1
|
Del Toro F, Sun H, Robinson C, Jiménez Á, Covielles E, Higuera T, Aguilar E, Tenllado F, Canto T. In planta vs viral expression of HCPro affects its binding of nonplant 21-22 nucleotide small RNAs, but not its preference for 5'-terminal adenines, or its effects on small RNA methylation. THE NEW PHYTOLOGIST 2022; 233:2266-2281. [PMID: 34942019 DOI: 10.1111/nph.17935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Previous studies have found a correlation between the abilities of PVX vector-expressed HCPro variants to bind small RNAs (sRNAs), and to suppress silencing. Moreover, HCPro preferred to bind viral sRNAs of 21-22 nucleotides (nt) containing 5'-terminal adenines. This would require such viral sRNAs to have either different access to the suppressor than those of plant sequences, or different molecular properties. To investigate this preference further, we have used suppressor-competent or suppressor-deficient HCPro variants, expressed from either T-DNAs or potyvirus constructs. Then, the sRNAs generated in plants and associated with the purified HCPro variants were characterized. Marked differences were observed in the ratios of sRNAs of plant vs nonplant origin that bound to suppressor-competent HCPro, depending on the mode of its expression. Regardless of the means of expression, HCPro retained the same preference among the nonplant sRNAs of 21-22 nt for those with 5'-terminal adenines. Relative methylation levels of individual sRNAs were assessed, and the nonplant sRNAs were found to be significantly less methylated in the presence of the suppressor. Targeted binding of sRNAs based on size, 5'-terminal sequence and origin, together with affecting their methylation, could explain how HCPro counteracts silencing.
Collapse
Affiliation(s)
- Francisco Del Toro
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Hao Sun
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Carmen Robinson
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Álvaro Jiménez
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eva Covielles
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tomás Higuera
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Emmanuel Aguilar
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Francisco Tenllado
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
2
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
3
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021; 48:4677-4686. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
4
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
5
|
Chen J, Li Z, Lin B, Liao J, Zhuo K. A Meloidogyne graminicola Pectate Lyase Is Involved in Virulence and Activation of Host Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:651627. [PMID: 33868351 PMCID: PMC8044864 DOI: 10.3389/fpls.2021.651627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 05/27/2023]
Abstract
Plant-parasitic nematodes secrete an array of cell-wall-degrading enzymes to overcome the physical barrier formed by the plant cell wall. Here, we describe a novel pectate lyase gene Mg-PEL1 from M. graminicola. Quantitative real-time PCR assay showed that the highest transcriptional expression level of Mg-PEL1 occurred in pre-parasitic second-stage juveniles, and it was still detected during the early parasitic stage. Using in situ hybridization, we showed that Mg-PEL1 was expressed exclusively within the subventral esophageal gland cells of M. graminicola. The yeast signal sequence trap system revealed that it possessed an N-terminal signal peptide with secretion function. Recombinant Mg-PEL1 exhibited hydrolytic activity toward polygalacturonic acid. Rice plants expressing RNA interference vectors targeting Mg-PEL1 showed an increased resistance to M. graminicola. In addition, using an Agrobacterium-mediated transient expression system and plant immune response assays, we demonstrated that the cell wall localization of Mg-PEL1 was required for the activation of plant defense responses, including programmed plant cell death, reactive oxygen species (ROS) accumulation and expression of defense-related genes. Taken together, our results indicated that Mg-PEL1 could enhance the pathogenicity of M. graminicola and induce plant immune responses during nematode invasion into plants or migration in plants. This provides a new insight into the function of pectate lyases in plants-nematodes interaction.
Collapse
Affiliation(s)
- Jiansong Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Kan Zhuo
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Pitzalis N, Amari K, Graindorge S, Pflieger D, Donaire L, Wassenegger M, Llave C, Heinlein M. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol 2020; 3:702. [PMID: 33230160 PMCID: PMC7683744 DOI: 10.1038/s42003-020-01425-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)–directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection. Pitzalis et al. use replicative RNAseq, small RNA (sRNA)seq, and parallel analysis of RNA ends (PARE)seq analysis to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus infection sites. This study provides insights into the complex regulatory networking at the plantvirus interface within cells undergoing early stages of infection.
