1
|
Baisvar VS, Kushwaha B, Kumar R, Kumar MS, Singh M, Rai A, Sarkar UK. BAC-FISH Based Physical Map of Endangered Catfish Clarias magur for Chromosome Cataloguing and Gene Isolation through Positional Cloning. Int J Mol Sci 2022; 23:ijms232415958. [PMID: 36555603 PMCID: PMC9781557 DOI: 10.3390/ijms232415958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Construction of a physical chromosome map of a species is important for positional cloning, targeted marker development, fine mapping of genes, selection of candidate genes for molecular breeding, as well as understanding the genome organization. The genomic libraries in the form of bacterial artificial chromosome (BAC) clones are also a very useful resource for physical mapping and identification and isolation of full-length genes and the related cis acting elements. Some BAC-FISH based studies reported in the past were gene based physical chromosome maps of Clarias magur (magur) to understand the genome organization of the species and to establish the relationships with other species in respect to genes' organization and evolution in the past. In the present study, we generated end sequences of the BAC clones and analyzed those end sequences within the scaffolds of the draft genome of magur to identify and map the genes bioinformatically for each clone. A total of 36 clones mostly possessing genes were identified and used in probe construction and their subsequent hybridization on the metaphase chromosomes of magur. This study successfully mapped all 36 specific clones on 16 chromosome pairs, out of 25 pairs of magur chromosomes. These clones are now recognized as chromosome-specific makers, which are an aid in individual chromosome identification and fine assembly of the genome sequence, and will ultimately help in developing anchored genes' map on the chromosomes of C. magur for understanding their organization, inheritance of important fishery traits and evolution of magur with respect to channel catfish, zebrafish and other species.
Collapse
Affiliation(s)
- Vishwamitra Singh Baisvar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Basdeo Kushwaha
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Ravindra Kumar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
- Correspondence:
| | - Murali Sanjeev Kumar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Mahender Singh
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR—Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Uttam Kumar Sarkar
- ICAR—National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, India
| |
Collapse
|
2
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
3
|
Patil PG, Singh NV, Bohra A, Raghavendra KP, Mane R, Mundewadikar DM, Babu KD, Sharma J. Comprehensive Characterization and Validation of Chromosome-Specific Highly Polymorphic SSR Markers From Pomegranate ( Punica granatum L.) cv. Tunisia Genome. FRONTIERS IN PLANT SCIENCE 2021; 12:645055. [PMID: 33796127 PMCID: PMC8007985 DOI: 10.3389/fpls.2021.645055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
The simple sequence repeat (SSR) survey of 'Tunisia' genome (296.85 Mb) identified a total of 365,279 perfect SSRs spanning eight chromosomes, with a mean marker density of 1,230.6 SSRs/Mb. We found a positive trend in chromosome length and the SSR abundance as marker density enhanced with a shorter chromosome length. The highest number of SSRs (60,708) was mined from chromosome 1 (55.56 Mb), whereas the highest marker density (1,294.62 SSRs/Mb) was recorded for the shortest chromosome 8 (27.99 Mb). Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. Across the eight chromosomes, the class III had maximum number of SSR motifs (301,684, 82.59%), followed by the class II (31,056, 8.50%) and the class I (5,003, 1.37%). Examination of the distribution of SSR motif types within a chromosome suggested the abundance of hexanucleotide repeats in each chromosome followed by dinucleotides, and these results are consistent with 'Tunisia' genome features as a whole. Concerning major repeat types, AT/AG was the most frequent (14.16%), followed by AAAAAT/AAAAAG (7.89%), A/C (7.54%), AAT/AAG (5.23%), AAAT/AAAG (4.37%), and AAAAT/AAAAG (1.2%) types. We designed and validated a total of 3,839 class I SSRs in the 'Tunisia' genome through electronic polymerase chain reaction (ePCR) and found 1,165 (30.34%) SSRs producing a single amplicon. Then, we selected 906 highly variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across multiple draft genomes of pomegranate, which provided us a subset of 265 highly polymorphic SSRs. Of these, 235 primers were validated on six pomegranate genotypes through wet-lab experiment. We found 221 (94%) polymorphic SSRs on six genotypes, and 187 of these SSRs had ≥ 0.5 PIC values. The utility of the developed SSRs was demonstrated by analyzing genetic diversity of 30 pomegranate genotypes using 16 HvSSRs spanning eight pomegranate chromosomes. In summary, we developed a comprehensive set of highly polymorphic genome-wide SSRs. These chromosome-specific SSRs will serve as a powerful genomic tool to leverage future genetic studies, germplasm management, and genomics-assisted breeding in pomegranate.
Collapse
Affiliation(s)
- Prakash Goudappa Patil
- ICAR-National Research Centre on Pomegranate, Solapur, India
- *Correspondence: Prakash Goudappa Patil,
| | | | | | | | - Rushikesh Mane
- ICAR-National Research Centre on Pomegranate, Solapur, India
| | | | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate, Solapur, India
| |
Collapse
|
4
|
Naik A, Mishra SK, Nag A, Soren GK, Panda AK, Panda SK, Panigrahi J. Cross-genera amplification of Cajanus spp. specific SSR markers in Clitoria ternatea (L.) and their application in genetic diversity studies. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2371-2390. [PMID: 33424153 PMCID: PMC7772131 DOI: 10.1007/s12298-020-00907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Clitoria ternatea (L.) is a medicinal leguminous plant and is cultivated to cater the need of herbal industries and asthetic purposes. The unavailability of steady molecular marker impedes the genetic improvement of C. ternatea. In the present study, transferability of 98 pairs of Cajanus spp. specific SSR primers were assessed among 14 genotypes of C. ternatea, varied for their flower color, floral architecture and bio-metabolite (taraxerol and delphinidin) content, and out of them 43 had successfully amplified the fragments. Among them, 36 pairs of primers showed 100% transferability, whereas rest seven varied from 42.86 to 92.85% transferability. The transferable 43 pairs of SSR primers generated 196 alleles across the 14 genotypes and the AMOVA analysis showed moderate genetic variation (55.1%) among the genotypes of C. ternatea, which was also reinforced by Nei's genetic distance and gene identity estimates derived haplotype matrix. Similarly, both the principal coordinate analysis and dendrogram grouped these 14 genotypes of C. ternatea into two major clusters based on SSR allele distribution and frequency, and the clustering pattern is in accordance with petal color but in contrast to floral architecture. MCheza based outlier analysis revealed 16 alleles for balancing selection, which are putatively involved in the maintenance of genetic polymorphism in C. ternatea. Moreover, the estimates of molecular diversity and bio-metabolite content revealed the possible use of these genotypes in future breeding programme of this species.
Collapse
Affiliation(s)
- Aparupa Naik
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
| | - Sujit K. Mishra
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| | - Atul Nag
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
| | - Gopal K. Soren
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
| | - Aditya K. Panda
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
| | - Sanjib K. Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817 India
| | - Jogeswar Panigrahi
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
| |
Collapse
|
5
|
Kimaro D, Melis R, Sibiya J, Shimelis H, Shayanowako A. Analysis of Genetic Diversity and Population Structure of Pigeonpea [ Cajanus cajan (L.) Millsp] Accessions Using SSR Markers. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1643. [PMID: 33255572 PMCID: PMC7761286 DOI: 10.3390/plants9121643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022]
Abstract
Understanding the genetic diversity present amongst crop genotypes is an efficient utilization of germplasm for genetic improvement. The present study was aimed at evaluating genetic diversity and population structure of 48 pigeonpea genotypes from four populations collected from diverse sources. The 48 pigeonpea entries were genotyped using 33 simple sequence repeat (SSR) markers that are polymorphic to assess molecular genetic diversity and genetic relatedness. The informative marker combinations revealed a total of 155 alleles at 33 loci, with an average of 4.78 alleles detected per marker with the mean polymorphic information content (PIC) value of 0.46. Population structure analysis using model based revealed that the germplasm was grouped into two subpopulations. The analysis of molecular variance (AMOVA) revealed that 53.3% of genetic variation existed within individuals. Relatively low population differentiation was recorded amongst the test populations indicated by the mean fixation index (Fst) value of 0.032. The Tanzanian pigeonpea germplasm collection was grouped into three major clusters. The clustering pattern revealed a lack of relationship between geographic origin and genetic diversity. This study provides a foundation for the selection of parental material for genetic improvement.
