that denote mammalian host environments and dictate the activation of signaling pathways in human-associated microorganisms are often unknown. The transcription regulator Rtg1/3 in the human fungal pathogen Candida albicans is a crucial determinant of host colonization and pathogenicity. Rtg1/3's activity is controlled, in part, by shuttling the regulator between the cytoplasm and nucleus of the fungus. The host signal(s) that Rtg1/3 respond(s) to, however, have remained unclear. Here we report that neutrophil-derived reactive oxygen species (ROS) direct the subcellular localization of this C. albicans transcription regulator. Upon engulfment of Candida cells by human or mouse neutrophils, the regulator shuttles to the fungal nucleus. Using genetic and chemical approaches to disrupt the neutrophils' oxidative burst, we establish that the oxidants produced by the NOX2 complex-but not the oxidants generated by myeloperoxidase-trigger Rtg1/3's migration to the nucleus. Furthermore, screening a collection of C. albicans kinase deletion mutants, we implicate the MKC1 signaling pathway in the ROS-dependent regulation of Rtg1/3 in this fungus. Finally, we show that Rtg1/3 contributes to C. albicans virulence in the nematode Caenorhabditis elegans in an ROS-dependent manner as the rtg1 and rtg3 mutants display virulence defects in wild-type but not in ROS deficient worms. Our findings establish NOX2-derived ROS as a key signal that directs the activity of the pleiotropic fungal regulator Rtg1/3.
Collapse
Affiliation(s)
- Mazen Oneissi
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | | | - Elena Lindemann-Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - J. Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States of America
| |
Collapse
|
33
|
Delorme-Axford E, Tasmi TA, Klionsky DJ. The Pho23-Rpd3 histone deacetylase complex regulates the yeast metabolic transcription factor Stb5. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000940. [PMID: 37692089 PMCID: PMC10492042 DOI: 10.17912/micropub.biology.000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Macroautophagy/autophagy is an essential catabolic process for maintaining homeostasis and cell survival under stressful conditions. We previously characterized the metabolic transcription factor Stb5 as a negative modulator of autophagy through its regulation of genes involved in NADPH production. However, the molecular mechanisms regulating STB5 expression are not fully characterized. Here, we identify the yeast Pho23-Rpd3 histone deacetylase complex as a transcriptional regulator of STB5 . Our work provides insight into the mechanisms modulating the metabolic transcription factor Stb5 and expands on the repertoire of genes targeted by the Pho23-Rpd3 complex.
Collapse
Affiliation(s)
| | | | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| |
Collapse
|
34
|
Lin A, Chumala P, Du Y, Ma C, Wei T, Xu X, Luo Y, Katselis GS, Xiao W. Transcriptional activation of budding yeast DDI2/3 through chemical modifications of Fzf1. Cell Biol Toxicol 2023; 39:1531-1547. [PMID: 35809138 DOI: 10.1007/s10565-022-09745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
DDI2 and DDI3 (DDI2/3) are two identical genes in Saccharomyces cerevisiae encoding cyanamide (CY) hydratase. They are not only highly induced by CY, but also by a DNA-damaging agent methyl methanesulfonate (MMS), and the regulatory mechanism is unknown. In this study, we performed a modified genome-wide genetic synthetic array screen and identified Fzf1 as a zinc-finger transcriptional activator required for CY/MMS-induced DDI2/3 expression. Fzf1 binds to a DDI2/3 promoter consensus sequence CS2 in vivo and in vitro, and this interaction was enhanced in response to the CY treatment. Indeed, experimental over production of Fzf1 alone was sufficient to induce DDI2/3 expression; however, CY and MMS treatments did not cause the accumulation or apparent alteration in migration of cellular Fzf1. To test a hypothesis that Fzf1 is activated by covalent modification of CY and MMS, we performed mass spectrometry of CY/MMS-treated Fzf1 and detected a few modified lysine residues. Amino acid substitutions of these residues revealed that Fzf1-K70A completely abolished MMS-induced and reduced CY-induced DDI2/3 expression, indicating that the Fzf1-K70 methylation activates Fzf1. This study collectively reveals a novel regulatory mechanism by which Fzf1 is activated by chemical modifications and in turn induces the expression of its target genes for detoxification.
