1
|
Inui K, Takeuchi N, Borgil B, Shingaki M, Sugiyama S, Taniguchi T, Nishihara M, Watanabe T, Suzuki D, Motomura E, Kida T. Age and sex effects on paired-pulse suppression and prepulse inhibition of auditory evoked potentials. Front Neurosci 2024; 18:1378619. [PMID: 38655109 PMCID: PMC11035799 DOI: 10.3389/fnins.2024.1378619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Responses to a sensory stimulus are inhibited by a preceding stimulus; if the two stimuli are identical, paired-pulse suppression (PPS) occurs; if the preceding stimulus is too weak to reliably elicit the target response, prepulse inhibition (PPI) occurs. PPS and PPI represent excitability changes in neural circuits induced by the first stimulus, but involve different mechanisms and are impaired in different diseases, e.g., impaired PPS in schizophrenia and Alzheimer's disease and impaired PPI in schizophrenia and movement disorders. Therefore, these measures provide information on several inhibitory mechanisms that may have roles in clinical conditions. In the present study, PPS and PPI of the auditory change-related cortical response were examined to establish normative data on healthy subjects (35 females and 32 males, aged 19-70 years). We also investigated the effects of age and sex on PPS and PPI to clarify whether these variables need to be considered as biases. The test response was elicited by an abrupt increase in sound pressure in a continuous sound and was recorded by electroencephalography. In the PPS experiment, the two change stimuli to elicit the cortical response were a 15-dB increase from the background of 65 dB separated by 600 ms. In the PPI experiment, the prepulse and test stimuli were 2- and 10-dB increases, respectively, with an interval of 50 ms. The results obtained showed that sex exerted similar effects on the two measures, with females having stronger test responses and weaker inhibition. On the other hand, age exerted different effects: aging correlated with stronger test responses and weaker inhibition in the PPS experiment, but had no effects in the PPI experiment. The present results suggest age and sex biases in addition to normative data on PPS and PPI of auditory change-related potentials. PPS and PPI, as well as other similar paradigms, such as P50 gating, may have different and common mechanisms. Collectively, they may provide insights into the pathophysiologies of diseases with impaired inhibitory function.
Collapse
Affiliation(s)
- Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Bayasgalan Borgil
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Megumi Shingaki
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Takayasu Watanabe
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Dai Suzuki
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
2
|
Kofler M, Hallett M, Iannetti GD, Versace V, Ellrich J, Téllez MJ, Valls-Solé J. The blink reflex and its modulation - Part 1: Physiological mechanisms. Clin Neurophysiol 2024; 160:130-152. [PMID: 38102022 PMCID: PMC10978309 DOI: 10.1016/j.clinph.2023.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR. Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., depending on changes in stimulus location and probability of occurrence. Understanding the role of non-nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural circuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the International Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).
Collapse
Affiliation(s)
- Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria.
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, USA.
| | - Gian Domenico Iannetti
- University College London, United Kingdom; Italian Institute of Technology (IIT), Rome, Italy.
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Jens Ellrich
- Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| | | | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), University of Barcelona, Spain.
| |
Collapse
|
3
|
Primary somatosensory cortex sensitivity may increase upon completion of a motor task. Neurosci Lett 2023; 801:137160. [PMID: 36858306 DOI: 10.1016/j.neulet.2023.137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES The electroencephalogram and magnetic field primary somatosensory cortex (S1)-derived components are attenuated before and during motor tasks compared to the resting state, a phenomenon called gating; however, the S1 response after a motor task has not been well studied. We aimed to investigate sensory information processing immediately after motor tasks using magnetoencephalography. MATERIALS AND METHODS We investigated sensory information processing immediately after finger movement using magnetoencephalography in 14 healthy adults. Volunteers performed a simple reaction task where they were required to press a button when they received a cue. In parallel, electrical stimulation to the right index finger was applied at regular intervals to detect the magnetic brain field changes. The end of the motor task timing was defined using the event-related synchronization (ERS) appearance latency in the brain magnetic field's beta band around the primary motor cortex. The ERS appearance latency and the sensory stimuli timing applied every 500 ms were synchronized over the experimental system timeline. We examined whether there was a difference in the S1 somatosensory evoked field responses between the ERS emergence and ERS disappearance phase, focusing on the N20m-P35m peak-to-peak amplitude (N20m-P35m amplitude) value. A control experiment was also conducted in which only sensory stimulation was applied with no motor task. RESULTS The N20m-P35m mean amplitude value was significantly higher in the ERS emergence phase (15.81 nAm; standard deviation [SD], 6.54 nAm) than in the ERS disappearance phase (13.54 nAm; SD, 5.12 nAm) (p < 0.05) and the control (12.08 nAm, SD 5.61 nAm) (p = 0.013). No statistically significant differences were identified between the ERS disappearance phase and the control (p = 0.281). CONCLUSIONS The S1 sensitivity may increase rapidly after exiting from the gating influence in S1 (after completing a motor task).