Collapse
Affiliation(s)
- Didas Kimaro
- African Centre for Crop Improvement, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (R.M.); (J.S.); (H.S.); (A.S.)
- Dakawa Centre, Tanzania Agricultural Research Institute, P.O. Box, Morogoro 1892, Tanzania
| | - Rob Melis
- African Centre for Crop Improvement, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (R.M.); (J.S.); (H.S.); (A.S.)
| | - Julia Sibiya
- African Centre for Crop Improvement, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (R.M.); (J.S.); (H.S.); (A.S.)
| | - Hussein Shimelis
- African Centre for Crop Improvement, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (R.M.); (J.S.); (H.S.); (A.S.)
| | - Admire Shayanowako
- African Centre for Crop Improvement, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (R.M.); (J.S.); (H.S.); (A.S.)
| |
Collapse
|
6
|
Mapping QTL for important seed traits in an interspecific F2 population of pigeonpea. 3 Biotech 2020; 10:434. [PMID: 32999812 DOI: 10.1007/s13205-020-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022] Open
Abstract
Seed traits present important breeding targets for enhancing grain yield and quality in various grain legume crops including pigeonpea. The present study reports significant genetic variation for six seed traits including seed length (SL), seed width (SW), seed thickness (ST), seed weight (SWT), electrical conductivity (EC) and water uptake (WU) among Cajanus cajan (L.) Millspaugh acc. ICPL 20340 and Cajanus scarabaeoides (L.) Thouars acc. ICP 15739 and an F2 population derived from this interspecific cross. Maximum phenotypic values recorded for the F2 population were higher than observed in the parent ICPL 20340 [F2 max vs ICPL 20340: SW (7.05 vs 5.38), ST (4.63 vs 4.51), EC (65.17 vs 9.72), WU (213.17 vs 109.5)], which suggested contribution of positive alleles from the wild parent, ICP 15739. Concurrently, to identify the QTL controlling these seed traits, we assayed two parents and 94 F2 individuals with 113 polymorphic simple sequence repeat (SSR) markers. In the F2 population, 98 of the 113 SSRs showed Mendelian segregation ratio 1:2:1, whereas significant deviations were observed for 15 SSRs with their χ 2 values ranging between 6.26 and 20.62. A partial genetic linkage map comprising 83 SSR loci was constructed. QTL analysis identified 15 marker-trait associations (MTAs) for seed traits on four linkage groups i.e. LG01, LG02, LG04 and LG05. Phenotypic variations (PVs) explained by these QTL ranged from 4.4 (WU) to 19.91% (EC). These genomic regions contributing significantly towards observed variability of seed traits would serve as potential candidates for future research that aims to improve seed traits in pigeonpea.
Collapse
|
7
|
Bohra A, Saxena KB, Varshney RK, Saxena RK. Genomics-assisted breeding for pigeonpea improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1721-1737. [PMID: 32062675 DOI: 10.1007/s00122-020-03563-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/08/2020] [Indexed: 05/25/2023]
Abstract
The review outlines advances in pigeonpea genomics, breeding and seed delivery systems to achieve yield gains at farmers' field. Pigeonpea is a nutritious and stress-tolerant grain legume crop of tropical and subtropical regions. Decades of breeding efforts in pigeonpea have resulted in development of a number of high-yielding cultivars. Of late, the development of CMS-based hybrid technology has allowed the exploitation of heterosis for yield enhancement in this crop. Despite these positive developments, the actual on-farm yield of pigeonpea is still well below its potential productivity. Growing needs for high and sustainable pigeonpea yields motivate scientists to improve the breeding efficiency to deliver a steady stream of cultivars that will provide yield benefits under both ideal and stressed environments. To achieve this objective in the shortest possible time, it is imperative that various crop breeding activities are integrated with appropriate new genomics technologies. In this context, the last decade has seen a remarkable rise in the generation of important genomic resources such as genome-wide markers, high-throughput genotyping assays, saturated genome maps, marker/gene-trait associations, whole-genome sequence and germplasm resequencing data. In some cases, marker/gene-trait associations are being employed in pigeonpea breeding programs to improve the valuable yield and market-preferred traits. Embracing new breeding tools like genomic selection and speed breeding is likely to improve genetic gains. Breeding high-yielding pigeonpea cultivars with key adaptation traits also calls for a renewed focus on systematic selection and utilization of targeted genetic resources. Of equal importance is to overcome the difficulties being faced by seed industry to take the new cultivars to the doorstep of farmers.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - K B Saxena
- , 17, NMC Housing, Al Ain, Abu Dhabi, United Arab Emirates
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
8
|
Patil PG, Singh NV, Parashuram S, Bohra A, Mundewadikar DM, Sangnure VR, Babu KD, Sharma J. Genome wide identification, characterization and validation of novel miRNA-based SSR markers in pomegranate ( Punica granatum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:683-696. [PMID: 32255932 PMCID: PMC7113349 DOI: 10.1007/s12298-020-00790-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
A total of 17,439 mature miRNAs (~ 21 nt) earlier generated through RNA seq in the pomegranate were used for in silico analysis. After complexity reduction, a total of 1922 representative mature miRNAs were selected and used as query sequences against pomegranate genome to retrieve 2540 homologous contigs with flanking regions (~ 800). By using pre-miRNA prediction web server, a total of 1028 true contigs harbouring pri-miRNAs encoding 1162 pre-miRNAs were identified. Survey of these sequences for SSRs yielded a total of 1358 and 238 SSRs specific to pri-miRNA and pre-miRNAs, respectively. Of these, primer pairs were designed for 897 pri-miRNA and 168 pre-miRNA SSRs. In pri-miRNA sequences, hexa-nucleotides repeats were found to be most abundant (44.18%) followed by mono- (18.41%) and di-nucleotide (17.01%), which is also observed in pre-miRNA sequences. Further, a set of 51 randomly selected pre-miRNA-SSRs was examined for marker polymorphism. The experimental validation of these markers on eight pomegranate genotypes demonstrated 92.15% polymorphism. Utility of these functional markers was confirmed via examination of genetic diversity of 18 pomegranate genotypes using 15 miRNA-SSRs. Further, potential application of miRNA-SSRs for discovery of trait specific candidate genes was showed by validating 51 mature miRNA against publically available 2047 EST sequences of pomegranate by target and network analysis. In summary, the current study offers novel functional molecular markers for pomegranate genetic improvement.
Collapse
Affiliation(s)
- Prakash G. Patil
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - N. V. Singh
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Shilpa Parashuram
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 Uttar Pradesh India
| | | | - Vipul R. Sangnure
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - K. Dhinesh Babu
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| |
Collapse
|
9
|
Saxena RK, Kale S, Mir RR, Mallikarjuna N, Yadav P, Das RR, Molla J, Sonnappa M, Ghanta A, Narasimhan Y, Rathore A, Kumar CVS, Varshney RK. Genotyping-by-sequencing and multilocation evaluation of two interspecific backcross populations identify QTLs for yield-related traits in pigeonpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:737-749. [PMID: 31844966 DOI: 10.1007/s00122-019-03504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This study has identified single-nucleotide polymorphism (SNP) markers associated with nine yield-related traits in pigeonpea by using two backcross populations (BP) developed through interspecific crosses and evaluating them at two locations and 3 years. In both the populations, markers have shown strong segregation distortion; therefore, a quantitative trait locus (QTL) mapping mixed model was used. A total of 86 QTLs explaining 12-21% phenotypic variation were detected in BP-1. On the other hand, 107 QTLs explaining 11-29% phenotypic variation were detected in BP-2. Although most QTLs were environment and trait specific, few stable and consistent QTLs were also detected. Interestingly, 11 QTLs in BP-2 were associated with more than one trait. Among these QTLs, eight QTLs associated with days to 50% flowering and days to 75% maturity were located on CcLG07. One SNP "S7_14185076" marker in BP-2 population has been found associated with four traits, namely days to 50% flowering, days to 75% maturity, primary branches per plant and secondary branches per plant with positive additive effect. Hence, the present study has not only identified QTLs for yield-related traits, but also discovered novel alleles from wild species, which can be used for improvement of traits through genomics-assisted breeding.
