1
|
Hidayat AS, Lefebvre KA, MacDonald J, Bammler T, Aluru N. Symptomatic and asymptomatic domoic acid exposure in zebrafish (Danio rerio) revealed distinct non-overlapping gene expression patterns in the brain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106310. [PMID: 36198224 PMCID: PMC9701550 DOI: 10.1016/j.aquatox.2022.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Domoic acid (DA) is a naturally produced neurotoxin synthesized by marine diatoms in the genus Pseudo-nitzschia. DA accumulates in filter-feeders such as shellfish, and can cause severe neurotoxicity when contaminated seafood is ingested, resulting in Amnesic Shellfish Poisoning (ASP) in humans. Overt clinical signs of neurotoxicity include seizures and disorientation. ASP is a significant public health concern, and though seafood regulations have effectively minimized the human risk of severe acute DA poisoning, the effects of exposure at asymptomatic levels are poorly understood. The objective of this study was to determine the effects of exposure to symptomatic and asymptomatic doses of DA on gene expression patterns in the zebrafish brain. We exposed adult zebrafish to either a symptomatic (1.1 ± 0.2 μg DA/g fish) or an asymptomatic (0.31 ± 0.03 µg DA/g fish) dose of DA by intracelomic injection and sampled at 24, 48 and 168 h post-injection. Transcriptional profiling was done using Agilent and Affymetrix microarrays. Our analysis revealed distinct, non-overlapping changes in gene expression between the two doses. We found that the majority of transcriptional changes were observed at 24 h post-injection with both doses. Interestingly, asymptomatic exposure produced more persistent transcriptional effects - in response to symptomatic dose exposure, we observed only one differentially expressed gene one week after exposure, compared to 26 in the asymptomatic dose at the same time (FDR <0.05). GO term analysis revealed that symptomatic DA exposure affected genes associated with peptidyl proline modification and retinoic acid metabolism. Asymptomatic exposure caused differential expression of genes that were associated with GO terms including circadian rhythms and visual system, and also the neuroactive ligand-receptor signaling KEGG pathway. Overall, these results suggest that transcriptional responses are specific to the DA dose and that asymptomatic exposure can cause long-term changes. Further studies are needed to characterize the potential downstream neurobehavioral impacts of DA exposure.
Collapse
Affiliation(s)
- Alia S Hidayat
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA, USA; Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Kathi A Lefebvre
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
| | - James MacDonald
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA, USA
| | - Theo Bammler
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA, USA
| | - Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
2
|
Petroff RL, Williams C, Li JL, MacDonald JW, Bammler TK, Richards T, English CN, Baldessari A, Shum S, Jing J, Isoherranen N, Crouthamel B, McKain N, Grant KS, Burbacher TM, Harry GJ. Prolonged, Low-Level Exposure to the Marine Toxin, Domoic Acid, and Measures of Neurotoxicity in Nonhuman Primates. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97003. [PMID: 36102641 PMCID: PMC9472675 DOI: 10.1289/ehp10923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher Williams
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Epigenetics & Stem Cell Biology Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Todd Richards
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jing Jing
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Brenda Crouthamel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Noelle McKain
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kimberly S. Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Pradhan B, Kim H, Abassi S, Ki JS. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel) 2022; 14:397. [PMID: 35737058 PMCID: PMC9229940 DOI: 10.3390/toxins14060397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Collapse
Affiliation(s)
| | | | | | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (B.P.); (H.K.); (S.A.)