Collapse
|
4
|
Takeuchi N, Fujita K, Taniguchi T, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Mechanisms of Short- and Long-Latency Sensory Suppression: Magnetoencephalography Study. Neuroscience 2023; 514:92-99. [PMID: 36435478 DOI: 10.1016/j.neuroscience.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Prepulse inhibition (PPI) is sensory suppression whose mechanism (i.e., whether PPI originates from specific inhibitory mechanisms) remains unclear. In this study, we applied the combination of short-latency PPI and long-latency paired pulse suppression in 17 healthy subjects using magnetoencephalography to investigate the mechanisms of sensory suppression. Repeats of a 25-ms pure tone without a blank at 800 Hz and 70 dB were used for a total duration of 1600 ms. To elicit change-related cortical responses, the sound pressure of two consecutive tones in this series at 1300 ms was increased to 80 dB (Test). For the conditioning stimuli, the sound pressure was increased to 73 dB at 1250 ms (Pre 1) and 80 dB at 700 ms (Pre 2). Six stimuli were randomly presented as follows: (1) Test alone, (2) Pre 1 alone, (3) Pre 1 + Test, (4) Pre 2 + Test, (5) Pre 2 + Pre 1, and (6) Pre 2 + Pre 1 + Test. The inhibitory effects of the conditioning stimuli were evaluated using N100m/P200m components. The results showed that both Pre 1 and Pre 2 significantly suppressed the Test response. Moreover, the inhibitory effects of Pre 1 and Pre 2 were additive. However, when both prepulses were present, Pre 2 significantly suppressed the Pre 1 response, suggesting that the Pre 1 response amplitude was not a determining factor for the degree of suppression. These results suggested that the suppression originated from a specific inhibitory circuit independent of the excitatory pathway.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Department of Psychiatry, Okazaki City Hospital, Okazaki 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Multidisciplinary Pain Center, Aichi Medical University, Nagakute 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| |
Collapse
|
5
|
Target Site of Prepulse Inhibition of the Trigeminal Blink Reflex in Humans. J Neurosci 2023; 43:261-269. [PMID: 36443001 PMCID: PMC9838709 DOI: 10.1523/jneurosci.1468-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the clinical significance of prepulse inhibition (PPI), the mechanisms are not well understood. Herein, we present our investigation of PPI in the R1 component of electrically induced blink reflexes. The effect of a prepulse was explored with varying prepulse test intervals (PTIs) of 20-600 ms in 4 females and 12 males. Prepulse-test combinations included the following: stimulation of the supraorbital nerve (SON)-SON [Experiment (Exp) 1], sound-sound (Exp 2), the axon of the facial nerve-SON (Exp 3), sound-SON (Exp 4), and SON-SON with a long trial-trial interval (Exp 5). Results showed that (1) leading weak SON stimulation reduced SON-induced ipsilateral R1 with a maximum effect at a PTI of 140 ms, (2) the sound-sound paradigm resulted in a U-shaped inhibition time course of the auditory startle reflex (ASR) peaking at 140 ms PTI, (3) facial nerve stimulation showed only a weak effect on R1, (4) a weak sound prepulse facilitated R1 but strongly inhibited SON-induced late blink reflexes (LateRs) with a similar U-shaped curve, and (5) LateR in Exp 5 was almost completely absent at PTIs >80 ms. These results indicate that the principal sensory nucleus is responsible for R1 PPI. Inhibition of ASR or LateR occurs at a point in the startle reflex circuit where auditory and somatosensory signals converge. Although the two inhibitions are different in location, their similar time courses suggest similar neural mechanisms. As R1 has a simple circuit and is stable, R1 PPI helps to clarify PPI mechanisms.SIGNIFICANCE STATEMENT Prepulse inhibition (PPI) is a phenomenon in which the startle response induced by a startle stimulus is suppressed by a preceding nonstartle stimulus. This study demonstrated that the R1 component of the trigeminal blink reflex shows clear PPI despite R1 generation within a circuit consisting of the trigeminal and facial nuclei, without startle reflex circuit involvement. Thus, PPI is not specific to the startle reflex. In addition, PPI of R1, the auditory startle reflex, and the trigeminal late blink reflex showed similar time courses in response to the prepulse test interval, suggesting similar mechanisms regardless of inhibition site. R1 PPI, in conjunction with other paradigms with different prepulse-test combinations, would increase understanding of the underlying mechanisms.
Collapse
|
6
|
Motomura E, Tanii H, Kawano Y, Inui K, Okada M. Catechol-O-methyltransferase (COMT) Val158Met Polymorphism and Prepulse Inhibition of the Change-related Cerebral Response. Psychiatry Res Neuroimaging 2022; 323:111484. [PMID: 35472623 DOI: 10.1016/j.pscychresns.2022.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Change-related potentials elicited by an abrupt sound feature's change are attenuated by a leading weak sound (prepulse inhibition: PPI). We investigated whether the PPI index is associated with the catechol-methyltransferase (COMT) Val158Met polymorphism (rs4680), which is involved in the metabolism of dopamine in the prefrontal cortex. Healthy subjects with normal hearing were recruited (n = 70). A train of 100-Hz clicks 650 ms in duration was used. The test stimulus was an abrupt increase in sound intensity (+10 dB) from the baseline (70 dB) provided at 400 ms after the sound onset. Three consecutive clicks at 30, 40, and 50 ms before the change's onset were greater (+3 or +5 dB) from the baseline as a prepulse. The targeting auditory evoked potential component was Change-N1 peaking approx. 130 ms after the change onset. We calculated the inhibition level as the% inhibition of the Change-N1 amplitude by a prepulse. The %PPI in the Met-carriers was significantly greater than that in the Val/Val-individuals. Our results suggest that dopamine might play a role in the PPI of the change-related response. We propose that this index has the potential to identify an intermediate phenotype in psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Tsu, Japan; Department of Health Promotion and Disease Prevention, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yasuhiro Kawano
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
7
|
Yang X, Liu L, Yang P, Ding Y, Wang C, Li L. The Effects of Attention on the Syllable-Induced Prepulse Inhibition of the Startle Reflex and Cortical EEG Responses against Energetic or Informational Masking in Humans. Brain Sci 2022; 12:brainsci12050660. [PMID: 35625046 PMCID: PMC9139428 DOI: 10.3390/brainsci12050660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
Prepulse inhibition (PPI) is the reduction in the acoustic startle reflex (ASR) when the startling stimulus (pulse) is preceded by a weaker, non-starting stimulus. This can be enhanced by facilitating selective attention to the prepulse against a noise-masking background. On the other hand, the facilitation of selective attention to a target speech can release the target speech from masking, particularly from speech informational masking. It is not clear whether attentional regulation also affects PPI in this kind of auditory masking. This study used a speech syllable as the prepulse to examine whether the masker type and perceptual spatial attention can affect the PPI or the scalp EEG responses to the prepulse in healthy younger-adult humans, and whether the ERPs evoked by the prepulse can predict the PPI intensity of the ASR. The results showed that the speech masker produced a larger masking effect than the noise masker, and the perceptual spatial separation facilitated selective attention to the prepulse, enhancing both the N1 component of the prepulse syllable and the PPI of the ASR, particularly when the masker was speech. In addition, there was no significant correlation between the PPI and ERPs under any of the conditions, but the perceptual separation-induced PPI enhancement and ERP N1P2 peak-to-peak amplitude enhancement were correlated under the speech-masking condition. Thus, the attention-mediated PPI is useful for differentiating noise energetic masking and speech informational masking, and the perceptual separation-induced release of the prepulse from informational masking is more associated with attention-mediated early cortical unmasking processing than with energetic masking. However, the processes for the PPI of the ASR and the cortical responses to the prepulse are mediated by different neural mechanisms.
Collapse
Affiliation(s)
- Xiaoqin Yang
- Collaborative Innovation Center for Brain Disorders, Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University Ministry of Science and Technology, Beijing 100069, China;
| | - Lei Liu
- Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; (L.L.); (P.Y.); (Y.D.)
| | - Pengcheng Yang
- Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; (L.L.); (P.Y.); (Y.D.)
| | - Yu Ding
- Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; (L.L.); (P.Y.); (Y.D.)
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Liang Li
- Collaborative Innovation Center for Brain Disorders, Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University Ministry of Science and Technology, Beijing 100069, China;
- Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; (L.L.); (P.Y.); (Y.D.)