Collapse
Affiliation(s)
- Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Sandip Kale
- The Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, OT Gatersleben, Germany
| | - Reyazul Rouf Mir
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Wadura Campus, Sopore, Kashmir, 193201, India
| | - Nalini Mallikarjuna
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Pooja Yadav
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Roma Rani Das
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Johiruddin Molla
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Muniswamy Sonnappa
- Agricultural Research Station (UAS-Raichur), Gulbarga, Karnataka, 585101, India
| | - Anuradha Ghanta
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Yamini Narasimhan
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - C V Sameer Kumar
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India.
| |
Collapse
|
10
|
Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, Zahrulakmal M, Hahiree MKIM, Kendabie P, Licea LCS, Massawe F, Mabhaudhi T, Modi AT, Berchie JN, Amoah S, Faloye B, Abberton M, Olaniyi O, Azam-Ali SN. Bambara groundnut: an exemplar underutilised legume for resilience under climate change. PLANTA 2019; 250:803-820. [PMID: 31267230 DOI: 10.1007/s00425-019-03191-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/16/2019] [Indexed: 05/18/2023]
Abstract
Bambara groundnut has the potential to be used to contribute more the climate change ready agriculture. The requirement for nitrogen fixing, stress tolerant legumes is clear, particularly in low input agriculture. However, ensuring that existing negative traits are tackled and demand is stimulated through the development of markets and products still represents a challenge to making greater use of this legume. World agriculture is currently based on very limited numbers of crops, representing a significant risk to food supplies, particularly in the face of climate change which is expected to increase the frequency of extreme events. Minor and underutilised crops can help to develop a more resilient and nutritionally dense future agriculture. Bambara groundnut [Vigna subterranea (L.) Verdc.[, as a drought resistant, nitrogen-fixing, legume has a role to play. However, as with most underutilised crops, there are significant gaps in knowledge and also negative traits such as 'hard-to-cook' and 'photoperiod sensitivity to pod filling' associated with the crop which future breeding programmes and processing methods need to tackle, to allow it to make a significant contribution to the well-being of future generations. The current review assesses these factors and also considers what are the next steps towards realising the potential of this crop.
Collapse
Affiliation(s)
- Sean Mayes
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Wai Kuan Ho
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Hui Hui Chai
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Xiuqing Gao
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Aloyce C Kundy
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Kumbirai I Mateva
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | | | | | - Presidor Kendabie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Luis C S Licea
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Festo Massawe
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Tafadzwanashe Mabhaudhi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Albert T Modi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Joseph N Berchie
- CSIR-Crop Research Institute, P.O. Box 3785, Fumesua, Kumasi, Ghana
| | - Stephen Amoah
- CSIR-Crop Research Institute, P.O. Box 3785, Fumesua, Kumasi, Ghana
| | - Ben Faloye
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- Genetic Resources Centre, International Institute for Tropical Agriculture, Ibadan, Nigeria
| | - Michael Abberton
- Genetic Resources Centre, International Institute for Tropical Agriculture, Ibadan, Nigeria
| | - Oyatomi Olaniyi
- Genetic Resources Centre, International Institute for Tropical Agriculture, Ibadan, Nigeria
| | - Sayed N Azam-Ali
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
- Crops For the Future, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| |
Collapse
|
11
|
Ojiewo C, Monyo E, Desmae H, Boukar O, Mukankusi‐Mugisha C, Thudi M, Pandey MK, Saxena RK, Gaur PM, Chaturvedi SK, Fikre A, Ganga Rao NPVR, SameerKumar CV, Okori P, Janila P, Rubyogo JC, Godfree C, Akpo E, Omoigui L, Nkalubo S, Fenta B, Binagwa P, Kilango M, Williams M, Mponda O, Okello D, Chichaybelu M, Miningou A, Bationo J, Sako D, Diallo S, Echekwu C, Umar ML, Oteng‐Frimpong R, Mohammed H, Varshney RK. Genomics, genetics and breeding of tropical legumes for better livelihoods of smallholder farmers. PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:487-499. [PMID: 31787790 PMCID: PMC6876654 DOI: 10.1111/pbr.12554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/04/2017] [Indexed: 05/04/2023]
Abstract
Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP-GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large-scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega-initiatives facilitated release of a number of new varieties and also dissemination of on-the-shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics-assisted breeding approaches and rapid generation advancement.
Collapse
Affiliation(s)
- Chris Ojiewo
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)NairobiKenya
| | - Emmanuel Monyo
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)NairobiKenya
| | | | - Ousmane Boukar
- International Institute of Tropical Agriculture (IITA)KanoNigeria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Stanley Nkalubo
- National Agricultural Research Organization (NARO)NamulongeUganda
| | - Berhanu Fenta
- Ethiopian Institute of Agricultural Research (EIAR)MelkassaEthiopia
| | - Papias Binagwa
- Selian Agricultural Research Institute (SARI)ArushaTanzania
| | | | | | | | - David Okello
- National Semi Arid Resources Research Institute (NaSARRI)SorotiUganda
| | | | - Amos Miningou
- Environmental Institute for Agricultural Research (INERA)OuagadougouBurkina Faso
| | - Joseph Bationo
- Environmental Institute for Agricultural Research (INERA)OuagadougouBurkina Faso
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Varshney RK, Ojiewo C, Monyo E. A decade of Tropical Legumes projects: Development and adoption of improved varieties, creation of market-demand to benefit smallholder farmers and empowerment of national programmes in sub-Saharan Africa and South Asia. PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:379-388. [PMID: 31762525 PMCID: PMC6853253 DOI: 10.1111/pbr.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 05/17/2023]
Abstract
This article highlights 12 years (2007-2019) of research, achievements, lessons learned, challenges and gaps in discovery-to-delivery research in legumes emanating from three projects, collectively called Tropical Legumes (TL) with a total investment of about US$ 67 million funded by the Bill & Melinda Gates Foundation. These projects were implemented by three CGIAR centres (ICRISAT, CIAT and IITA) together with 15 national agricultural research system partners in sub-Saharan Africa and South Asia. The TL projects together with some of their precursors and complementary projects from other agencies, facilitated the development of 266 improved legume varieties and the production of about 497,901 tons of certified seeds of the target legume crops in the focus countries. The certified seeds have been planted on about 5.0 million ha by more than 25 million smallholder farmers in the 15 countries and beyond, producing about 6.1 million tons of grain worth US$ 3.2 billion. Furthermore, the projects also trained 52 next generation scientists that included 10 women, by supporting 34 Masters degrees and 18 PhD degrees.
Collapse
Affiliation(s)
- Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Chris Ojiewo
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)NairobiKenya
| | - Emmanuel Monyo
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)NairobiKenya
| |
Collapse
|
13
|
Yadav P, Saxena KB, Hingane A, Kumar CVS, Kandalkar VS, Varshney RK, Saxena RK. An "Axiom Cajanus SNP Array" based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genomics 2019; 20:235. [PMID: 30898108 PMCID: PMC6429735 DOI: 10.1186/s12864-019-5595-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pigeonpea has considerable extent of insect-aided natural out-crossing that impedes genetic purity of seeds. Pre-anthesis cleistogamy in pigeonpea promotes self-pollination which helps in maintaining genetic purity. The cleistogamous flowers are linked with shriveled seeds, an undesirable trait from variety adoption point of view, and breeding using genomics tools can help in overcoming this constraint. Therefore, in order to identify genomic regions governing these target traits, one recombinant inbred line (RIL) population was developed using contrasting parents (ICPL 99010 and ICP 5529) for flower shape and shriveled seeds. The RILs were phenotyped for two years and genotyped using the Axiom Cajanus SNP Array. RESULTS Out of the 56,512 unique sequence variations on the array, the mapping population showed 8634 single nucleotide polymorphism (SNPs) segregating across the genome. These data facilitated generation of a high density genetic map covering 6818 SNPs in 974 cM with an average inter-marker distance of 0.1 cM, which is the lowest amongst all pigeonpea genetic maps reported. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified 5 QTLs associated with cleistogamous flower, 3 QTLs for shriveled seed and 1 QTL for seed size. The phenotypic variance explained by these QTLs ranged from 9.1 to 50.6%. A consistent QTL "qCl3.2" was identified for cleistogamous flower on CcLG03 covering a span of 42 kb in the pigeonpea genome. Epistatic QTLs were also identified for cleistogamous flower and shriveled seed traits. CONCLUSION Identified QTLs and genomic interactions for cleistogamous flower, shriveled seed and seed size will help in incorporating the required floral architecture in pigeonpea varieties/lines. Besides, it will also be useful in understanding the molecular mechanisms, and map-based gene cloning for the target traits.