Collapse
Affiliation(s)
- Aiyang Lin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Paulos Chumala
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Ying Du
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Chaoqun Ma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ting Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yu Luo
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
35
|
Zimmermann A, Prieto-Vivas JE, Cautereels C, Gorkovskiy A, Steensels J, Van de Peer Y, Verstrepen KJ. A Cas3-base editing tool for targetable in vivo mutagenesis. Nat Commun 2023; 14:3389. [PMID: 37296137 PMCID: PMC10256805 DOI: 10.1038/s41467-023-39087-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenesis using a Type I-E CRISPR-Cas system), a tool that allows inducible and targetable, in vivo mutagenesis of genomic loci of up to 55 kilobases. CoMuTER employs the targetable helicase Cas3, signature enzyme of the class 1 type I-E CRISPR-Cas system, fused to a cytidine deaminase to unwind and mutate large stretches of DNA at once, including complete metabolic pathways. The tool increases the number of mutations in the target region 350-fold compared to the rest of the genome, with an average of 0.3 mutations per kilobase. We demonstrate the suitability of CoMuTER for pathway optimization by doubling the production of lycopene in Saccharomyces cerevisiae after a single round of mutagenesis.
Collapse
Affiliation(s)
- Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Julian E Prieto-Vivas
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
36
|
Coyne LP, Wang X, Song J, de Jong E, Schneider K, Massa PT, Middleton FA, Becker T, Chen XJ. Mitochondrial protein import clogging as a mechanism of disease. eLife 2023; 12:e84330. [PMID: 37129366 PMCID: PMC10208645 DOI: 10.7554/elife.84330] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Mitochondrial biogenesis requires the import of >1,000 mitochondrial preproteins from the cytosol. Most studies on mitochondrial protein import are focused on the core import machinery. Whether and how the biophysical properties of substrate preproteins affect overall import efficiency is underexplored. Here, we show that protein traffic into mitochondria can be disrupted by amino acid substitutions in a single substrate preprotein. Pathogenic missense mutations in ADP/ATP translocase 1 (ANT1), and its yeast homolog ADP/ATP carrier 2 (Aac2), cause the protein to accumulate along the protein import pathway, thereby obstructing general protein translocation into mitochondria. This impairs mitochondrial respiration, cytosolic proteostasis, and cell viability independent of ANT1's nucleotide transport activity. The mutations act synergistically, as double mutant Aac2/ANT1 causes severe clogging primarily at the translocase of the outer membrane (TOM) complex. This confers extreme toxicity in yeast. In mice, expression of a super-clogger ANT1 variant led to neurodegeneration and an age-dependent dominant myopathy that phenocopy ANT1-induced human disease, suggesting clogging as a mechanism of disease. More broadly, this work implies the existence of uncharacterized amino acid requirements for mitochondrial carrier proteins to avoid clogging and subsequent disease.
Collapse
Affiliation(s)
- Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of BonnBonnGermany
| | - Ebbing de Jong
- Proteomics and Mass Spectrometry Core Facility, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Karin Schneider
- Department of Microbiology and Immunology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Paul T Massa
- Department of Microbiology and Immunology, State University of New York Upstate Medical UniversitySyracuseUnited States
- Department of Neurology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Frank A Middleton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
- Department of Neuroscience and Physiology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of BonnBonnGermany
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
- Department of Neuroscience and Physiology, State University of New York Upstate Medical UniversitySyracuseUnited States
| |
Collapse
|
37
|
Nittala PVK, Hohreiter A, Rosas Linhard E, Dohn R, Mishra S, Konda A, Divan R, Guha S, Basu A. Integration of silicon chip microstructures for in-line microbial cell lysis in soft microfluidics. LAB ON A CHIP 2023; 23:2327-2340. [PMID: 37083052 PMCID: PMC10259373 DOI: 10.1039/d2lc00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that is fabricated with microstructure arrays and embedded in a microfluidic device, which is driven by piezoelectric actuation to perform cell lysis by physically breaking microbial cell walls via micromechanical impaction. We present different silicon microarray geometries, their fabrication techniques, integration of said micropatterned silicon impactor chips into microfluidic devices, and device operation and testing on synthetic microbeads and two yeast species (S. cerevisiae and C. albicans) to evaluate their efficacy. The generalized strategy developed for integration of the micropatterned silicon impactor chip into soft microfluidic devices can serve as an important process step for a new class of hybrid silicon-polymeric devices for future cellular processing applications. The proposed integration methodology can be scalable and integrated as an in-line cell lysis tool with existing microfluidics assays.