- Correspondence:
| |
Collapse
|
8
|
Kawano Y, Motomura E, Inui K, Okada M. Effects of Magnitude of Leading Stimulus on Prepulse Inhibition of Auditory Evoked Cerebral Responses: An Exploratory Study. Life (Basel) 2021; 11:life11101024. [PMID: 34685395 PMCID: PMC8540560 DOI: 10.3390/life11101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
An abrupt change in a sound feature (test stimulus) elicits a specific cerebral response, which is attenuated by a weaker sound feature change (prepulse) preceding the test stimulus. As an exploratory study, we investigated whether and how the magnitude of the change of the prepulse affects the degree of prepulse inhibition (PPI). Sound stimuli were 650 ms trains of clicks at 100 Hz. The test stimulus was an abrupt sound pressure increase (by 10 dB) in the click train. Three consecutive clicks, weaker (−5 dB, −10 dB, −30 dB, or gap) than the baseline, at 30, 40, and 50 ms before the test stimulus, were used as prepulses. Magnetic responses to the ten types of stimuli (test stimulus alone, control, four types of tests with prepulses, and four types of prepulses alone) were recorded in 10 healthy subjects. The change-related N1m component, peaking at approximately 130 ms, and its PPI were investigated. The degree of PPI caused by the −5 dB prepulse was significantly weaker than that caused by other prepulses. The degree of PPI caused by further decreases in prepulse magnitude showed a plateau level between the −10 dB and gap prepulses. The results suggest that there is a physiologically significant range of sensory changes for PPI, which plays a role in the change detection for survival.
Collapse
Affiliation(s)
- Yasuhiro Kawano
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.K.); (M.O.)
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.K.); (M.O.)
- Correspondence: ; Tel.: +81-59-231-5018
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan;
| | - Motohiro Okada
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.K.); (M.O.)
| |
Collapse
|
9
|
Otsuru N, Ogawa M, Yokota H, Miyaguchi S, Kojima S, Saito K, Inukai Y, Onishi H. Auditory change-related cortical response is associated with hypervigilance to pain in healthy volunteers. Eur J Pain 2021; 26:349-355. [PMID: 34528347 PMCID: PMC9292983 DOI: 10.1002/ejp.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
Background Patients with chronic pain exhibit hypervigilance (heightened responsiveness to stimuli) to innocuous auditory stimuli as well as noxious stimuli. “Generalized hypervigilance” suggests that individuals who show heightened responsiveness to one sensory system also show hypervigilance to other modalities. However, research exploring the existence of generalized hypervigilance in healthy subjects is limited. Methods We investigated whether hypervigilance to pain is associated with auditory stimuli in healthy subjects using the pain vigilance and awareness questionnaire (PVAQ) and auditory change‐related cortical responses (ACRs). ACRs are thought to reflect a change detection system, based on preceding sensory memory. We recorded ACRs under conditions that varied in terms of the accumulation of sensory memory as follows: short‐ACR, with short preceding continuous stimuli and long‐ACR, with long preceding continuous stimuli. In addition, the attention to pain (PVAQ‐AP) and attention to changes in pain (PVAQ‐ACP) subscales were evaluated. Results Amplitudes of long‐ACR showed significant positive correlations with PVAQ‐ACP, whereas those of short‐ACR did not show any significant correlations. Conclusions Generalized hypervigilance may be observed even in healthy subjects. ACR may be a useful index to evaluate the hypervigilance state in the human brain.
Collapse
Affiliation(s)
- Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Mayu Ogawa
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
10
|
Watanabe T, Motomura E, Kawano Y, Fujii S, Hakumoto Y, Morimoto M, Nakatani K, Okada M, Inui K. Electrical field distribution of Change-N1 and its prepulse inhibition. Neurosci Lett 2021; 751:135804. [PMID: 33705935 DOI: 10.1016/j.neulet.2021.135804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
An abrupt change in a sound feature (Test) in a continuous sound elicits an auditory evoked potential, peaking at approx. 100-180 ms (Change-N1) after the change onset. Change-N1 is attenuated by a preceding weak change stimulus (Prepulse), in the phenomenon known as prepulse inhibition (PPI). In this electroencephalographic study, we compared these two indexes among scalp electrodes. Change-N1 was elicited by an abrupt 10-dB increase in sound pressure in repeats of a 70-dB click sound at 100 Hz and was recorded using 22 electrodes in 31 healthy subjects. The prepulse was a 10-dB decrease in three consecutive clicks at 30, 40, and 50 ms before the Test onset. Four stimuli (Test alone, Test with Prepulse, Prepulse alone, and background alone) were presented randomly through headphones at an even probability. The results demonstrated that: (1) Electrodes at the frontal/central midline were reconfirmed to be suitable to record Change-N1; (2) Change-N1 showed right-hemisphere predominance; (3) There was no difference in the %PPI among regions (prefrontal/frontal/central) and hemispheres (midline/left/right); and (4) the Change-N1 amplitude and its PPI at prefrontal electrodes were positively correlated with those at the frontal electrodes. These results support the use of Change-N1 and its PPI as a tool to evaluate the change detection sensitivity and inhibitory function in individuals. The use of prefrontal electrodes can be an option for a screening test.
Collapse
Affiliation(s)
- Takayasu Watanabe
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan.
| | - Yasuhiro Kawano
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Shinobu Fujii
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Yuhei Hakumoto
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Makoto Morimoto
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Kaname Nakatani
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392, Japan
| |
Collapse
|
11
|
Takeuchi N, Fujita K, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Test-retest reliability of paired pulse suppression paradigm using auditory change-related response. J Neurosci Methods 2021; 352:109087. [PMID: 33508410 DOI: 10.1016/j.jneumeth.2021.109087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Sensory suppression is an important brain function for appropriate processing of information and is known to be impaired in patients with various types of mental illness. Long latency suppression which is a paradigm using change-related cortical response with repeated paired pulses embedded in a train of conditioning pulses is a factor used to measure sensory suppression. NEW METHOD The present study assessed the test-retest reliability of long-latency suppression in latency, amplitude, and suppression rate of the P50, N100, and P200 components of auditory evoked potentials in 35 healthy adults. The sound stimulus was repeats of a 25-ms pure tone at 65 dB and 2000 ms in total duration, during which the sound pressure level was increased to 80 dB twice at 1100 ms and 1700 ms. Measurements were performed twice and the validity of the findings was evaluated using intra-class correlations. RESULTS The results showed high intra-class correlation (ICC) values (>0.7) for the amplitude of all components, except for P50 (0.44), while latency also showed high ICC values (>0.66), except for P50 (0.20). In addition, the suppression rate showed good reproducibility for the N100-P200 component (0.60). COMPARISON WITH EXISTING METHOD The method can be performed with a short inspection time of approximately 5 min and provides high ICC values. In addition, it may reflect suppression mechanisms different from those relating to existing methods. CONCLUSION These results support the use of long latency suppression as a biomarker in clinical settings.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan; Department of Psychiatry, Okazaki City Hospital, Okazaki, 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan; Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392, Japan
| |
Collapse
|
12
|
Schloemer N, Lenz M, Tegenthoff M, Dinse HR, Höffken O. Parallel modulation of intracortical excitability of somatosensory and visual cortex by the gonadal hormones estradiol and progesterone. Sci Rep 2020; 10:22237. [PMID: 33335211 PMCID: PMC7747729 DOI: 10.1038/s41598-020-79389-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
The levels of the gonadal hormones estradiol and progesterone vary throughout the menstrual cycle thereby affecting cognition, emotion, mood, and social behaviour. However, how these hormones modulate the balance of neural excitation and inhibition, which crucially regulate processing and plasticity, is not fully understood. We here used paired-pulse stimulation to investigate in healthy humans the action of low and high estradiol and progesterone on intracortical inhibition in somatosensory (SI) and visual cortex (V1). We found that paired-pulse suppression in both SI and VI depended on estradiol. During high estradiol levels, paired-pulse suppression was significantly reduced. No comparable effects were found for progesterone, presumably due to a confounding effect of estradiol. Also, no hormone level-depending effects were observed for single-pulse evoked SEPs (somatosensory evoked potentials) and VEPs (visual evoked potentials) indicating a specific hormonal action on intracortical processing. The results demonstrate that estradiol globally modulates the balance of excitation and inhibition of SI and VI cortex.