Collapse
Affiliation(s)
- Pooja Yadav
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India.,Department of Genetics and Plant Breeding, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya (RVSKVV), Gwalior, 474 002, India
| | - K B Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Anupama Hingane
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - C V Sameer Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - V S Kandalkar
- Department of Genetics and Plant Breeding, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya (RVSKVV), Gwalior, 474 002, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India.
| |
Collapse
|
14
|
Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK. Toward the sequence-based breeding in legumes in the post-genome sequencing era. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:797-816. [PMID: 30560464 PMCID: PMC6439141 DOI: 10.1007/s00122-018-3252-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 05/19/2023]
Abstract
Efficiency of breeding programs of legume crops such as chickpea, pigeonpea and groundnut has been considerably improved over the past decade through deployment of modern genomic tools and technologies. For instance, next-generation sequencing technologies have facilitated availability of genome sequence assemblies, re-sequencing of several hundred lines, development of HapMaps, high-density genetic maps, a range of marker genotyping platforms and identification of markers associated with a number of agronomic traits in these legume crops. Although marker-assisted backcrossing and marker-assisted selection approaches have been used to develop superior lines in several cases, it is the need of the hour for continuous population improvement after every breeding cycle to accelerate genetic gain in the breeding programs. In this context, we propose a sequence-based breeding approach which includes use of independent or combination of parental selection, enhancing genetic diversity of breeding programs, forward breeding for early generation selection, and genomic selection using sequencing/genotyping technologies. Also, adoption of speed breeding technology by generating 4-6 generations per year will be contributing to accelerate genetic gain. While we see a huge potential of the sequence-based breeding to revolutionize crop improvement programs in these legumes, we anticipate several challenges especially associated with high-quality and precise phenotyping at affordable costs, data analysis and management related to improving breeding operation efficiency. Finally, integration of improved seed systems and better agronomic packages with the development of improved varieties by using sequence-based breeding will ensure higher genetic gains in farmers' fields.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), IRRI South Asia Hub, ICRISAT, Hyderabad, 502324, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| |
Collapse
|
15
|
Mousavi‐Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D. Adapting legume crops to climate change using genomic approaches. PLANT, CELL & ENVIRONMENT 2019; 42:6-19. [PMID: 29603775 PMCID: PMC6334278 DOI: 10.1111/pce.13203] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/10/2018] [Indexed: 05/05/2023]
Abstract
Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty.
Collapse
Affiliation(s)
- Mahsa Mousavi‐Derazmahalleh
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Philipp E. Bayer
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - James K. Hane
- CCDM BioinformaticsCentre for Crop Disease Management, Curtin UniversityBentleyWestern Australia6102Australia
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean BiotechnologyUniversity of MissouriColumbiaMO65211USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean BiotechnologyUniversity of MissouriColumbiaMO65211USA
| | - Matthew N. Nelson
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Natural Capital and Plant HealthRoyal Botanic Gardens Kew, Wakehurst PlaceArdinglyWest SussexRH17 6TNUK
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
| | - William Erskine
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Centre for Plant Genetics and BreedingThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
| | - Rajeev K. Varshney
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Patancheru502 324India
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental SciencesUniversità Politecnica delle Marche60131AnconaItaly
| | - David Edwards
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
| |
Collapse
|
16
|
Saxena RK, Rathore A, Bohra A, Yadav P, Das RR, Khan AW, Singh VK, Chitikineni A, Singh IP, Kumar CVS, Saxena KB, Varshney RK. Development and Application of High-Density Axiom Cajanus SNP Array with 56K SNPs to Understand the Genome Architecture of Released Cultivars and Founder Genotypes. THE PLANT GENOME 2018; 11:180005. [PMID: 30512043 DOI: 10.3835/plantgenome2018.01.0005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As one of the major outputs of next-generation sequencing (NGS), a large number of genome-wide single-nucleotide polymorphisms (SNPs) have been developed in pigeonpea [ (L.) Huth.]. However, SNPs require a genotyping platform or assay to be used in different evolutionary studies or in crop improvement programs. Therefore, we developed an Axiom SNP array with 56K SNPs uniformly distributed across the genome and assessed its utility in a genetic diversity study. From the whole-genome resequencing (WGRS) data on 104 pigeonpea lines, ∼2 million sequence variations (SNPs and insertion-deletions [InDels]) were identified, from which a subset of 56,512 unique and informative sequence variations were selected to develop the array. The Axiom SNP array developed was used for genotyping 103 pigeonpea lines encompassing 63 cultivars released between 1960 and 2014 and 40 breeding, germplasm, and founder lines. Genotyping data thus generated on 103 pigeonpea lines provided 51,201 polymorphic SNPs and InDels. Genetic diversity analysis provided in-depth insights into the genetic architecture and trends in temporal diversity in pigeonpea cultivars. Therefore, the continuous use of the high-density Axiom SNP array developed will accelerate high-resolution trait mapping, marker-assisted breeding, and genomic selection efforts in pigeonpea.
Collapse
|
17
|
Saxena RK, Patel K, Sameer Kumar CV, Tyagi K, Saxena KB, Varshney RK. Molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1605-1614. [PMID: 29705915 PMCID: PMC6061154 DOI: 10.1007/s00122-018-3101-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/20/2018] [Indexed: 05/29/2023]
Abstract
We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines. Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~ 33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.
Collapse
Affiliation(s)
- Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Kishan Patel
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C V Sameer Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - K B Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
18
|
Panda S, Mishra SK, Naik A, Sahu SK, Panigrahi J. In vitro propagation of Cajanus cajan × C. cajanifolius hybrid and its characterization using cyto-morphological and SSR markers. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Liu Y, Zhang B, Wen X, Zhang S, Wei Y, Lu Q, Liu Z, Wang K, Liu F, Peng R. Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum. PLoS One 2018; 13:e0196847. [PMID: 29771937 PMCID: PMC5957370 DOI: 10.1371/journal.pone.0196847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
A bacterial artificial chromosome (BAC) library for G. mustelinum Miers ex G. Watt (AD4) was constructed. Intact nuclei from G. mustelinum (AD4) were used to isolate high molecular weight DNA, which was partially cleaved with Hind III and cloned into pSMART BAC (Hind III) vectors. The BAC library consisted of 208,182 clones arrayed in 542 384-microtiter plates, with an average insert size of 121.72 kb ranging from 100 to 150 kb. About 2% of the clones did not contain inserts. Based on an estimated genome size of 2372 Mb for G. mustelinum, the BAC library was estimated to have a total coverage of 10.50 × genome equivalents. The high capacity library of G. mustelinum will serve as a giant gene resource for map-based cloning of quantitative trait loci or genes associated with important agronomic traits or resistance to Verticillium wilt, physical mapping and comparative genome analysis.
Collapse
Affiliation(s)
- Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| | - Xinpeng Wen
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhen Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (FL); (RP)
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (FL); (RP)
| |
Collapse
|
20
|
Ravishankar KV, Vasudeva R, Hemanth B, Sandya BS, Sthapit BR, Parthasarathy VA, Rao VR. Isolation and characterization of microsatellite markers in Garcinia gummi-gutta by next-generation sequencing and cross-species amplification. J Genet 2018; 96:213-218. [PMID: 28674220 DOI: 10.1007/s12041-017-0756-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Garcinia gummi-gutta (L.) Roxb. (Clusiaceae) is an endemic, semidomesticated, fruit-yielding tree species distributed in the Western Ghats of India and Sri Lanka. Various bioactive phytochemicals, such as garcinol, benzophenones and xanthones are isolated from G. gummi-gutta and have shown antibacterial, antiviral and antioxidant activities. We sequenced the total genomic DNA using Illumina Hiseq 2000 platform and examined 241,141,804 bp high quality data, assembled into 773,889 contigs. In these contigs, 27,313 simple-sequence repeats (SSRs) were identified, among which mononucleotide repeats were predominant (44.98%) followed by dinucleotide and trinucleotide repeats. Primers were designed for 9964 microsatellites among which 32 randomly selected SSR primer pairs were standardized for amplification. Polymerase chain reaction (PCR) amplification of genomic DNA in 30 G. gummi-gutta genotypes revealed polymorphic information content (PIC) across all 32 loci ranging from 0.867 to 0.951, with a mean value of 0.917. The observed and expected heterozygosity ranged from 0.00 to 0.63 and 0.896 to 0.974, respectively. Alleles per locus ranged from 12 to 27. This is the first report on the development of genomic SSR markers in G. gummi-gutta using next-generation sequencing technology. The genomic SSR markers developed in this study will be useful in identification, mapping, diversity and breeding studies.