Collapse
Affiliation(s)
- Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.,Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Livia Donaire
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100, Murcia, Spain
| | - Michael Wassenegger
- RLP Agroscience, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.,Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
7
|
Spanò R, Ferrara M, Gallitelli D, Mascia T. The Role of Grafting in the Resistance of Tomato to Viruses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1042. [PMID: 32824316 PMCID: PMC7463508 DOI: 10.3390/plants9081042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Grafting is routinely implemented in modern agriculture to manage soilborne pathogens such as fungi, oomycetes, bacteria, and viruses of solanaceous crops in a sustainable and environmentally friendly approach. Some rootstock/scion combinations use specific genetic resistance mechanisms to impact also some foliar and airborne pathogens, including arthropod or contact-transmitted viruses. These approaches resulted in poor efficiency in the management of plant viruses with superior virulence such as the strains of tomato spotted wilt virus breaking the Sw5 resistance, strains of cucumber mosaic virus carrying necrogenic satellite RNAs, and necrogenic strains of potato virus Y. Three different studies from our lab documented that suitable levels of resistance/tolerance can be obtained by grafting commercial tomato varieties onto the tomato ecotype Manduria (Ma) rescued in the framework of an Apulian (southern Italy) regional program on biodiversity. Here we review the main approaches, methods, and results of the three case studies and propose some mechanisms leading to the tolerance/resistance observed in susceptible tomato varieties grafted onto Ma as well as in self-grafted plants. The proposed mechanisms include virus movement in plants, RNA interference, genes involved in graft wound response, resilience, and tolerance to virus infection.
Collapse
Affiliation(s)
- Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA)—CNR, 70126 Bari, Italy;
| | - Donato Gallitelli
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| |
Collapse
|
8
|
Nehela Y, Killiny N. The unknown soldier in citrus plants: polyamines-based defensive mechanisms against biotic and abiotic stresses and their relationship with other stress-associated metabolites. PLANT SIGNALING & BEHAVIOR 2020; 15:1761080. [PMID: 32408848 PMCID: PMC8570725 DOI: 10.1080/15592324.2020.1761080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/07/2023]
Abstract
Citrus plants are challenged by a broad diversity of abiotic and biotic stresses, which definitely alter their growth, development, and productivity. In order to survive the various stressful conditions, citrus plants relay on multi-layered adaptive strategies, among which is the accumulation of stress-associated metabolites that play vital and complex roles in citrus defensive responses. These metabolites included amino acids, organic acids, fatty acids, phytohormones, polyamines (PAs), and other secondary metabolites. However, the contribution of PAs pathways in citrus defense responses is poorly understood. In this review article, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the potential roles of PAs in citrus defensive responses against biotic and abiotic stressors. We believe that PAs-based defensive role, against biotic and abiotic stress in citrus, is involving the interaction with other stress-associated metabolites, particularly phytohormones. The knowledge gained so far about PAs-based defensive responses in citrus underpins our need for further genetic manipulation of PAs biosynthetic genes to produce transgenic citrus plants with modulated PAs content that may enhance the tolerance of citrus plants against stressful conditions. In addition, it provides valuable information for the potential use of PAs or their synthetic analogs and their emergence as a promising approach to practical applications in citriculture to enhance stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
9
|
Efficient silencing gene construct for resistance to multiple common bean ( Phaseolus vulgaris L.) viruses. 3 Biotech 2020; 10:278. [PMID: 32537378 DOI: 10.1007/s13205-020-02276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
One promising strategy to engineer plants that are resistant to plant pathogens involves transforming plants with RNA silencing constructs for resistance to multiple pathogens. Garden bean is significantly damaged by bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV) and cucumber mosaic virus (CMV). In this study, we prepared constructs producing sense, antisense and hairpin RNA (hpRNA) structures to target single as well as multiple viruses. Silencing efficiency of these constructions was analyzed using Agrobacterium (GV3101) transient expression in Nicothinia bethamiana and Phaseolus vulgaris plants. The results showed significantly reduced disease symptoms and virus accumulation in N. bethamiana plants. Generally, the efficiency of the prepared constructs was hairpin, antisense and sense, respectively, and also, there was a significant difference between mono-gene and multiple-gene constructs for reducng virus accumulation and the multiple-gene constructs showed higher effectiveness. Experiments in this study showed that using Agrobacterium harboring binary constructs containing a Caenorhabditis elegans gene, Ced-9, or a plant gene, AtBag-4, anti-apoptosis gene as a mix suspension with an Agrobacterium containing pFGC-BNC.h, a plasmid containing multiple gene fragments consisting of BCMV-CP, BCMNV-HC-Pro and CMV-2b, improved the efficiency of pFGC-BNC.h transformation. We showed reduced virus accumulation in these transgenic bean plans.