Collapse
Affiliation(s)
- Nasim Schloemer
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Melanie Lenz
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany. .,Institute for Neuroinformatik, Neural Plasticity Lab, Ruhr-University of Bochum, 44780, Bochum, Germany.
| | - Oliver Höffken
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany
| |
Collapse
|
13
|
Ku Y, Kim DY, Kwon C, Noh TS, Park MK, Lee JH, Oh SH, Kim HC, Suh MW. Effect of age on the gap-prepulse inhibition of the cortical N1-P2 complex in humans as a step towards an objective measure of tinnitus. PLoS One 2020; 15:e0241136. [PMID: 33152745 PMCID: PMC7644010 DOI: 10.1371/journal.pone.0241136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
The gap-prepulse inhibition of the acoustic startle reflex has been widely used as a behavioral method for tinnitus screening in animal studies. The cortical-evoked potential gap-induced inhibition has also been investigated in animals as well as in human subjects. The present study aimed to investigate the effect of age on the cortical N1-P2 complex in the gap-prepulse inhibition paradigm. Fifty-seven subjects, aged 20 to 68 years, without continuous tinnitus, were tested with two effective gap conditions (embedded gap of 50- or 20-ms duration). Retest sessions were performed within one month. A significant gap-induced inhibition of the N1-P2 complex was found in both gap durations. Age differently affected the inhibition, depending on gap duration. With a 50-ms gap, the inhibition decreased significantly with the increase in age. This age-inhibition relationship was not found when using a 20-ms gap. The results were reproducible in the retest session. Our findings suggest that the interaction between age and gap duration should be considered when applying the gap-induced inhibition of the cortical-evoked potential as an objective measure of tinnitus in human subjects. Further studies with tinnitus patients are warranted to identify gap duration that would minimize the effects of age and maximize the difference in the inhibition between those with and without tinnitus.
Collapse
Affiliation(s)
- Yunseo Ku
- Department of Biomedical Engineering, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Do Youn Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Chiheon Kwon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Tae Soo Noh
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Hee Chan Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Department of Biomedical Engineering, College of Medicine, Seoul, Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
14
|
Takeuchi N, Kinukawa T, Sugiyama S, Inui K, Nishihara M. Test-retest reliability of prepulse inhibition paradigm using auditory evoked potentials. Neurosci Res 2020; 170:187-194. [PMID: 32987086 DOI: 10.1016/j.neures.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Prepulse inhibition (PPI) is a neurological phenomenon in which a weak initial stimulus reduces the level of responses to a subsequent stronger stimulus. Although acoustic startle reflexes are usually used for PPI examinations, recent studies have observed similar phenomena with event-related cortical potentials. In the present study, test-retest reliability of PPI measured using auditory change-related cortical responses was assessed in 35 healthy adults. Four sound stimuli were randomly presented at an even probability; Standard, Test alone, Prepulse alone, and Test + Prepulse. The Standard stimulus was a train of 25-ms tone pulses at 70 dB for 650 ms, while for Test alone and Prepulse alone, the sound pressure was increased to 80 dB at 350 ms and 73 dB at 300 ms, respectively. Measurements were performed twice with at least 7 days separation, and validity was evaluated using intra-class correlation (ICC) for latency, amplitude, and suppression rate of the P50, N100, and P200 components. The results showed high ICC values for the latency and amplitude of nearly all components, except for response to Prepulse alone (0.3-0.6). Furthermore, ICC for suppression rate was greater than 0.5 for the peak-to-peak amplitude. Good reproducibility for N100 and P200 components was obtained with this method. The present results support the PPI paradigm as a reliable tool for clinical measurements of inhibitory functions.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Department of Psychiatry, Okazaki City Hospital, Okazaki 444-8553, Japan.
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu 501-1193, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute 480-1195, Japan; Multidisciplinary Pain Center, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
15
|
Sugiyama S, Kinukawa T, Takeuchi N, Nishihara M, Shioiri T, Inui K. Assessment of haptic memory using somatosensory change-related cortical responses. Hum Brain Mapp 2020; 41:4892-4900. [PMID: 32845051 PMCID: PMC7643370 DOI: 10.1002/hbm.25165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022] Open
Abstract
Haptic memory briefly retains somatosensory information for later use; however, how and which cortical areas are affected by haptic memory remain unclear. We used change-related cortical responses to investigate the relationship between the somatosensory cortex and haptic memory objectively. Electrical pulses, at 50 Hz with a duration of 500 ms, were randomly applied to the second, third, and fourth fingers of the right and left hands at an even probability every 800 ms. Each stimulus was labeled as D (preceded by a different side) or S (preceded by the same side). The D stimuli were further classified into 1D, 2D, and 3D, according to the number of different preceding stimuli. The S stimuli were similarly divided into 1S and 2S. The somatosensory-evoked magnetic fields obtained were divided into four components via a dipole analysis, and each component's amplitudes were measured using the source strength waveform. The results showed that the preceding event did not affect the amplitude of the earliest 20-30 ms response in the primary somatosensory cortex. However, in the subsequent three components, the cortical activity amplitude was largest in 3D, followed by 2D, 1D, and S. These results indicate that such modulatory effects occurred somewhere in the somatosensory processing pathway higher than Brodmann's area 3b. To the best of our knowledge, this is the first study to demonstrate the existence of haptic memory for somatosensory laterality and its impact on the somatosensory cortex using change-related cortical responses without contamination from peripheral effects.