Collapse
Affiliation(s)
- K V Ravishankar
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, India.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ben Romdhane M, Riahi L, Jardak R, Ghorbel A, Zoghlami N. Fingerprinting and genetic purity assessment of F 1 barley hybrids and their salt-tolerant parental lines using nSSR molecular markers. 3 Biotech 2018; 8:57. [PMID: 29354368 PMCID: PMC5756735 DOI: 10.1007/s13205-017-1080-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 11/29/2022] Open
Abstract
Hybridity and the genuineness of hybrids are prominent characteristics for quality control of seeds and thereby for varietal improvement. In the current study, the cross between two local barley genotypes (Ardhaoui: female; Testour: male) previously identified as susceptible/tolerant to salt stress in Tunisia was achieved. The hybrid genetic purity of the generated F1 putative hybrids and the fingerprinting of the parents along with their offspring were assessed using a set of 17 nuclear SSR markers. Among the analyzed loci, 11 nSSR were shown polymorphic among the parents and their offspring. Based on the applied 11 polymorphic SSR loci, a total of 28 alleles were detected with an average of 2.54 alleles per locus. The locus HVM33 presented the highest number of alleles. The highest polymorphism information content value was detected for the locus HVM33 (0.6713) whereas the lowest PIC value (0.368) was revealed by the loci BMAC0156, EBMAC0970 and BMAG0013 with a mean value of 0.4619. The probabilities of identical genotypes PI for the 11 microsatellite markers were 8.63 × 10-7. Banding patterns among parents and hybrids showed polymorphic fragments. The 11 SSR loci had produced unique fingerprints for each analyzed genotype and segregate between the two parental lines and their four hybrids. Parentage analysis confirms the hybrid purity of the four analyzed genotypes. Six Tunisian barley accessions were used as an outgroup in the multivariate analysis to confirm the efficiency of the employed 11 nSSR markers in genetic differentiation among various barley germplasms. Thus, neighbor joining and factorial analysis revealed clearly the discrimination among the parental lines, the four hybrids and the outgroup accessions. Out of the detected polymorphic 11 nuclear SSR markers, a set of five markers (HVM33, WMC1E8, BMAC0154, BMAC0040 and BMAG0007) were shown to be sufficient and informative enough to discriminate among the six genotypes representing the two parental lines and the four hybrids from each others. These five nSSR markers presented the highest number of alleles per locus (An), expected heterozygosity (He), PIC values and the lowest probabilities of identity (PI). These nSSR loci may be used as referral SSR markers for unambiguous discrimination and genetic purity assessment in barley breeding programs.
Collapse
Affiliation(s)
- Mériam Ben Romdhane
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - Leila Riahi
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
- Laboratory of Biotechnology and Bio-Geo Resources Valorization BVBGR-LR11ES31, University of Manouba, ISBST, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Rahma Jardak
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - Nejia Zoghlami
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
22
|
|
23
|
Maneesha, Upadhyaya KC. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers. J Genet 2017; 96:551-561. [PMID: 28947703 DOI: 10.1007/s12041-017-0802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.
Collapse
Affiliation(s)
- Maneesha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | |
Collapse
|
24
|
Association mapping to discover significant marker-trait associations for resistance against fusarium wilt variant 2 in pigeonpea [Cajanus cajan (L.) Millspaugh] using SSR markers. J Appl Genet 2017; 58:307-319. [DOI: 10.1007/s13353-017-0400-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
25
|
Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Rep 2017; 7:1911. [PMID: 28507291 PMCID: PMC5432509 DOI: 10.1038/s41598-017-01537-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
Fusarium wilt (FW) is one of the most important biotic stresses causing yield losses in pigeonpea. Genetic improvement of pigeonpea through genomics-assisted breeding (GAB) is an economically feasible option for the development of high yielding FW resistant genotypes. In this context, two recombinant inbred lines (RILs) (ICPB 2049 × ICPL 99050 designated as PRIL_A and ICPL 20096 × ICPL 332 designated as PRIL_B) and one F2 (ICPL 85063 × ICPL 87119) populations were used for the development of high density genetic maps. Genotyping-by-sequencing (GBS) approach was used to identify and genotype SNPs in three mapping populations. As a result, three high density genetic maps with 964, 1101 and 557 SNPs with an average marker distance of 1.16, 0.84 and 2.60 cM were developed in PRIL_A, PRIL_B and F2, respectively. Based on the multi-location and multi-year phenotypic data of FW resistance a total of 14 quantitative trait loci (QTLs) including six major QTLs explaining >10% phenotypic variance explained (PVE) were identified. Comparative analysis across the populations has revealed three important QTLs (qFW11.1, qFW11.2 and qFW11.3) with upto 56.45% PVE for FW resistance. This is the first report of QTL mapping for FW resistance in pigeonpea and identified genomic region could be utilized in GAB.
Collapse
|
26
|
Saxena RK, Kale SM, Kumar V, Parupali S, Joshi S, Singh V, Garg V, Das RR, Sharma M, Yamini KN, Ghanta A, Rathore A, Sameerkumar CV, Saxena KB, Varshney RK. Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 2017; 7:1813. [PMID: 28500330 PMCID: PMC5431754 DOI: 10.1038/s41598-017-01535-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
Sterility mosaic disease (SMD) is one of the serious production constraints that may lead to complete yield loss in pigeonpea. Three mapping populations including two recombinant inbred lines and one F2, were used for phenotyping for SMD resistance at two locations in three different years. Genotyping-by-sequencing approach was used for simultaneous identification and genotyping of SNPs on above mentioned populations. In total, 212,464, 89,699 and 64,798 SNPs were identified in ICPL 20096 × ICPL 332 (PRIL_B), ICPL 20097 × ICP 8863 (PRIL_C) and ICP 8863 × ICPL 87119 (F2) respectively. By using high-quality SNPs, genetic maps were developed for PRIL_B (1,101 SNPs; 921.21 cM), PRIL_C (484 SNPs; 798.25 cM) and F2 (996 SNPs; 1,597.30 cM) populations. The average inter marker distance on these maps varied from 0.84 cM to 1.65 cM, which was lowest in all genetic mapping studies in pigeonpea. Composite interval mapping based QTL analysis identified a total of 10 QTLs including three major QTLs across the three populations. The phenotypic variance of the identified QTLs ranged from 3.6 to 34.3%. One candidate genomic region identified on CcLG11 seems to be promising QTL for molecular breeding in developing superior lines with enhanced resistance to SMD.
Collapse
Affiliation(s)
- Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Vinay Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Swathi Parupali
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Shourabh Joshi
- Institute of Biotechnology, Professor Jayshankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500 030, India
| | - Vikas Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Roma R Das
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - K N Yamini
- Institute of Biotechnology, Professor Jayshankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500 030, India
| | - Anuradha Ghanta
- Institute of Biotechnology, Professor Jayshankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500 030, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - C V Sameerkumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - K B Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India.