Collapse
Affiliation(s)
- Pavani Vamsi Krishna Nittala
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Allison Hohreiter
- Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Emilio Rosas Linhard
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Ryan Dohn
- Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Suryakant Mishra
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Abhiteja Konda
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Supratik Guha
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Anindita Basu
- Department of Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
38
|
Balzarini S, Van Ende R, Voet A, Geuten K. A widely applicable and cost-effective method for specific RNA-protein complex isolation. Sci Rep 2023; 13:6898. [PMID: 37106019 PMCID: PMC10140378 DOI: 10.1038/s41598-023-34157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Although methodological advances have been made over the past years, a widely applicable, easily scalable and cost-effective procedure that can be routinely used to isolate specific ribonucleoprotein complexes (RNPs) remains elusive. We describe the "Silica-based Acidic Phase Separation (SAPS)-capture" workflow. This versatile method combines previously described techniques in a cost-effective, optimal and widely applicable protocol. The specific RNP isolation procedure is performed on a pre-purified RNP sample instead of cell lysate. This combination of protocols results in an increased RNP/bead ratio and by consequence a reduced experimental cost. To validate the method, the 18S rRNP of S. cerevisiae was captured and to illustrate its applicability we isolated the complete repertoire of RNPs in A. thaliana. The procedure we describe can provide the community with a powerful tool to advance the study of the ribonome of a specific RNA molecule in any organism or tissue type.
Collapse
Affiliation(s)
- Sam Balzarini
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Roosje Van Ende
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Arnout Voet
- Lab of biomolecular modelling and design, KU Leuven, 3001, Leuven, Belgium
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
39
|
Besleaga M, Vignolle GA, Kopp J, Spadiut O, Mach RL, Mach-Aigner AR, Zimmermann C. Evaluation of reference genes for transcript analyses in Komagataella phaffii (Pichia pastoris). Fungal Biol Biotechnol 2023; 10:7. [PMID: 36991508 DOI: 10.1186/s40694-023-00154-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
The yeast Komagataella phaffii (Pichia pastoris) is routinely used for heterologous protein expression and is suggested as a model organism for yeast. Despite its importance and application potential, no reference gene for transcript analysis via RT-qPCR assays has been evaluated to date. In this study, we searched publicly available RNASeq data for stably expressed genes to find potential reference genes for relative transcript analysis by RT-qPCR in K. phaffii. To evaluate the applicability of these genes, we used a diverse set of samples from three different strains and a broad range of cultivation conditions. The transcript levels of 9 genes were measured and compared using commonly applied bioinformatic tools.
Results
We could demonstrate that the often-used reference gene ACT1 is not very stably expressed and could identify two genes with outstandingly low transcript level fluctuations. Consequently, we suggest the two genes, RSC1, and TAF10 to be simultaneously used as reference genes in transcript analyses by RT-qPCR in K. phaffii in future RT-qPCR assays.
Conclusion
The usage of ACT1 as a reference gene in RT-qPCR analysis might lead to distorted results due to the instability of its transcript levels. In this study, we evaluated the transcript levels of several genes and found RSC1 and TAF10 to be extremely stable. Using these genes holds the promise for reliable RT-qPCR results.