Collapse
Affiliation(s)
- Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| |
Collapse
|
16
|
Fujii S, Motomura E, Inui K, Watanabe T, Hakumoto Y, Higuchi K, Kawano Y, Morimoto M, Nakatani K, Okada M. Weaker prepulse exerts stronger suppression of a change-detecting neural circuit. Neurosci Res 2020; 170:195-200. [PMID: 32702384 DOI: 10.1016/j.neures.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022]
Abstract
Change-N1 peaking 90-180 ms after changes in a sound feature of a continuous sound is clearly attenuated by a preceding change stimulus (called a "prepulse"). Here, we investigated the effects of a preceding decrease in sound pressure on the degree of inhibition of the subsequent Change-N1 amplitude. Using 100-Hz click train sounds, we obtained Change-N1s from 11 healthy volunteers. The two types of test stimuli were an abrupt 10-dB increase from the baseline (70 dB) and the insertion of a 0.45-ms inter-aural time difference in the middle of the sound. Three consecutive clicks at 30, 40, and 50 ms before the change onset that was used as a prepulse were weaker than the background by 5 or 10 dB. The Change-N1 elicited by the two test stimuli was attenuated more strongly by the weaker prepulse, which was not congruent with the theory that the inhibition of the subsequent sensory/sensory-motor processing depends on the sound pressure level of a prepulse. These results suggest that a change in any type of sound feature elicits a change-related response that is inhibited by any type of preceding change stimulus, which reflects auto-inhibition of the change-responding circuit.
Collapse
Affiliation(s)
- Shinobu Fujii
- Department of Central Laboratories, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi 480-0392, Japan
| | - Takayasu Watanabe
- Department of Central Laboratories, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Yuhei Hakumoto
- Department of Central Laboratories, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Keiichi Higuchi
- Department of Central Laboratories, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Kawano
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Makoto Morimoto
- Department of Central Laboratories, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Kaname Nakatani
- Department of Central Laboratories, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
17
|
Lee JH, Jung JY, Park I. A Gap Prepulse with a Principal Stimulus Yields a Combined Auditory Late Response. J Audiol Otol 2020; 24:149-156. [PMID: 32397012 PMCID: PMC7364191 DOI: 10.7874/jao.2019.00374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The gap prepulse inhibition of the acoustic startle response has been used to screen tinnitus in an animal model. Here, we examined changes in the auditory late response under various conditions of gap prepulse inhibition. SUBJECTS AND METHODS We recruited 19 healthy adults (5 males, 14 females) and their auditory late responses were recorded after various stimuli with or without gap prepulsing. The N1 and P2 responses were selected for analysis. The gap prepulse inhibition was estimated to determine the optimal auditory late response in the gap prepulse paradigm. RESULTS We found that the gap per se generated a response that was very similar to the response elicited by sound stimuli. This critically affected the gap associated with the maximal inhibition of the stimulus response. Among the various gap-stimulus intervals (GSIs) between the gap and principal stimulus, the GSI of 150 ms maximally inhibited the response. However, after zero padding was used to minimize artifacts after a P2 response to a gap stimulus, the differences among the GSIs disappeared. CONCLUSIONS Overall, the data suggest that both the prepulse inhibition and the gap per se should be considered when using the gap prepulse paradigm to assess tinnitus in humans.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Korea
| | - Jae Yun Jung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Korea.,Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, Korea
| | - Ilyong Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Korea.,Department of Biomedical Engineering, College of Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
18
|
Sugiyama S, Kinukawa T, Takeuchi N, Nishihara M, Shioiri T, Inui K. Change-Related Acceleration Effects on Auditory Steady State Response. Front Syst Neurosci 2019; 13:53. [PMID: 31680884 PMCID: PMC6803388 DOI: 10.3389/fnsys.2019.00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 11/18/2022] Open
Abstract
Rapid detection of sensory changes is important for survival. We have previously used change-related cortical responses to study the change detection system and found that the generation of a change-related response was based on sensory memory and comparison processes. However, it remains unclear whether change-related cortical responses reflect processing speed. In the present study, we simultaneously recorded the auditory steady-state response (ASSR) and change-related response using magnetoencephalography to investigate the acceleration effects of sensory change events. Overall, 13 healthy human subjects (four females and nine males) completed an oddball paradigm with a sudden change in sound pressure used as the test stimulus, i.e., the control stimulus was a train of 25-ms pure tones at 75 dB for 1,200 ms, whereas the 29th sound at 700 ms of the test stimulus was replaced with a 90-dB tone. Thereafter, we compared the latency of ASSR among four probabilities of test stimulus (0, 25, 75, and 100%). For both the control and test stimulus, stronger effects of acceleration on ASSR were observed when the stimulus was rarer. This finding indicates that ASSR and change-related cortical response depend on physical changes as well as sensory memory and comparison processes. ASSR was modulated without changes in peripheral inputs, and brain areas higher than the primary cortex could be involved in exerting acceleration effects. Furthermore, the reduced latency of ASSR clearly indicated that a new sensory event increased the speed of ongoing sensory processing. Therefore, changes in the latency of ASSR are a sensitive index of accelerated processing.
Collapse
Affiliation(s)
- Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
19
|
Kinukawa T, Takeuchi N, Sugiyama S, Nishihara M, Nishiwaki K, Inui K. Properties of echoic memory revealed by auditory-evoked magnetic fields. Sci Rep 2019; 9:12260. [PMID: 31439871 PMCID: PMC6706430 DOI: 10.1038/s41598-019-48796-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
We used auditory-evoked magnetic fields to investigate the properties of echoic memory. The sound stimulus was a repeated 1-ms click at 100 Hz for 500 ms, presented every 800 ms. The phase of the sound was shifted by inserting an interaural time delay of 0.49 ms to each side. Therefore, there were two sounds, lateralized to the left and right. According to the preceding sound, each sound was labeled as D (preceded by a different sound) or S (by the same sound). The D sounds were further grouped into 1D, 2D, and 3D, according to the number of preceding different sounds. The S sounds were similarly grouped to 1S and 2S. The results showed that the preceding event significantly affected the amplitude of the cortical response; although there was no difference between 1S and 2S, the amplitudes for D sounds were greater than those for S sounds. Most importantly, there was a significant amplitude difference between 1S and 1D. These results suggested that sensory memory was formed by a single sound, and was immediately replaced by new information. The constantly-updating nature of sensory memory is considered to enable it to act as a real-time monitor for new information.