| |
Collapse
|
4
|
Ayed Y, Kouidhi B, Kassim S, Bacha H. Proliferative effect of the phycotoxin domoic acid on cancer cell lines: a preliminary evaluation. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1451107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yosra Ayed
- Department of Oral Basic Science, College of Dentistry, Taibah University, Al-Madinah Al-Munawwarah, KSA
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental medicine, Monastir, Tunisia
| | - Bochra Kouidhi
- Faculty of Applied Medical Sciences Yanbu, Department of Medical Laboratory Technologies, Taibah University, Al-Madinah Al-Munawwarah, KSA
| | - Saba Kassim
- Department of Oral Basic Science, College of Dentistry, Taibah University, Al-Madinah Al-Munawwarah, KSA
| | - Hassen Bacha
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental medicine, Monastir, Tunisia
| |
Collapse
|
5
|
Abstract
It has been well-accepted that spinal cord glial responses contribute significantly to the development of neuropathic pain. Tremendous information regarding glial activities at the cellular and molecular levels has been obtained through in vitro cell culture systems. The in vitro systems utilized, mainly include primary glia derived from neonatal brain cortical tissue and immortalized cell lines. However, these systems may not reflect the characteristics of spinal cord glial cells in vivo. In order to further investigate the roles of spinal cord glial cells in the development of peripheral nerve injury-induced neuropathic pain using a culture system that better reflects the in vivo condition, our laboratory has developed a method to establish primary spinal cord mixed glial cultures from adult mice. Briefly, spinal cords are collected from adult mice and processed through papain digestion followed by myelin removal with a density-gradient medium. Single cell suspensions are cultured in complete Dulbecco's modified Eagle media (cDMEM) supplemented with 2-mercaptoethanol (2-ME) at 35.9 oC. These culture conditions were optimized specifically for the growth of mixed glial cells. Under these conditions, cells are ready to be used for experimentation between 12 - 14 d (cells are usually in log phase during this time) after the establishment of the culture (D 0) and can be kept in culture conditions up to D 21. This culture system can be used to investigate the responses of spinal cord glial cells upon stimulation with various substances and agents. Besides neuropathic pain, this system can be used to study glial responses in other diseases that involve pathological changes of spinal cord glial cells.
Collapse
Affiliation(s)
- Jennifer T Malon
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England
| | - Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England;
| |
Collapse
|
6
|
More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int J Mol Sci 2016; 17:E1447. [PMID: 27598124 PMCID: PMC5037726 DOI: 10.3390/ijms17091447] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Hemant Kumar
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Duk-Yeon Cho
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Yo-Sep Yun
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
7
|
Microglial content-dependent inhibitory effects of calcitonin gene-related peptide (CGRP) on murine retroviral infection of glial cells. J Neuroimmunol 2015; 279:64-70. [PMID: 25670002 PMCID: PMC4325278 DOI: 10.1016/j.jneuroim.2015.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
C57BL/6 (B6) mice develop peripheral neuropathy post-LP-BM5 infection, a murine model of HIV-1 infection, along with the up-regulation of select spinal cord cytokines. We investigated if calcitonin gene-related peptide (CGRP) contributed to the development of peripheral neuropathy by stimulating glial responses. An increased expression of lumbar spinal cord CGRP was observed in vivo, post-LP-BM5 infection. Consequently, in vitro CGRP co-treatments led to a microglial content-dependent attenuation of viral loads in spinal cord mixed glia infected with selected doses of LP-BM5. This inhibition was neither caused by the loss of glia nor induced via the direct inhibition of LP-BM5 by CGRP.
Collapse
|
8
|
Differential effects of domoic acid and E. coli lipopolysaccharide on tumor necrosis factor-alpha, transforming growth factor-beta1 and matrix metalloproteinase-9 release by rat neonatal microglia: evaluation of the direct activation hypothesis. Mar Drugs 2012; 5:113-35. [PMID: 18458762 PMCID: PMC2367328 DOI: 10.3390/md503113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The excitatory amino acid domoic acid is the causative agent of amnesic shellfish poisoning in humans. The in vitro effects of domoic acid on rat neonatal brain microglia were compared with E. coli lipopolysaccharide (LPS), a known activator of microglia mediator release over a 4 to 24 hour observation period. LPS [3 ng/mL] but not domoic acid [1mM] stimulated a statistically significant increase in TNF-α mRNA and protein generation. Furthermore, both LPS and domoic acid did not significantly affect TGF-β1 gene expression and protein release. Finally, an in vitro exposure of microglia to LPS resulted in statistically significant MMP-9 expression and release, thus extending and confirming our previous observations. However, in contrast, no statistically significant increase in MMP-9 expression and release was observed after domoic acid treatment. Taken together our observations do not support the hypothesis that a short term (4 to 24 hours) in vitro exposure to domoic acid, at a concentration toxic to neuronal cells, activates rat neonatal microglia and the concomitant release of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and matrix metalloproteinases-9 (MMP-9), as well as the anti-inflammatory cytokine transforming growth factor β1 (TGF-β1).