Collapse
|
40
|
Pham A, Bassett S, Chen W, Da Silva NA. Assembly of Metabolons in Yeast Using Cas6-Mediated RNA Scaffolding. ACS Synth Biol 2023; 12:1164-1174. [PMID: 36920425 DOI: 10.1021/acssynbio.2c00650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cells often localize pathway enzymes in close proximity to reduce substrate loss via diffusion and to ensure that carbon flux is directed toward the desired product. To emulate this strategy for the biosynthesis of heterologous products in yeast, we have taken advantage of the highly specific Cas6-RNA interaction and the predictability of RNA hybridizations to demonstrate Cas6-mediated RNA-guided protein assembly within the yeast cytosol. The feasibility of this synthetic scaffolding technique for protein localization was first demonstrated using a split luciferase reporter system with each part fused to a different Cas6 protein. In Saccharomyces cerevisiae, the luminescence signal increased 3.6- to 20-fold when the functional RNA scaffold was also expressed. Expression of a trigger RNA, designed to prevent the formation of a functional scaffold by strand displacement, decreased the luminescence signal by nearly 2.3-fold. Temporal control was also possible, with induction of scaffold expression resulting in an up to 11.6-fold increase in luminescence after 23 h. Cas6-mediated assembly was applied to create a two-enzyme metabolon to redirect a branch of the violacein biosynthesis pathway. Localizing VioC and VioE together increased the amount of deoxyviolacein (desired) relative to prodeoxyviolacein (undesired) by 2-fold. To assess the generality of this colocalization method in other yeast systems, the split luciferase reporter system was evaluated in Kluyveromyces marxianus; RNA scaffold expression resulted in an increase in the luminescence signal of up to 1.9-fold. The simplicity and flexibility of the design suggest that this strategy can be used to create metabolons in a wide range of recombinant hosts of interest.
Collapse
Affiliation(s)
- Anhuy Pham
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-2580, United States
| | - Shane Bassett
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-2580, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Nancy A Da Silva
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-2580, United States
| |
Collapse
|
41
|
Hu ZC, Zheng CM, Tao YC, Wang SN, Wang YS, Liu ZQ, Zheng YG. Improving ATP availability by sod1 deletion with a strategy of precursor feeding enhanced S-adenosyl-L-methionine accumulation in Saccharomyces cerevisiae. Enzyme Microb Technol 2023; 164:110189. [PMID: 36586225 DOI: 10.1016/j.enzmictec.2022.110189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
S-adenosyl-L-methionine (SAM), used in diverse pharmaceutical applications, was biosynthesized from L-methionine (L-met) and adenosine triphosphate (ATP). This study aims to increase the accumulation of SAM in Saccharomyces cerevisiae by promoting ATP availability. Strain ΔSOD1 was obtained from the parent strain WT15-33 (CCTCC M 2021915) by deleting gene sod1, which improved the supply of ATP. The SAM content in strain ΔSOD1 exhibited a 22.3% improvement compared to the parent strain, which reached 93.6 mg g-1. The transformation of NADH (reduced nicotinamide adenine dinucleotide) and the relative expression of ATPase essential genes were investigated, respectively. The results showed that the lack of gene sod1 benefited the generation of ATP, which positively regulated the synthesis of SAM. Besides that, the production of SAM was further enhanced by improving substrate assimilation. With the infusion of 1.44 g L-1L-met and 0.60 g L-1 adenosine at 24 h (h) and 0 h following fermentation, the optimum medium could produce 1.54 g L-1 SAM. Based on the regulations mentioned above, the SAM concentration of strain ΔSOD1 enhanced from 7.3 g L-1 to 10.1 g L-1 in a 5-L fermenter in 118 h. This work introduces a novel idea for the biosynthesis of ATP and SAM, and the strain ΔSOD1 has the potential for industrial production.
Collapse
Affiliation(s)
- Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chui-Mu Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yun-Chao Tao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Nan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
42
|
Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
During the fermentation process, yeast cells face different stresses, and their survival and fermentation efficiency depend on their adaptation to these challenging conditions. Yeast cells must tolerate not only a single stress but also multiple simultaneous and sequential stresses. However, the adaptation and cellular response when cells are sequentially stressed are not completely understood. To explore this, we exposed a multi-stress-tolerant strain (BT0510) to different consecutive stresses to globally explore a common response, focusing on the genes induced in both stresses. Gene Ontology, pathway analyses, and common transcription factor motifs identified many processes linked to this common response. A metabolic shift to the pentose phosphate pathway, peroxisome activity, and the oxidative stress response were some of the processes found. The SYM1, STF2, and HSP genes and the transcription factors Adr1 and Usv1 may play a role in this response. This study presents a global view of the transcriptome of a multi-resistance yeast and provides new insights into the response to sequential stresses. The identified response genes can indicate future directions for the genetic engineering of yeast strains, which could improve many fermentation processes, such as those used for bioethanol production and beverages.