Collapse
Affiliation(s)
- Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, , Gifu University, Gifu, 501-1193, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Kimitoshi Nishiwaki
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Kasugai, 480-0392, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| |
Collapse
|
20
|
Takeuchi N, Kinukawa T, Sugiyama S, Inui K, Kanemoto K, Nishihara M. Suppression of Somatosensory Evoked Cortical Responses by Noxious Stimuli. Brain Topogr 2019; 32:783-793. [PMID: 31218521 PMCID: PMC6707979 DOI: 10.1007/s10548-019-00721-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Paired-pulse suppression refers to attenuation of neural activity in response to a second stimulus and has a pivotal role in inhibition of redundant sensory inputs. Previous studies have suggested that cortical responses to a somatosensory stimulus are modulated not only by a preceding same stimulus, but also by stimulus from a different submodality. Using magnetoencephalography, we examined somatosensory suppression induced by three different conditioning stimuli. The test stimulus was a train of electrical pulses to the dorsum of the left hand at 100 Hz lasting 1500 ms. For the pulse train, the intensity of the stimulus was abruptly increased at 1200 ms. Cortical responses to the abrupt intensity change were recorded and used as the test response. Conditioning stimuli were presented at 600 ms as pure tones, either innocuous or noxious electrical stimulation to the right foot. Four stimulus conditions were used: (1) Test alone, (2) Test + auditory stimulus, (3) Test + somatosensory stimulus, and (4) Test + nociceptive stimulus. Our results showed that the amplitude of the test response was significantly smaller for conditions (3) and (4) in the secondary somatosensory cortex contralateral (cSII) and ipsilateral (iSII) to the stimulated side as compared to the response to condition (1), whereas the amplitude of the response in the primary somatosensory cortex did not differ among the conditions. The auditory stimulus did not have effects on somatosensory change-related response. These findings show that somatosensory suppression was induced by not only a conditioning stimulus of the same somatosensory submodality and the same cutaneous site to the test stimulus, but also by that of a different submodality in a remote area.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan.
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya, 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, 501-1193, Japan
| | - Koji Inui
- Aichi Human Service Center, Institute of Human Developmental Research, Kasugai, 480-0392, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazak, 444-8585, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan.,Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| |
Collapse
|
21
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. Long-latency suppression of auditory and somatosensory change-related cortical responses. PLoS One 2018; 13:e0199614. [PMID: 29944700 PMCID: PMC6019261 DOI: 10.1371/journal.pone.0199614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/29/2018] [Indexed: 11/19/2022] Open
Abstract
Sensory suppression is a mechanism that attenuates selective information. As for long-latency suppression in auditory and somatosensory systems, paired-pulse suppression, observed as 2 identical stimuli spaced by approximately 500 ms, is widely known, though its mechanism remains to be elucidated. In the present study, we investigated the relationship between auditory and somatosensory long-latency suppression of change-related cortical responses using magnetoencephalography. Somatosensory change-related responses were evoked by an abrupt increase in stimulus strength in a train of current-constant square wave pulses at 100 Hz to the left median nerve at the wrist. Furthermore, auditory change-related responses were elicited by an increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones. Binaural stimulation was used in Experiment 1, while monaural stimulation was used in Experiment 2. For both somatosensory and auditory stimuli, the conditioning and test stimuli were identical, and inserted at 2400 and 3000 ms, respectively. The results showed clear suppression of the test response in the bilateral parisylvian region, but not in the postcentral gyrus of the contralateral hemisphere in the somatosensory system. Similarly, the test response in the bilateral supratemporal plane (N100m) was suppressed in the auditory system. Furthermore, there was a significant correlation between suppression of right N100m and right parisylvian activity, suggesting that similar mechanisms are involved in both. Finally, a high test-retest reliability for suppression was seen with both modalities. Suppression revealed in the present study is considered to reflect sensory inhibition ability in individual subjects.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
- * E-mail:
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
22
|
Motomura E, Inui K, Nishihara M, Tanahashi M, Kakigi R, Okada M. Prepulse Inhibition of the Auditory Off-Response: A Magnetoencephalographic Study. Clin EEG Neurosci 2018; 49:152-158. [PMID: 28490194 DOI: 10.1177/1550059417708914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A weak preceding sound stimulus attenuates the startle response evoked by an intense sound stimulus. Like startle reflexes, change-related auditory responses are suppressed by a weak leading stimulus (ie, a prepulse). We aim to examine whether a prepulse inhibits cerebral responses to the sound offset and how the prepulse magnitude affects the degree of the prepulse inhibition (PPI). Using magnetoencephalography, we recorded the Off-P50m elicited by an offset of a train sound of 100-Hz clicks in 12 healthy subjects. A single click slightly louder (+1.5, +3, or +5 dB) than the background sound of 80 dB was inserted 50 ms before the sound offset as a prepulse. We performed a dipole source analysis of the Off-P50m, and we measured its latency and amplitude using the source strength waveforms. The origin of the Off-P50m was estimated to be the auditory cortex on both hemispheres. The Off-P50m was clearly attenuated by the prepulses, and the degree of PPI was greater with a louder prepulse. The Off-P50m is considered to be a simple change-related response, which does not overlap with a processing of incoming sounds. Thus, the Off-P50m and its PPI comprise a valuable tool for investigating the neural inhibitory system.
Collapse
Affiliation(s)
- Eishi Motomura
- 1 Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Koji Inui
- 2 Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,3 Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Makoto Nishihara
- 4 Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Megumi Tanahashi
- 1 Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryusuke Kakigi
- 3 Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Motohiro Okada
- 1 Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
23
|
Inui K, Takeuchi N, Sugiyama S, Motomura E, Nishihara M. GABAergic mechanisms involved in the prepulse inhibition of auditory evoked cortical responses in humans. PLoS One 2018; 13:e0190481. [PMID: 29298327 PMCID: PMC5752037 DOI: 10.1371/journal.pone.0190481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/17/2017] [Indexed: 11/30/2022] Open
Abstract
Despite their essential roles in signal processing in the brain, the functions of interneurons currently remain unclear in humans. We recently developed a method using the prepulse inhibition of sensory evoked cortical responses for functional measurements of interneurons. When a sensory feature is abruptly changed in a continuous sensory stimulus, change-related cortical responses are recorded using MEG. By inserting a weak change stimulus (prepulse) before the test change stimulus, it is possible to observe the inhibition of the test response. By manipulating the prepulse–test interval (PTI), several peaks appear in inhibition, suggesting the existence of temporally distinct mechanisms. We herein attempted to separate these components through the oral administration of diazepam and baclofen. The test stimulus and prepulse were an abrupt increase in sound pressure in a continuous click train of 10 and 5 dB, respectively. The results obtained showed that the inhibition at PTIs of 10 and 20 ms was significantly greater with diazepam than with the placebo administration, suggesting increased GABAA-mediated inhibition. Baclofen decreased inhibition at PTIs of 40 and 50 ms, which may have been due to the activation of GABAB autoreceptors. Therefore, the present study separated at least two inhibitory mechanisms pharmacologically.
Collapse
Affiliation(s)
- Koji Inui
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- * E-mail:
| | | | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
24
|
Chen Z, Parkkonen L, Wei J, Dong JR, Ma Y, Carlson S. Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta. Neurosci Bull 2017; 34:291-302. [PMID: 29022224 DOI: 10.1007/s12264-017-0181-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022] Open
Abstract
Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.