Collapse
|
9
|
Ji A, Diao H, Wang X, Yang R, Zhang J, Luo W, Cao R, Cao Z, Wang F, Cai T. n-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. Neurotoxicology 2012; 33:780-8. [DOI: 10.1016/j.neuro.2012.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/21/2012] [Accepted: 02/29/2012] [Indexed: 11/26/2022]
|
10
|
Domoic Acid-Induced Neurotoxicity Is Mainly Mediated by the AMPA/KA Receptor: Comparison between Immature and Mature Primary Cultures of Neurons and Glial Cells from Rat Cerebellum. J Toxicol 2011; 2011:543512. [PMID: 22135676 PMCID: PMC3216357 DOI: 10.1155/2011/543512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
Domoic acid (DomA) is a naturally occurring shellfish toxin that can induce brain damage in mammalians. Neonates have shown increased sensitivity to DomA-induced toxicity, and prenatal exposure has been associated with e.g. decreased brain GABA levels, and increased glutamate levels. Here, we evaluated DomA-induced toxicity in immature and mature primary cultures of neurons and glial cells from rat cerebellum by measuring the mRNA levels of selected genes. Moreover, we assessed if the induced toxicity was mediated by the activation of the AMPA/KA and/or the NMDA receptor. The expression of all studied neuronal markers was affected after DomA exposure in both immature and mature cultures. However, the mature cultures seemed to be more sensitive to the treatment, as the effects were observed at lower concentrations and at earlier time points than for the immature cultures. The DomA effects were completely prevented by the antagonist of the AMPA/KA receptor (NBQX), while the antagonist of the NMDA receptor (APV) partly blocked the DomA-induced effects. Interestingly, the DomA-induced effect was also partly prevented by the neurotransmitter GABA. DomA exposure also affected the mRNA levels of the astrocytic markers in mature cultures. These DomA-induced effects were reduced by the addition of NBQX, APV, and GABA.
Collapse
|
11
|
Osgood DP, Kenney EV, Harrington WF, Harrington JF. Excrescence of neurotransmitter glutamate from disc material has nociceptive qualities: evidence from a rat model. Spine J 2010; 10:999-1006. [PMID: 20863766 DOI: 10.1016/j.spinee.2010.07.390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/09/2010] [Accepted: 07/26/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND CONTEXT The authors have previously demonstrated that herniated human lumbar disc is rich in free glutamate from degradation of aggrecan. Prior data have suggested that free glutamate could contribute to a nociceptive state. PURPOSE Previous behavioral experiments suggested glutamate-related nociception by comparing pre- and postglutamate infusion responses only. This indirectly suggested nociceptive effects of epidural glutamate but was not a definitive evidence. Now, by using larger numbers of subjects, we have demonstrated that lumbar epidural glutamate infusion causes significant left-to-right differences in hind paw response during treatment, demonstrating more directly the focal nociceptive effects of glutamate. STUDY DESIGN Behavioral studies and immunohistochemistry were used to assess for evidence of a nociceptive state. All researchers were blinded to infusion solution. METHODS Via an implanted mini osmotic pump, the epidural space of rats was infused with 0.02 mM glutamate or normal saline for 72 hours. Signs of nociception were assessed by von Frey and plantar thermal stimulation testing and by glutamate receptor expression in the corresponding dorsal horn of the spinal cord and dorsal root ganglion. RESULTS Both von Frey mechanical and plantar thermal stimulations showed differences in hind paw reactivity depending on whether it was on the ipsilateral or contralateral side of glutamate infusion. Saline infusion had no significant behavioral effects. Dorsal horn expression of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid and N-methyl-d-aspartic acid receptors was significantly increased in glutamate-infused animals, further indicative of a nociceptive state related to glutamate infusion. CONCLUSIONS Elevated epidural glutamate concentrations caused a focal hyperesthetic state. Increased epidural glutamate concentration could be a driving force or "chemical" component of disc-related radiculopathy.