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
27
|
Bohra A, Jha R, Pandey G, Patil PG, Saxena RK, Singh IP, Singh D, Mishra RK, Mishra A, Singh F, Varshney RK, Singh NP. New Hypervariable SSR Markers for Diversity Analysis, Hybrid Purity Testing and Trait Mapping in Pigeonpea [ Cajanus cajan (L.) Millspaugh]. FRONTIERS IN PLANT SCIENCE 2017; 8:377. [PMID: 28408910 PMCID: PMC5374739 DOI: 10.3389/fpls.2017.00377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/06/2017] [Indexed: 05/21/2023]
Abstract
Draft genome sequence in pigeonpea offers unprecedented opportunities for genomics assisted crop improvement via enabling access to genome-wide genetic markers. In the present study, 421 hypervariable simple sequence repeat (SSR) markers from the pigeonpea genome were screened on a panel of eight pigeonpea genotypes yielding marker validation and polymorphism percentages of 95.24 and 54.11%, respectively. The SSR marker assay uncovered a total of 570 alleles with three as an average number of alleles per marker. Similarly, the mean values for gene diversity and PIC were 0.44 and 0.37, respectively. The number of polymorphic markers ranged from 39 to 89 for different parental combinations. Further, 60 of these SSRs were assayed on 94 genotypes, and model based clustering using STRUCTURE resulted in the identification of the two subpopulations (K = 2). This remained in close agreement with the clustering patterns inferred from genetic distance (GD)-based approaches i.e., dendrogram, factorial and principal coordinate analysis (PCoA). The AMOVA accounted majority of the genetic variation within groups (89%) in comparison to the variation existing between the groups (11%). A subset of these markers was implicated for hybrid purity testing. We also demonstrated utility of these SSR markers in trait mapping through association and bi-parental linkage analyses. The general linear (GLM) and mixed linear (MLM) models both detected a single SSR marker (CcGM03681) with R2 = 16.4 as associated with the resistance to Fusarium wilt variant 2. Similarly, by using SSR data in a segregating backcross population, the corresponding restorer-of-fertility (Rf) locus was putatively mapped at 39 cM with the marker CcGM08896. However, The marker-trait associations (MTAs) detected here represent a very preliminary type and hence demand deeper investigations for conclusive evidence. Given their ability to reveal polymorphism in simple agarose gels, the hypervariable SSRs are valuable genomic resource for pigeonpea research community, particularly in South Asia and East Africa where pigeonpea is primarily grown.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
- *Correspondence: Abhishek Bohra
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Gaurav Pandey
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| | | | - Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Indra P. Singh
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - D. Singh
- ICAR-Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - R. K. Mishra
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Ankita Mishra
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - F. Singh
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Rajeev K. Varshney
| | - N. P. Singh
- ICAR-Indian Institute of Pulses Research (IIPR)Kanpur, India
| |
Collapse
|
28
|
Bastías A, Correa F, Rojas P, Almada R, Muñoz C, Sagredo B. Identification and Characterization of Microsatellite Loci in Maqui (Aristotelia chilensis [Molina] Stunz) Using Next-Generation Sequencing (NGS). PLoS One 2016; 11:e0159825. [PMID: 27459734 PMCID: PMC4961369 DOI: 10.1371/journal.pone.0159825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022] Open
Abstract
Maqui (Aristotelia chilensis [Molina] Stunz) is a small dioecious tree native to South America with edible fruit characterized by very high antioxidant capacity and anthocyanin content. To preserve maqui as a genetic resource it is essential to study its genetic diversity. However, the complete genome is unknown and only a few gene sequences are available in databases. Simple sequence repeats (SSR) markers, which are neutral, co-dominant, reproducible and highly variable, are desirable to support genetic studies in maqui populations. By means of identification and characterization of microsatellite loci from a maqui genotype, using 454 sequencing technology, we develop a set of SSR for this species. Obtaining a total of 165,043 shotgun genome sequences, with an average read length of 387 bases, we covered 64 Mb of the maqui genome. Reads were assembled into 4,832 contigs, while 98,546 reads remained as singletons, generating a total of 103,378 consensus genomic sequences. A total of 24,494 SSR maqui markers were identified. Of them, 15,950 SSR maqui markers were classified as perfects. The most common SSR motifs were dinucleotide (31%), followed by tetranucleotide (26%) and trinucleotide motifs (24%). The motif AG/CT (28.4%) was the most abundant, while the motif AC (89 bp) was the largest. Eleven polymorphic SSRs were selected and used to analyze a population of 40 maqui genotypes. Polymorphism information content (PIC) ranged from 0.117 to 0.82, with an average of 0.58. Non-significant groups were observed in the maqui population, showing a panmictic genetic structure. In addition, we also predicted 11150 putative genes and 3 microRNAs (miRNAs) in maqui sequences. This results, including partial sequences of genes, some miRNAs and SSR markers from high throughput next generation sequencing (NGS) of maqui genomic DNA, constitute the first platform to undertake genetic and molecular studies of this important species.
Collapse
Affiliation(s)
- Adriana Bastías
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Francisco Correa
- Facultad de Ingeniería, Universidad de Talca, Avenida Lircay s/n, Talca
| | - Pamela Rojas
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Rubén Almada
- Centro de Estudios Avanzados en Fruticultura (CEAF), Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Carlos Muñoz
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa N° 11315, La Pintana, Santiago de Chile, Chile
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
- * E-mail:
| |
Collapse
|
29
|
Njung'e V, Deshpande S, Siambi M, Jones R, Silim S, De Villiers S. SSR genetic diversity assessment of popular pigeonpea varieties in Malawi reveals unique fingerprints. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Susek K, Bielski WK, Hasterok R, Naganowska B, Wolko B. A First Glimpse of Wild Lupin Karyotype Variation As Revealed by Comparative Cytogenetic Mapping. FRONTIERS IN PLANT SCIENCE 2016; 7:1152. [PMID: 27516770 PMCID: PMC4964750 DOI: 10.3389/fpls.2016.01152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins (OWL) demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n = 32-52), basic chromosome numbers (x = 5-7, 9, 13) and in nuclear genome size (2C DNA = 0.97-2.68 pg). Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution. In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all "single-locus" in L. angustifolius, in the wild lupins these clones proved to be "single-locus," "single-locus" with additional signals, "repetitive" or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g., L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the relationships between the lupins and the extensive cytological diversity within this group. In this study we premise that lupin genomes underwent at least two rounds of fusion and fission events resulting in the reduction in chromosome number from 2n = 52 through 2n = 40 to 2n = 32, followed by chromosome number increment to 2n = 42.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Karolina Susek
| | - Wojciech K. Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in KatowiceKatowice, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
31
|
Xiao Y, Xia W, Ma J, Mason AS, Fan H, Shi P, Lei X, Ma Z, Peng M. Genome-Wide Identification and Transferability of Microsatellite Markers between Palmae Species. FRONTIERS IN PLANT SCIENCE 2016; 7:1578. [PMID: 27826307 PMCID: PMC5078683 DOI: 10.3389/fpls.2016.01578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2016] [Indexed: 05/18/2023]
Abstract
The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future.