Collapse
Affiliation(s)
- Zuyue Chen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Espoo, Finland.
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Espoo, Finland
| | - Jingkuan Wei
- Laboratory of Primate Neurosciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jin-Run Dong
- Laboratory of Primate Neurosciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yuanye Ma
- Laboratory of Primate Neurosciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Espoo, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
25
|
Abstract
Hearing-impaired patients often encounter obstacles in communication. Not all of them wear hearing aids, citing issues with usage difficulty and discomfort in wearing. To overcome these difficulties, a new endeavor was started to improve sound intelligibility from the speaker's side. The present study objectively evaluated an intelligible-hearing (IH) loudspeaker by means of magnetoencephalography. Magnetic counterparts of mismatch negativity (MMNm) to pronunciation ('mi' and 'ni') were recorded and compared when they were transmitted from the IH loudspeaker and from a normal-hearing loudspeaker. On using the IH loudspeaker, the peak latency was found to be significantly shortened. In the case of hearing-impaired participants, marked MMNm responses were observed only when the IH loudspeaker was used. These findings suggest that improving sound intelligibility may be a supportive and rehabilitative approach for hearing-impaired patients.
Collapse
|
26
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. New paradigm for auditory paired pulse suppression. PLoS One 2017; 12:e0177747. [PMID: 28542290 PMCID: PMC5436751 DOI: 10.1371/journal.pone.0177747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Sensory gating is a mechanism of sensory processing used to prevent an overflow of irrelevant information, with some indexes, such as prepulse inhibition (PPI) and P50 suppression, often utilized for its evaluation. In addition, those are clinically important for diseases such as schizophrenia. In the present study, we investigated long-latency paired-pulse suppression of change-related cortical responses using magnetoencephalography. The test change-related response was evoked by an abrupt increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones at 65 dB. By inserting a leading change stimulus (prepulse), we observed suppression of the test response. In Experiment 1, we examined the effects of conditioning-test intervals (CTI) using a 25-ms pure tone at 80 dB as both the test and prepulse. Our results showed clear suppression of the test response peaking at a CTI of 600 ms, while maximum inhibition was approximately 30%. In Experiment 2, the effects of sound pressure on prepulse were examined by inserting prepulses 600 ms prior to the test stimulus. We found that a paired-pulse suppression greater than 25% was obtained by prepulses larger than 77 dB, i.e., 12 dB louder than the background, suggesting that long latency suppression requires a relatively strong prepulse to obtain adequate suppression, different than short-latency paired-pulse suppression reported in previous studies. In Experiment 3, we confirmed similar levels of suppression using electroencephalography. These results suggested that two identical change stimuli spaced by 600 ms were appropriate for observing the long-latency inhibition. The present method requires only a short inspection time and is non-invasive.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
27
|
Annic A, Bourriez JL, Delval A, Bocquillon P, Trubert C, Derambure P, Dujardin K. Effects of Stimulus-Driven and Goal-Directed Attention on Prepulse Inhibition of Brain Oscillations. Front Hum Neurosci 2016; 10:390. [PMID: 27524966 PMCID: PMC4965466 DOI: 10.3389/fnhum.2016.00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Prepulse inhibition (PPI) is an operational measure of sensory gating. PPI of cortical response to a startling pulse is known to be modulated by attention. With a time-frequency analysis, we sought to determine whether goal-directed and stimulus-driven attention differentially modulate inhibition of cortical oscillations elicited by a startling pulse. METHODS An electroencephalogram (EEG) was recorded in 26 healthy controls performing an active acoustic PPI paradigm. Startling stimuli were presented alone or either 400 or 1000 ms after one of three types of visual prepulse: to-be-attended (goal-directed attention), unexpected (stimulus-driven attention) or to-be-ignored (non-focused attention). We calculated the percentage PPI for the auditory event-related spectral perturbation (ERSP) of theta (4-7 Hz), alpha (8-12 Hz), beta1 (13-20 Hz) and beta2 (20-30 Hz) oscillations and changes in inter-trial coherence (ITC), a measure of phase synchronization of electroencephalographic activity. RESULTS At 400 ms: (i) PPI of the ERSP of alpha, theta and beta1 oscillation was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta2 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. At 1000 ms: (i) PPI of alpha oscillations was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta1 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. The ITC values did not vary according to the type of prepulse. CONCLUSIONS In an active PPI paradigm, stimulus-driven and goal-directed attention each have differential effects on the modulation of cortical oscillations.
Collapse
Affiliation(s)
- Agnès Annic
- University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive DisordersLille, France; Department of Clinical Neurophysiology, Lille University Medical CenterLille, France
| | - Jean-Louis Bourriez
- Department of Clinical Neurophysiology, Lille University Medical Center Lille, France
| | - Arnaud Delval
- University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive DisordersLille, France; Department of Clinical Neurophysiology, Lille University Medical CenterLille, France
| | - Perrine Bocquillon
- Department of Clinical Neurophysiology, Lille University Medical Center Lille, France
| | - Claire Trubert
- University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive Disorders Lille, France
| | - Philippe Derambure
- University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive DisordersLille, France; Department of Clinical Neurophysiology, Lille University Medical CenterLille, France
| | - Kathy Dujardin
- University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive DisordersLille, France; Department of Neurology and Movement Disorders, Lille University Medical CenterLille, France
| |
Collapse
|
28
|
Inui K, Nakagawa K, Nishihara M, Motomura E, Kakigi R. Inhibition in the Human Auditory Cortex. PLoS One 2016; 11:e0155972. [PMID: 27219470 PMCID: PMC4878756 DOI: 10.1371/journal.pone.0155972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms) prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.
Collapse
Affiliation(s)
- Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences, Japan
- * E-mail:
| | - Kei Nakagawa
- Department of Integrative Physiology, National Institute for Physiological Sciences, Japan
| | | | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Japan
| |
Collapse
|
29
|
Auditory change-related cerebral responses and personality traits. Neurosci Res 2015; 103:34-9. [PMID: 26360233 DOI: 10.1016/j.neures.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 11/24/2022]
Abstract
The rapid detection of changes in sensory information is an essential process for survival. Individual humans are thought to have their own intrinsic preattentive responsiveness to sensory changes. Here we sought to determine the relationship between auditory change-related responses and personality traits, using event-related potentials. A change-related response peaking at approximately 120 ms (Change-N1) was elicited by an abrupt decrease in sound pressure (10 dB) from the baseline (60 dB) of a continuous sound. Sixty-three healthy volunteers (14 females and 49 males) were recruited and were assessed by the Temperament and Character Inventory (TCI) for personality traits. We investigated the relationship between Change-N1 values (amplitude and latency) and each TCI dimension. The Change-N1 amplitude was positively correlated with harm avoidance scores and negatively correlated with the self-directedness scores, but not with other TCI dimensions. Since these two TCI dimensions are associated with anxiety disorders and depression, it is possible that the change-related response is affected by personality traits, particularly anxiety- or depression-related traits.