Collapse
|
43
|
Lola D, Kalloniati C, Dimopoulou M, Kanapitsas A, Papadopoulos G, Dorignac É, Flemetakis E, Kotseridis Y. Impact of Assimilable Nitrogen Supplementation on Saccharomyces cerevisiae Metabolic Response and Aromatic Profile of Moschofilero Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2952-2963. [PMID: 36719992 DOI: 10.1021/acs.jafc.2c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The concentration of nitrogen in must is critical to yeast fermentation efficiency and wine aroma profile. The present work determined the effect of the amount of yeast assimilable nitrogen (YAN) on fermentation kinetics, aroma production, and gene expression patterns of the wine yeast Saccharomyces cerevisiae. Fermentations were performed under two different YAN concentrations of must. Acetate esters, linalool, and nerol appeared to be clearly affected by the different YAN levels. Real-time-PCR results revealed that the genes involved in ethyl and acetate esters production recorded, in general, higher transcript levels under high nitrogen supplementation. In addition, an up-regulation of the BGL2 and EXG1 genes, which are related to terpenes production, was observed in the case of high nitrogen content and it is well corresponded to the terpenol concentration found. Our study revealed the impact of nitrogen supplementation on yeast metabolism and its importance to adjust wine's aromatic composition and sensory profile.
Collapse
Affiliation(s)
- Despina Lola
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo 12243, Greece
| | - Alexandros Kanapitsas
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Georgios Papadopoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | | | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Yorgos Kotseridis
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
44
|
Brown JI, Alibhai J, Zhu E, Frankel A. Methylarginine efflux in nutrient-deprived yeast mitigates disruption of nitric oxide synthesis. Amino Acids 2023; 55:215-233. [PMID: 36454288 DOI: 10.1007/s00726-022-03220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
Protein arginine N-methyltransferases (PRMTs) have emerged as important actors in the eukaryotic stress response with implications in human disease, aging, and cell signaling. Intracellular free methylarginines contribute to cellular stress through their interaction with nitric oxide synthase (NOS). The arginine-dependent production of nitric oxide (NO), which is strongly inhibited by methylarginines, serves as a protective small molecule against oxidative stress in eukaryotic cells. NO signaling is highly conserved between higher and lower eukaryotes, although a canonical NOS homologue has yet to be identified in yeast. Since stress signaling pathways are well conserved among eukaryotes, yeast is an ideal model organism to study the implications of PRMTs and methylarginines during stress. We sought to explore the roles and fates of methylarginines in Saccharomyces cerevisiae. We starved methyltransferase-, autophagy-, and permease-related yeast knockouts by incubating them in water and monitored methylarginine production. We found that under starvation, methylarginines are expelled from yeast cells. We found that autophagy-deficient cells have an impaired ability to efflux methylarginines, which suggests that methylarginine-containing proteins are degraded via autophagy. For the first time, we determine that yeast take up methylarginines less readily than arginine, and we show that methylarginines impact yeast NO production. This study reveals that yeast circumvent a potential methylarginine toxicity by expelling them after autophagic degradation of arginine-modified proteins.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jenah Alibhai
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Erica Zhu
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
45
|
Lignin-Modifying Enzymes in Scedosporium Species. J Fungi (Basel) 2023; 9:jof9010105. [PMID: 36675925 PMCID: PMC9861984 DOI: 10.3390/jof9010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Scedosporium species are usually soil saprophytes but some members of the genus such as S. apiospermum and S. aurantiacum have been regularly reported as causing human respiratory infections, particularly in patients with cystic fibrosis (CF). Because of their low sensitivity to almost all available antifungal drugs, a better understanding of the pathogenic mechanisms of these fungi is mandatory. Likewise, identification of the origin of the contamination of patients with CF may be helpful to propose prophylactic measures. In this aim, environmental studies were conducted demonstrating that Scedosporium species are abundant in human-made environments and associated with nutrient-rich substrates. Although their natural habitat remains unknown, there is accumulated evidence to consider them as wood-decaying fungi. This study aimed to demonstrate the ability of these fungi to utilize lignocellulose compounds, especially lignin, as a carbon source. First, the lignolytic properties of Scedosporium species were confirmed by cultural methods, and biochemical assays suggested the involvement of peroxidases and oxidases as lignin-modifying enzymes. Scedosporium genomes were then screened using tBLASTn searches. Fifteen candidate genes were identified, including four peroxidase and seven oxidase genes, and some of them were shown, by real-time PCR experiments, to be overexpressed in lignin-containing medium, thus confirming their involvement in lignin degradation.