Collapse
Affiliation(s)
- Doreen P Osgood
- Department of Neurosurgical Research, Roger Williams Medical Center, Providence, RI 02908, USA
| | | | | | | |
Collapse
|
12
|
Vranyac-Tramoundanas A, Harrison JC, Clarkson AN, Kapoor M, Winburn IC, Kerr DS, Sammut IA. Domoic Acid Impairment of Cardiac Energetics. Toxicol Sci 2008; 105:395-407. [DOI: 10.1093/toxsci/kfn132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
|
14
|
Domoic acid toxicologic pathology: a review. Mar Drugs 2008; 6:180-219. [PMID: 18728725 PMCID: PMC2525487 DOI: 10.3390/md20080010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 12/29/2022] Open
Abstract
Domoic acid was identified as the toxin responsible for an outbreak of human poisoning that occurred in Canada in 1987 following consumption of contaminated blue mussels [Mytilus edulis]. The poisoning was characterized by a constellation of clinical symptoms and signs. Among the most prominent features described was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Domoic acid is produced by certain marine organisms, such as the red alga Chondria armata and planktonic diatom of the genus Pseudo-nitzschia. Since 1987, monitoring programs have been successful in preventing other human incidents of ASP. However, there are documented cases of domoic acid intoxication in wild animals and outbreaks of coastal water contamination in many regions world-wide. Hence domoic acid continues to pose a global risk to the health and safety of humans and wildlife. Several mechanisms have been implicated as mediators for the effects of domoic acid. Of particular importance is the role played by glutamate receptors as mediators of excitatory neurotransmission and the demonstration of a wide distribution of these receptors outside the central nervous system, prompting the attention to other tissues as potential target sites. The aim of this document is to provide a comprehensive review of ASP, DOM induced pathology including ultrastructural changes associated to subchronic oral exposure, and discussion of key proposed mechanisms of cell/tissue injury involved in DOM induced brain pathology and considerations relevant to food safety and human health.
Collapse
|
15
|
Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus. Mar Drugs 2008. [DOI: 10.3390/md6010025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
16
|
Gill SS, Hou Y, Ghane T, Pulido OM. Regional susceptibility to domoic acid in primary astrocyte cells cultured from the brain stem and hippocampus. Mar Drugs 2008; 6:25-38. [PMID: 18648670 PMCID: PMC2474954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/23/2008] [Accepted: 02/09/2008] [Indexed: 11/26/2022] Open
Abstract
Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk), and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-alpha, IL-Beta, IL-6, the small inducible cytokine, interferon protein 10P-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all down-regulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity.
Collapse
Affiliation(s)
- Santokh S. Gill
- Toxicology Research Division, Food Directorate, Health Products and Foods Branch, Banting Research Center, P.L. 2202D2, Tunney’s Pasture, Ottawa, ON, Canada, K1A 0L22 E-mail:
(S. G.). E-mail:
(Y. H.). E-mail:
(O. P.)
| | - Yangxun Hou
- Toxicology Research Division, Food Directorate, Health Products and Foods Branch, Banting Research Center, P.L. 2202D2, Tunney’s Pasture, Ottawa, ON, Canada, K1A 0L22 E-mail:
(S. G.). E-mail:
(Y. H.). E-mail:
(O. P.)
| | - Talat Ghane
- Department of Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Enghelab Avenue, Tehran, Iran 14174, P.O. Box: 14155/6451
| | - Olga M. Pulido
- Toxicology Research Division, Food Directorate, Health Products and Foods Branch, Banting Research Center, P.L. 2202D2, Tunney’s Pasture, Ottawa, ON, Canada, K1A 0L22 E-mail:
(S. G.). E-mail:
(Y. H.). E-mail:
(O. P.)