Collapse
|
30
|
Ku Y, Ahn JW, Kwon C, Suh MW, Lee JH, Oh SH, Kim HC. Gap prepulse inhibition of the auditory late response in healthy subjects. Psychophysiology 2015; 52:1511-9. [DOI: 10.1111/psyp.12507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Yunseo Ku
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul Korea
| | - Joong Woo Ahn
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul Korea
| | - Chiheon Kwon
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Korea
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University College of Medicine, Sensory Organ Research Institute, Seoul National University Biomedical Research Institute; Seoul Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Korea
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University College of Medicine, Sensory Organ Research Institute, Seoul National University Biomedical Research Institute; Seoul Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering; Medical Research Center, Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
31
|
Nakagawa K, Inui K, Yuge L, Kakigi R. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus. Neuroimage 2014; 101:416-24. [PMID: 25067817 DOI: 10.1016/j.neuroimage.2014.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/12/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways.
Collapse
Affiliation(s)
- Kei Nakagawa
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | - Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
32
|
Annic A, Bocquillon P, Bourriez JL, Derambure P, Dujardin K. Effects of stimulus-driven and goal-directed attention on prepulse inhibition of the cortical responses to an auditory pulse. Clin Neurophysiol 2013; 125:1576-88. [PMID: 24411526 DOI: 10.1016/j.clinph.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/30/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Inhibition by a prepulse (prepulse inhibition, PPI) of the response to a startling acoustic pulse is modulated by attention. We sought to determine whether goal-directed and stimulus-driven attention differentially modulate (i) PPI of the N100 and P200 components of the auditory evoked potential (AEP) and (ii) the components' generators. METHODS 128-channel electroencephalograms were recorded in 26 healthy controls performing an active acoustic PPI paradigm. Startling stimuli were presented alone or either 400 or 1000ms after a visual prepulse. Three types of prepulse were used: to-be-attended (goal-directed attention), unexpected (stimulus-driven attention) or to-be ignored (non focused attention). We calculated the percentage PPI for the N100 and P200 components of the AEP and determined cortical generators by standardized weighted low resolution tomography. RESULTS At 400ms, the PPI of the N100 was greater after an unexpected prepulse than after a to-be-attended prepulse, the PPI of the P200 was greater after a to-be-attended prepulse than after a to-be ignored prepulse. At 1000ms, to-be-attended and unexpected prepulses had similar effects. Cortical sources were modulated in areas involved in both types of attention. CONCLUSIONS Stimulus-driven attention and goal-directed attention each have specific effects on the attentional modulation of PPI. SIGNIFICANCE By using a new PPI paradigm that specifically controls attention, we demonstrated that the early stages of the gating process (as evidenced by N100) are influenced by stimulus-driven attention and that the late stages (as evidenced by P200) are influenced by goal-directed attention.
Collapse
Affiliation(s)
- Agnès Annic
- Université Lille Nord de France, EA1046 Lille, France; Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France.
| | - Perrine Bocquillon
- Université Lille Nord de France, EA1046 Lille, France; Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Jean-Louis Bourriez
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Philippe Derambure
- Université Lille Nord de France, EA1046 Lille, France; Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Kathy Dujardin
- Université Lille Nord de France, EA1046 Lille, France; Department of Neurology and Movement Disorders, Lille University Medical Center, Lille, France
| |
Collapse
|
33
|
Effects of acute nicotine on prepulse inhibition of auditory change-related cortical responses. Behav Brain Res 2013; 256:27-35. [DOI: 10.1016/j.bbr.2013.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/08/2013] [Accepted: 07/25/2013] [Indexed: 01/18/2023]
|
34
|
Inui K, Tsuruhara A, Nakagawa K, Nishihara M, Kodaira M, Motomura E, Kakigi R. Prepulse inhibition of change-related P50m no correlation with P50m gating. SPRINGERPLUS 2013; 2:588. [PMID: 24255871 PMCID: PMC3825222 DOI: 10.1186/2193-1801-2-588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
Both prepulse inhibition (PPI) of the startle response and P50 sensory gating are important tools to investigate the inhibitory mechanisms of sensory processing. However, previous studies found no or a weak association between these two measures, which may have been due to the different indexes used. We examined the relationship between P50 sensory gating and P50 PPI. P50m sensory gating and PPI of Change-related P50m were assessed in 14 subjects using magnetoencephalography. Concerning P50m sensory gating, the amplitudes of the response to the second click relative to that to the first one were reduced by 43 and 47% for the left and right hemisphere, respectively. Change-related P50m was evoked by an abrupt sound pressure increase by 10 dB in a continuous click train of 70 dB. When this test stimulus was preceded by a click (prepulse) with a weaker sound pressure increase (5 dB) at a prepulse-test interval of 30, 60, or 90 ms, Change-P50m was suppressed by 33 ~ 65% while the prepulse itself elicited no or very weak P50m responses. Although the amplitude of the P50m response to the first click and the amplitude of the Change-P50m test alone response were positively correlated (r = 0.6), the degree of the inhibition of the two measures was not (r = -0.06 ~ 0.14). The neural origin was estimated to be located in the supratemporal plane around the superior temporal gyrus or Heschl’s gyrus and did not differ between P50m and Change-P50m. The present results suggest that P50m and Change-P50m are generated by a similar group of neurons in the auditory cortex, while the mechanisms of P50m sensory gating and Change-P50m PPI are different.
Collapse
Affiliation(s)
- Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Change-related auditory P50: a MEG study. Neuroimage 2013; 86:131-7. [PMID: 23933044 DOI: 10.1016/j.neuroimage.2013.07.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 11/22/2022] Open
Abstract
Changes in continuous sounds elicit a preattentive component that peaks at around 100ms (Change-N1m) on electroencephalograms or magnetoencephalograms (MEG). Change-N1m is thought to reflect brain activity relating to the automatic detection of changes, which facilitate processes for the execution of appropriate behavior in response to new environmental events. The aim of the present MEG study was to elucidate whether a component relating to auditory changes existed earlier than N1m. Change-related cortical responses were evoked by abrupt sound movement in a train of clicks at 100Hz. Sound movement was created by inserting an interaural time delay (ITD) of 0.15, 0.25, 0.35, and 0.45ms into the right ear. Ten out of 12 participants exhibited clear change-related cortical responses earlier than Change-N1m at around 60ms (Change-P50m). The results of source analysis showed that Change-P50m originated from the superior temporal gyrus of both hemispheres and that its location did not differ significantly from dipoles for the response to the sound onset. The magnitude of Change-P50m increased and the peak latency shortened with an increase in the ITD, similar to those of Change-N1m. These results suggest that change-related cortical activity is present as early as its onset latency at around 50ms.
Collapse
|