Collapse
|
46
|
Promsuk G, Vuttipongchaikij S, Prommarit K, Suttangkakul A, Lazarus CM, Wonnapinij P, Wattana-Amorn P. Anthranilic Acid Accumulation in Saccharomyces cerevisiae Induced by Expression of a Nonribosomal Peptide Synthetase Gene from Paecilomyces cinnamomeus BCC 9616. Chembiochem 2022; 23:e202200573. [PMID: 36250803 DOI: 10.1002/cbic.202200573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Indexed: 01/25/2023]
Abstract
Heterologous expression of nrps33, a nonribosomal peptide synthetase gene, from Paecilomyces cinnamomeus BCC 9616 in Saccharomyces cerevisiae unexpectedly resulted in the accumulation of anthranilic acid, an intermediate in tryptophan biosynthesis. Based on transcriptomic and real-time quantitative polymerase chain reaction (RT-qPCR) results, expression of nrps33 affected the transcription of tryptophan biosynthesis genes especially TRP1 which is also the selectable auxotrophic marker for the expression vector used in this work. The product of nrps33 could inhibit the activity of Trp4 involved in the conversion of anthranilate to N-(5'-phosphoribosyl)anthranilate and therefore caused the accumulation of anthranilic acid. This accumulation could in turn result in down-regulation of downstream tryptophan biosynthesis genes. Anthranilic acid is typically produced by chemical synthesis and has been used as a substrate for synthesising bioactive compounds including commercial drugs; our results could provide a new biological platform for production of this compound.
Collapse
Affiliation(s)
- Gunlatida Promsuk
- Interdisciplinary Graduate Program in Bioscience Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand
- Omics Centre for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Pakorn Wattana-Amorn
- Interdisciplinary Graduate Program in Bioscience Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Department of Chemistry Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
47
|
Fouet M, Rine J. Limits to transcriptional silencing in Saccharomyces cerevisiae. Genetics 2022; 223:6887216. [PMID: 36495285 PMCID: PMC9910407 DOI: 10.1093/genetics/iyac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Mating-type switching in the budding yeast Saccharomyces cerevisiae relies on the Sir protein complex to silence HML and HMR, the two loci containing copies of the alleles of the mating type locus, MAT. Sir-based transcriptional silencing has been considered locus-specific, but the recent discovery of rare and transient escapes from silencing at HMLα2 with a sensitive assay called to question if these events extend to the whole locus. Adapting the same assay, we measured that transient silencing failures at HML were more frequent for the α2 gene than α1, similarly to their expression level in unsilenced cells. By coupling a mating assay, at HML we found that one of the two genes at that locus can be transiently expressed while the other gene is maintained silent. Thus, transient silencing loss can be a property of the gene rather than the locus. Cells lacking the SIR1 gene experience epigenetic bistability at HML and HMR. Our previous result led us to ask if HML could allow for two independent epigenetic states within the locus in a sir1Δ mutant. A simple construct using a double fluorescent reporter at HMLα1 and HMLα2 ruled out this possibility. Each HML locus displayed a single epigenetic state. We revisited the question of the correlation between the states of two HML loci in diploid cells, and showed they were independent. Finally, we determined the relative strength of gene repression achieved by Sir-based silencing with that achieved by the a1-α2 repressor.