| |
Collapse
|
17
|
Kim SD, Yang SI, Kim HC, Shin CY, Ko KH. Inhibition of GSK-3beta mediates expression of MMP-9 through ERK1/2 activation and translocation of NF-kappaB in rat primary astrocyte. Brain Res 2007; 1186:12-20. [PMID: 17996850 DOI: 10.1016/j.brainres.2007.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 09/30/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
Glycogen synthase kinase (GSK)-3beta and extracellular signal-regulated kinase (ERK) regulate several cellular signaling pathways in common, including embryonic development, cell differentiation and apoptosis. In this study, we investigated whether GSK-3beta inhibition is involved in ERK activation, which affects the activation of NF-kappaB and induction of MMP-9 in cultured rat primary astrocytes. Here, we found that GSK-3beta inhibition using GSK-3beta inhibitor TDZD-8 increased the phosphorylation of GSK-3beta at Ser9 site as well as the phosphorylation of ERK1/2 and Akt at Ser473 site. In this condition, GSK-3beta inhibition increased MMP-9 but not MMP-2 activity in a concentration-dependent manner. In RT-PCR analysis, MMP-9 mRNA level was increased by GSK-3beta inhibition in a concentration-dependent manner. MMP-9 promoter reporter activity was similarly increased by GSK-3beta inhibition. Pretreatment of U-0126 (MEK1/2 inhibitor) completely abolished the GSK-3beta inhibition-induced phosphorylation of ERK1/2. U-0126 prevented GSK-3beta inhibition-mediated induction of MMP-9 reporter activity as well as the MMP-9 gene expression. The transcriptional activity of NF-kappaB was significantly increased by GSK-3beta inhibition, which was determined by nuclear translocation of NF-kappaB. Inhibition of ERK1/2 activity by U-0126 also completely blocked the nuclear translocation of NF-kappaB. Transfection of dominant negative plasmid (S9A) of GSK-3beta significantly decreased phosphorylation of ERK, MMP-9 expression and nuclear translocation of NF-kappaB by GSK-3beta inhibition as compared to wild type GSK-3beta. These data suggest that GSK-3beta inhibition mediates ERK1/2 activation followed by NF-kappaB activation, which directly regulates the induction of MMP-9 in rat primary astrocytes.
Collapse
Affiliation(s)
- Sun Don Kim
- Laboratory of Pharmacology, College of Pharmacy, Seoul National University, Seoul [151-742], Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Qiu S, Currás-Collazo MC. Histopathological and molecular changes produced by hippocampal microinjection of domoic acid. Neurotoxicol Teratol 2006; 28:354-62. [PMID: 16529907 DOI: 10.1016/j.ntt.2006.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 01/03/2006] [Accepted: 01/26/2006] [Indexed: 11/19/2022]
Abstract
The phytoplankton-derived neurotoxin, domoic acid (DOM), frequently causes poisoning of marine animals and poses an increasing threat to public health through contamination of seafood. In this study, we used stereotactic microinjection technique to administer varying amounts of DOM into the hippocampal CA1 region in order to examine potential histopathological changes after injection of sub-lethal concentrations to CA1 pyramidal neurons. Gross anatomical abnormalities in CA1 were observed at above 10 microM DOM (3 pmol in 0.3 microl saline). At 1mM concentration, DOM produces both ipsilateral and contralateral neuronal cell death in CA1, CA3 as well as dentate gyrus subfields. Animal behavioral changes after microinjection were similar to those observed by previous studies through systemic DOM injection. Neuronal degeneration was paralleled by reduced glutamate receptor (NR1, GluR1 and GluR6/7) immunolabeling throughout the whole hippocampal formation. Pre-injection of the AMPA/KA receptor antagonist NBQX (10 microM, 0.3 microl) blocked 1mM DOM-induced neuronal degeneration as well as behavioral symptoms. At concentrations lower than 10 microM, no histopathological changes were observed microscopically, nor were the levels of immunostaining of NR1, GluR1, GluR6/7 different. However, increased immunolabeling of autophosphorylated calcium-calmodulin-dependent kinase II (CaMKII, p-Thr286) and phosphorylated cAMP response element binding protein (CREB, p-Ser133) were observed at 24 h post-injection, suggesting that altered intracellular signal transduction mediated by GluRs might be an adaptive cellular protective mechanism against DOM-induced neurotoxicity.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Environmental Toxicology Graduate Program, University of California, Riverside, USA.