Collapse
Affiliation(s)
- Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
- *Correspondence: Yong Xiao
| | - Wei Xia
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
- College of Agriculture, Hainan UniversityHaikou, China
| | - Jianwei Ma
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University GiessenGiessen, Germany
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
| | - Peng Shi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
| | - Xintao Lei
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
- Xintao Lei
| | - Zilong Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural ScienceHaikou, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural ScienceHaikou, China
| |
Collapse
|
32
|
Varshney RK. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:98-107. [PMID: 26566828 DOI: 10.1016/j.plantsci.2015.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 05/20/2023]
Abstract
Legume crops such as chickpea, pigeonpea and groundnut, mostly grown in marginal environments, are the major source of nutrition and protein to the human population in Asia and Sub-Saharan Africa. These crops, however, have a low productivity, mainly due to their exposure to several biotic and abiotic stresses in the marginal environments. Until 2005, these crops had limited genomics resources and molecular breeding was very challenging. During the last decade (2005-2015), ICRISAT led demand-driven innovations in genome science and translated the massive genome information in breeding. For instance, large-scale genomic resources including draft genome assemblies, comprehensive genetic and physical maps, thousands of SSR markers, millions of SNPs, several high-throughput as well as low cost marker genotyping platforms have been developed in these crops. After mapping several breeding related traits, several success stories of translational genomics have become available in these legumes. These include development of superior lines with enhanced drought tolerance in chickpea, enhanced and pyramided resistance to Fusarium wilt and Ascochyta blight in chickpea, enhanced resistance to leaf rust in groundnut, improved oil quality in groundnut and utilization of markers for assessing purity of hybrids/parental lines in pigeonpea. Some of these stories together with future prospects have been discussed.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| |
Collapse
|
33
|
Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, de Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Hughes S, Humphreys MW, Iorizzo M, Ismail AM, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. FRONTIERS IN PLANT SCIENCE 2015; 6:563. [PMID: 26322050 PMCID: PMC4531421 DOI: 10.3389/fpls.2015.00563] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/08/2015] [Indexed: 05/19/2023]
Abstract
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
Collapse
Affiliation(s)
| | - Mehanathan Muthamilarasan
- Department of Plant Molecular Genetics and Genomics, National Institute of Plant Genome ResearchNew Delhi, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt Lucia, QLD, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Rishu Sharma
- Department of Plant Pathology, Faculty of Agriculture, Bidhan Chandra Krishi ViswavidyalayaMohanpur, India
| | - Michael Abberton
- Genetic Resources Centre, International Institute of Tropical AgricultureIbadan, Nigeria
| | - Jacqueline Batley
- Centre for Integrated Legume Research, University of QueenslandBrisbane, QLD, Australia
| | - Alison Bentley
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - John Bryant
- CLES, Hatherly Laboratories, University of ExeterExeter, UK
| | - Hongwei Cai
- Forage Crop Research Institute, Japan Grassland Agriculture and Forage Seed AssociationNasushiobara, Japan
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural UniversityBeijing, China
| | - Mehmet Cakir
- Faculty of Science and Engineering, School of Biological Sciences and Biotechnology, Murdoch UniversityMurdoch, WA, Australia
| | - Leland J. Cseke
- Department of Biological Sciences, The University of Alabama in HuntsvilleHuntsville, AL, USA
| | - James Cockram
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - Ciro De Pace
- Department of Agriculture, Forests, Nature and Energy, University of TusciaViterbo, Italy
| | - Hannes Dempewolf
- Global Crop Diversity Trust, Platz der Vereinten NationenBonn, Germany
| | - Shelby Ellison
- Department of Horticulture, University of WisconsinMadison, WI, USA
| | - Paul Gepts
- Section of Crop and Ecosystem Sciences, Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Andy Greenland
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Anthony Hall
- Department of Botany and Plant Sciences, University of CaliforniaRiverside, Riverside, USA
| | - Kiyosumi Hori
- Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | | | - Mike W. Humphreys
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityWales, UK
| | - Massimo Iorizzo
- Department of Horticulture, University of WisconsinMadison, WI, USA
| | | | - Athole Marshall
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityWales, UK
| | - Sean Mayes
- Biotechnology and Crop Genetics, Crops for the FutureSemenyih, Malaysia
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Science, University of MissouriColumbia, MO, USA
| | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural SciencesSundvagen, Sweden
| | | | - Philipp W. Simon
- Department of Horticulture, USDA-ARS, University of WisconsinMadison, WI, USA
| | - Joe Tohme
- Agrobiodiversity and Biotechnology Project, Centro International de Agricultura TropicalCali, Columbia
| | | | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Science, University of MissouriColumbia, MO, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Stan D. Wullschleger
- Oak Ridge National Laboratory, Environmental Sciences Division, Climate Change Science InstituteOak Ridge, TN, USA
| | - Masahiro Yano
- National Agriculture and Food Research Organization, Institute of Crop ScienceTsukuba, Japan
| | - Manoj Prasad
- Department of Plant Molecular Genetics and Genomics, National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
34
|
Hulse-Kemp AM, Ashrafi H, Stoffel K, Zheng X, Saski CA, Scheffler BE, Fang DD, Chen ZJ, Van Deynze A, Stelly DM. BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (Gossypium) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping. G3 (BETHESDA, MD.) 2015; 5:1095-105. [PMID: 25858960 PMCID: PMC4478540 DOI: 10.1534/g3.115.017749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/30/2015] [Indexed: 11/25/2022]
Abstract
A bacterial artificial chromosome library and BAC-end sequences for cultivated cotton (Gossypium hirsutum L.) have recently been developed. This report presents genome-wide single nucleotide polymorphism (SNP) mining utilizing resequencing data with BAC-end sequences as a reference by alignment of 12 G. hirsutum L. lines, one G. barbadense L. line, and one G. longicalyx Hutch and Lee line. A total of 132,262 intraspecific SNPs have been developed for G. hirsutum, whereas 223,138 and 470,631 interspecific SNPs have been developed for G. barbadense and G. longicalyx, respectively. Using a set of interspecific SNPs, 11 randomly selected and 77 SNPs that are putatively associated with the homeologous chromosome pair 12 and 26, we mapped 77 SNPs into two linkage groups representing these chromosomes, spanning a total of 236.2 cM in an interspecific F2 population (G. barbadense 3-79 × G. hirsutum TM-1). The mapping results validated the approach for reliably producing large numbers of both intraspecific and interspecific SNPs aligned to BAC-ends. This will allow for future construction of high-density integrated physical and genetic maps for cotton and other complex polyploid genomes. The methods developed will allow for future Gossypium resequencing data to be automatically genotyped for identified SNPs along the BAC-end sequence reference for anchoring sequence assemblies and comparative studies.
Collapse
Affiliation(s)
- Amanda M Hulse-Kemp
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843 Interdisciplinary Genetics Program, Texas A&M University, College Station, Texas 77843
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California, Davis, California 95616
| | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, California 95616
| | - Xiuting Zheng
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843
| | - Christopher A Saski
- Clemson University Genomics Institute, Clemson University, Clemson, South Carolina 29634
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi 38766
| | - David D Fang
- USDA-ARS, Cotton Fiber Bioscience Research Unit, New Orleans, Louisiana 70124
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, California 95616
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843 Interdisciplinary Genetics Program, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
35
|
Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS One 2015; 10:e0122847. [PMID: 25849964 PMCID: PMC4388706 DOI: 10.1371/journal.pone.0122847] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.
Collapse
|
36
|
Construction of interspecific genetic linkage map of pigeonpea using SCoT, RAPD, ISSR markers and simple inherited trait loci. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Sreeharsha RV, Sekhar KM, Reddy AR. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO₂. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:82-93. [PMID: 25575994 DOI: 10.1016/j.plantsci.2014.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 05/19/2023]
Abstract
In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India
| | - Kalva Madhana Sekhar
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India
| | - Attipalli Ramachandra Reddy
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India.
| |
Collapse
|
38
|
Pazhamala L, Saxena RK, Singh VK, Sameerkumar CV, Kumar V, Sinha P, Patel K, Obala J, Kaoneka SR, Tongoona P, Shimelis HA, Gangarao NVPR, Odeny D, Rathore A, Dharmaraj PS, Yamini KN, Varshney RK. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). FRONTIERS IN PLANT SCIENCE 2015; 6:50. [PMID: 25741349 PMCID: PMC4330709 DOI: 10.3389/fpls.2015.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/20/2015] [Indexed: 05/18/2023]
Abstract
Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding.
Collapse
Affiliation(s)
- Lekha Pazhamala
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Vikas K. Singh
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - C. V. Sameerkumar
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Vinay Kumar
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Pallavi Sinha
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Kishan Patel
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Jimmy Obala
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-NatalScottsville, South Africa
| | - Seleman R. Kaoneka
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-NatalScottsville, South Africa
| | - P. Tongoona
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-NatalScottsville, South Africa
| | - Hussein A. Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-NatalScottsville, South Africa
| | | | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid TropicsNairobi, Kenya
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - P. S. Dharmaraj
- Agricultural Research Station, University of Agricultural SciencesGulbarga, India
| | - K. N. Yamini
- Department of Agricultural Biotechnology, Acharya N. G. Ranga Agricultural UniversityHyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
- *Correspondence: Rajeev K. Varshney, Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid Tropics, Building 300, Patancheru, Hyderabad 502324, India e-mail:
| |
Collapse
|
39
|
Utility of Informative SSR Markers in the Molecular Characterization of Cytoplasmic Genetic Male Sterility-Based Hybrid and its Parents in Pigeonpea. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2014. [DOI: 10.1007/s40009-014-0288-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Müller BSDF, Sakamoto T, de Menezes IPP, Prado GS, Martins WS, Brondani C, de Barros EG, Vianello RP. Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. PLANT MOLECULAR BIOLOGY 2014; 86:455-470. [PMID: 25164100 DOI: 10.1007/s11103-014-0240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.