Collapse
Affiliation(s)
- Marc Fouet
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jasper Rine
- Corresponding author: Department of Molecular and Cellular Biology, California Institute of Quantitative Biosciences, 406 Barker Hall, U.C. Berkeley, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
48
|
Zhu Y, Li J, Peng L, Meng L, Diao M, Jiang S, Li J, Xie N. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:230. [PMID: 36335407 PMCID: PMC9636795 DOI: 10.1186/s12934-022-01949-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ginsenosides are Panax plant-derived triterpenoid with wide applications in cardiovascular protection and immunity-boosting. However, the saponins content of Panax plants is fairly low, making it time-consuming and unsustainable by direct extraction. Protopanaxadiol (PPD) is a common precursor of dammarane-type saponins, and its sufficient supply is necessary for the efficient synthesis of ginsenoside. Results In this study, a combinational strategy was used for the construction of an efficient yeast cell factory for PPD production. Firstly, a PPD-producing strain was successfully constructed by modular engineering in Saccharomyces cerevisiae BY4742 at the multi-copy sites. Then, the INO2 gene, encoding a transcriptional activator of the phospholipid biosynthesis, was fine-tuned to promote the endoplasmic reticulum (ER) proliferation and improve the catalytic efficiency of ER-localized enzymes. To increase the metabolic flux of PPD, dynamic control, based on a carbon-source regulated promoter PHXT1, was introduced to repress the competition of sterols. Furthermore, the global transcription factor UPC2-1 was introduced to sterol homeostasis and up-regulate the MVA pathway, and the resulting strain BY-V achieved a PPD production of 78.13 ± 0.38 mg/g DCW (563.60 ± 1.65 mg/L). Finally, sugarcane molasses was used as an inexpensive substrate for the first time in PPD synthesis. The PPD titers reached 1.55 ± 0.02 and 15.88 ± 0.65 g/L in shake flasks and a 5-L bioreactor, respectively. To the best of our knowledge, these results were new records on PPD production. Conclusion The high-level of PPD production in this study and the successful comprehensive utilization of low-cost carbon source -sugarcane molassesindicate that the constructed yeast cell factory is an excellent candidate strain for the production of high-value-added PPD and its derivativeswith great industrial potential. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01949-4.
Collapse
Affiliation(s)
- Yuan Zhu
- grid.256609.e0000 0001 2254 5798College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004 China ,grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Jianxiu Li
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Longyun Peng
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Lijun Meng
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Mengxue Diao
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Shuiyuan Jiang
- grid.469559.20000 0000 9677 2830Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guilin, 541006 China
| | - Jianbin Li
- grid.256609.e0000 0001 2254 5798College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004 China
| | - Nengzhong Xie
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| |
Collapse
|
49
|
Zhou X, Xie J, Xu C, Cao X, Zou LH, Zhou M. Artificial optimization of bamboo Ppmar2 transposase and host factors effects on Ppmar2 transposition in yeast. FRONTIERS IN PLANT SCIENCE 2022; 13:1004732. [PMID: 36340339 PMCID: PMC9632168 DOI: 10.3389/fpls.2022.1004732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.
Collapse
|
50
|
Yang Y, Xu X, Jing Z, Ye J, Li H, Li X, Shi L, Chen M, Wang T, Xie B, Tao Y. Genome-Wide Screening and Stability Verification of the Robust Internal Control Genes for RT-qPCR in Filamentous Fungi. J Fungi (Basel) 2022; 8:jof8090952. [PMID: 36135677 PMCID: PMC9504127 DOI: 10.3390/jof8090952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In real-time quantitative PCR (RT-qPCR), internal control genes (ICGs) are crucial for normalization. This study screened 6 novel ICGs: Pre-mRNA-splicing factor cwc15 (Cwf15); ER associated DnaJ chaperone (DnaJ); E3 ubiquitin-protein ligase NEDD4 (HUL4); ATP-binding cassette, subfamily B (MDR/TAP), member 1 (VAMP); Exosome complex exonuclease DIS3/RRP44 (RNB); V-type H+-transporting ATPase sub-unit A (V-ATP) from the 22-transcriptome data of 8 filamentous fungi. The six novel ICGs are all involved in the basic biological process of cells and share the different transcription levels from high to low. In order to further verify the stability of ICGs candidates, the six novel ICGs as well as three traditional housekeeping genes: β-actin (ACTB); β-tubulin (β-TUB); glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) and the previously screened reference genes: SPRY-domain-containing protein (SPRYp); Ras-2 protein (Ras); Vacuolar protein sorting protein 26 (Vps26) were evaluated by geNorm and NormFinder statistical algorithms. RT-qPCR of 12 ICGs were performed at different developmental stages in Flammulina filiformis and under different treatment conditions in Neurospora crassa. The consistent results of the two algorithms suggested that the novel genes, RNB, V-ATP, and VAMP, showed the highest stability in F. filiformis and N. crassa. RNB, V-ATP, and VAMP have high expression stability and universal applicability and therefore have great potential as ICGs for standardized calculation in filamentous fungi. The results also provide a novel guidance for the screening stable reference genes in RT-qPCR and a wide application in gene expression analysis of filamentous fungi.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyu Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengyun Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|