| | | |
Collapse
|
19
|
Abstract
Matrix metalloproteinases (MMPs) are matrix-degrading enzymes involved in diverse homeostatic and pathological processes. Several MMPs are expressed within the CNS and serve important normal and pathological functions during development and adulthood. An early and major pathological effect of MMP activity after cerebral ischemia is opening of the blood-brain barrier (BBB). More recent work demonstrates emerging roles for MMPs and their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), in the regulation of neuronal cell death. In addition, MMPs and TIMPs are likely to play important roles during the repair phases of cerebral ischemia, particularly during angiogenesis and reestablishment of cerebral blood flow. This review attempts to elucidate how MMPs and TIMPs may provide detrimental or beneficial actions during the injury and repair processes after cerebral ischemia. These processes will have important implications for therapies using MMP inhibitors in stroke.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Departments of Neurosciences and Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Monica Wetzel
- Departments of Neurosciences and Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Gary A Rosenberg
- Departments of Neurosciences and Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
20
|
Mayer AMS, Hamann MT. Marine pharmacology in 2001--2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:265-86. [PMID: 15919242 PMCID: PMC4928201 DOI: 10.1016/j.cca.2005.04.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/25/2022]
Abstract
During 2001--2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors' 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001--2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | |
Collapse
|
21
|
Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK. Role of microglia in central nervous system infections. Clin Microbiol Rev 2004; 17:942-64, table of contents. [PMID: 15489356 PMCID: PMC523558 DOI: 10.1128/cmr.17.4.942-964.2004] [Citation(s) in RCA: 512] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nature of microglia fascinated many prominent researchers in the 19th and early 20th centuries, and in a classic treatise in 1932, Pio del Rio-Hortega formulated a number of concepts regarding the function of these resident macrophages of the brain parenchyma that remain relevant to this day. However, a renaissance of interest in microglia occurred toward the end of the 20th century, fueled by the recognition of their role in neuropathogenesis of infectious agents, such as human immunodeficiency virus type 1, and by what appears to be their participation in other neurodegenerative and neuroinflammatory disorders. During the same period, insights into the physiological and pathological properties of microglia were gained from in vivo and in vitro studies of neurotropic viruses, bacteria, fungi, parasites, and prions, which are reviewed in this article. New concepts that have emerged from these studies include the importance of cytokines and chemokines produced by activated microglia in neurodegenerative and neuroprotective processes and the elegant but astonishingly complex interactions between microglia, astrocytes, lymphocytes, and neurons that underlie these processes. It is proposed that an enhanced understanding of microglia will yield improved therapies of central nervous system infections, since such therapies are, by and large, sorely needed.
Collapse
Affiliation(s)
- R Bryan Rock
- Neuroimmunology Laboratory, Minneapolis Medical Research Foundation, and University of Minnesota Medical School, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee WJ, Shin CY, Yoo BK, Ryu JR, Choi EY, Cheong JH, Ryu JH, Ko KH. Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 2003; 41:15-24. [PMID: 12465042 DOI: 10.1002/glia.10131] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we investigated whether the activation of protein kinase C (PKC) and extracellular signal-regulated kinase 1/2 (Erk1/2) are involved in the induction of MMP-9 in lipopolysaccharide (LPS)-stimulated primary astrocytes. The expression of MMP-9 but not MMP-2 was increased by LPS. LPS treatment induced activation of Erk1/2 within 30 min, which was dose-dependently inhibited by PD98059, a specific inhibitor of the Erk kinase (MEK). In this condition, PD98059 blocked the increase in MMP-9 protein and mRNA level as well as gelatin-digesting activity. Inhibition of PKC activity blocked the LPS-induced activation of Erk1/2 as well as MMP-9 expression. In addition, activation of PKC by phorbol myristoyl acetate (PMA) activated Erk1/2 with concomitant increase in MMP-9 production. Moreover, treatment of PD98059 dose-dependently decreased the PMA-induced MMP-9 expression. The results from the present study suggest that induction of MMP-9 by LPS in rat primary astrocytes is mediated, at least in part, by the sequential activation of PKC and Erk1/2. The Erk1/2-mediated MMP-9 induction may provide insights into the regulation of MMP-9 production in CNS, which may occur in vivo in pathological situations such as CNS inflammation.
Collapse
Affiliation(s)
- Woo Jong Lee
- Department of Pharmacology, College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|