Collapse
Affiliation(s)
- Bárbara Salomão de Faria Müller
- Laboratório de Genética Molecular de Plantas, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bohra A, Jha UC, Kishor PBK, Pandey S, Singh NP. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 2014; 32:1410-28. [PMID: 25196916 DOI: 10.1016/j.biotechadv.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | | | - Narendra P Singh
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| |
Collapse
|
42
|
Biswas MK, Xu Q, Mayer C, Deng X. Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis). PLoS One 2014; 9:e104182. [PMID: 25148383 PMCID: PMC4141690 DOI: 10.1371/journal.pone.0104182] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community.
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Key Laboratory of Horticultural Plant Biology of Ministry of Education (MOE), Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education (MOE), Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | | | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education (MOE), Huazhong Agricultural University, Wuhan, Hubei, P.R. China
- * E-mail:
| |
Collapse
|
43
|
Hybrid purity assessment in Eucalyptus F 1 hybrids using microsatellite markers. 3 Biotech 2014; 4:367-373. [PMID: 28324473 PMCID: PMC4145623 DOI: 10.1007/s13205-013-0161-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/30/2013] [Indexed: 01/03/2023] Open
Abstract
The worldwide expansion of hybrid breeding and clonal forestry is to meet the demands of paper pulp and bioenergy. Although India was one of the pioneers in hybrid production of eucalypts only recently the hybrid clonal forestry is gaining momentum. Inter-specific hybrids are being produced to exploit the hybrid vigor of F1 individuals. Quality control genotyping for hybrid purity and parentage confirmation at the early stage is one of the essential criteria for clonal propagation and field trails for the assessment of growth performance. Eucalyptus being a obligatory outcrossed species with potential to self pollination, possibilities of pollen contamination are high. Hence, in the present study, Eucalyptus camaldulensis × E. tereticornis inter-specific hybrids were genotyped using 25 fluorescent labeled microsatellite markers available in public domain. Multiplex loading of PCR products was performed successfully for most of the microsatellite loci. Hybrid purity index was calculated and parentage was confirmed. Hybrid purity values ranged from 85 to 100 % showed the efficiency of controlled pollination techniques. A subset of six fully informative simple sequence repeats was identified for routine quality control genotyping for these hybrids. Detection of non-essential genotypes observed among the hybrid seedlings proved the significance of hybrid purity tests and the false hybrids were removed at the seedling stage. The hybrids with proven hybridity will be used for generation of genetic linkage, discovery of quantitative trait loci and the individuals with high productivity can enter into mass clonal multiplication.
Collapse
|
44
|
Doddamani D, Katta MAVSK, Khan AW, Agarwal G, Shah TM, Varshney RK. CicArMiSatDB: the chickpea microsatellite database. BMC Bioinformatics 2014; 15:212. [PMID: 24952649 PMCID: PMC4230034 DOI: 10.1186/1471-2105-15-212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/17/2014] [Indexed: 01/12/2023] Open
Abstract
Background Chickpea (Cicer arietinum) is a widely grown legume crop in tropical, sub-tropical and temperate regions. Molecular breeding approaches seem to be essential for enhancing crop productivity in chickpea. Until recently, limited numbers of molecular markers were available in the case of chickpea for use in molecular breeding. However, the recent advances in genomics facilitated the development of large scale markers especially SSRs (simple sequence repeats), the markers of choice in any breeding program. Availability of genome sequence very recently opens new avenues for accelerating molecular breeding approaches for chickpea improvement. Description In order to assist genetic studies and breeding applications, we have developed a user friendly relational database named the Chickpea Microsatellite Database (CicArMiSatDB http://cicarmisatdb.icrisat.org). This database provides detailed information on SSRs along with their features in the genome. SSRs have been classified and made accessible through an easy-to-use web interface. Conclusions This database is expected to help chickpea community in particular and legume community in general, to select SSRs of particular type or from a specific region in the genome to advance both basic genomics research as well as applied aspects of crop improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India.
| |
Collapse
|
45
|
Saxena RK, von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena K, Kimurto P, Varshney RK. Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS One 2014; 9:e88568. [PMID: 24533111 PMCID: PMC3922937 DOI: 10.1371/journal.pone.0088568] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
Understanding genetic structure of Cajanus spp. is essential for achieving genetic improvement by quantitative trait loci (QTL) mapping or association studies and use of selected markers through genomic assisted breeding and genomic selection. After developing a comprehensive set of 1,616 single nucleotide polymorphism (SNPs) and their conversion into cost effective KASPar assays for pigeonpea (Cajanus cajan), we studied levels of genetic variability both within and between diverse set of Cajanus lines including 56 breeding lines, 21 landraces and 107 accessions from 18 wild species. These results revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, 75.8% of successful SNP assays revealed polymorphism, and more than 95% of these assays could be successfully transferred to related wild species. To show regional patterns of variation, we used STRUCTURE and Analysis of Molecular Variance (AMOVA) to partition variance among hierarchical sets of landraces and wild species at either the continental scale or within India. STRUCTURE separated most of the domesticated germplasm from wild ecotypes, and separates Australian and Asian wild species as has been found previously. Among Indian regions and states within regions, we found 36% of the variation between regions, and 64% within landraces or wilds within states. The highest level of polymorphism in wild relatives and landraces was found in Madhya Pradesh and Andhra Pradesh provinces of India representing the centre of origin and domestication of pigeonpea respectively.
Collapse
Affiliation(s)
- Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Eric von Wettberg
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- Fairchild Tropical Botanic Garden, Kushlan Institute for Tropical Science, Miami, Florida, United States of America
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Vanessa Sanchez
- Florida International University, Department of Earth and Environment, Miami, Florida, United States of America
| | - Serah Songok
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
- Egerton University, Egerton, Kenya
| | - Kulbhushan Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
- * E-mail:
| |
Collapse
|
46
|
Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications. PLoS One 2014; 9:e86039. [PMID: 24465857 PMCID: PMC3900451 DOI: 10.1371/journal.pone.0086039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022] Open
Abstract
A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs) from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinumTranscriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201), comprising 46,369 transcript assembly contigs (TACs) has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8%) of the TACs and gene ontology assignments were determined for 21,471 (46.3%). The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs) and intron spanning regions (ISRs) for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC) of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding applications in chickpea and other related legumes.
Collapse
|
47
|
Ferreira de Carvalho J, Chelaifa H, Boutte J, Poulain J, Couloux A, Wincker P, Bellec A, Fourment J, Bergès H, Salmon A, Ainouche M. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. PLANT MOLECULAR BIOLOGY 2013; 83:591-606. [PMID: 23877482 DOI: 10.1007/s11103-013-0111-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.
Collapse
Affiliation(s)
- J Ferreira de Carvalho
- UMR CNRS 6553 ECOBIO, OSUR, University of Rennes 1, Bât 14A Campus Scientifique de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao YL, Fan G, Saxena KB, Alverson AJ, Spillane C, Town C, Varshney RK. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 2013; 20:485-95. [PMID: 23792890 PMCID: PMC3789559 DOI: 10.1093/dnares/dst025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.
Collapse
Affiliation(s)
- Reetu Tuteja
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Jaime Davila
- Center for Plant Science Innovation, University of Nebraska, Lincoln, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, USA
| | - Trushar Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Wenbin Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Yong-Li Xiao
- J. Craig Venter Institute (JCVI), Rockville, USA
| | - Guangyi Fan
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - K. B. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, Arkansas, USA
| | - Charles Spillane
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- To whom correspondence should be addressed. Tel. +914030713305. Fax. +914030713071. E-mail:
| |
Collapse
|
49
|
Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Mohan SM, Mallikarjuna N, Upadhyaya H, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 2013; 37:811-20. [PMID: 23107917 DOI: 10.1007/s12038-012-9228-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to foliar diseases in groundnut. These trait-associated robust markers along with other genomic resources including genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, India.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 2013; 31:1120-34. [PMID: 23313999 DOI: 10.1016/j.biotechadv.2013.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/16/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; CGIAR Generation Challenge Programme (GCP), c/o CIMMYT, DF 06600, Mexico; The University of Western Australia, Crawley 6009, Australia; Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|