Collapse
|
10
|
Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 2020; 10:2538. [PMID: 32054920 PMCID: PMC7018947 DOI: 10.1038/s41598-020-59421-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.
Collapse
|
11
|
Spanò R, Ferrara M, Montemurro C, Mulè G, Gallitelli D, Mascia T. Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 2020. [PMID: 32054920 DOI: 10.1038/s41598-020-59421-59425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.
Collapse
Affiliation(s)
- Roberta Spanò
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy.
| | - Massimo Ferrara
- Istituto di Scienze delle Produzioni Alimentari (ISPA) - CNR Via Amendola 122/O, 70126, Bari, Italy
| | - Cinzia Montemurro
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppina Mulè
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari - CNR, Via Amendola 122/O, 70126, Bari, Italia
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| |
Collapse
|
12
|
Li C, Ito M, Kasajima I, Yoshikawa N. Estimation of the functions of viral RNA silencing suppressors by apple latent spherical virus vector. Virus Genes 2020; 56:67-77. [PMID: 31646461 DOI: 10.1007/s11262-019-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022]
Abstract
Apple latent spherical virus (ALSV) is a latent virus with wide host range of plant species. In the present study, we prepared ALSV vectors expressing RNA silencing suppressors (RSSs) from eight plant viruses: P19 of carnation Italian ring spot virus (tombusvirus), 2b of peanut stunt virus (cucumovirus), NSs of tomato spotted wilt virus (tospovirus), HC-Pro of bean yellow mosaic virus (potyvirus), γb of barley stripe mosaic virus (hordeivirus), P15 of peanut clump virus (pecluvirus), P1 of rice yellow mottle virus (sobemovirus), or P21 of beet yellows virus (closterovirus). These vectors were inoculated to Nicotiana benthamiana to investigate the effects of RSSs on the virulence and accumulation of ALSV. Among the vectors, ALSV expressing NSs (ALSV-NSs) developed severe mosaic symptoms in newly developed leaves followed by plant death. Infection of ALSV-γb induced characteristic concentric ringspot symptoms on leaves, and plants infected with ALSV-HC-Pro showed mosaic and dwarf symptoms. Infection of the other five ALSV vectors did not show symptoms. ELISA and immunoblot assay indicated that virus titer increased in leaves infected with ALSV-NSs, γb, HC-Pro, or P19. RT-qPCR indicated that the amount of ALSV in plants infected with ALSV-NSs was increased by approximately 45 times compared with that of wtALSV without expression of any RSS. When ALSV-P19, NSs, or HC-Pro was inoculated to Cucumis sativus plants, none of these ALSV vectors induced symptoms, but accumulation of ALSV in plants infected with ALSV-NSs was increased, suggesting that functions of RSSs on virulence and accumulation of ALSV depend on host species.
Collapse
Affiliation(s)
- Chunjiang Li
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Makoto Ito
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Ichiro Kasajima
- Agri-Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan.
- Agri-Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
13
|
Zhou K. The alternative splicing of SKU5-Similar3 in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651182. [PMID: 31397618 PMCID: PMC6768224 DOI: 10.1080/15592324.2019.1651182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 05/29/2023]
Abstract
Alternative splicing largely enhanced the diversity of transcriptome and proteome in eukaryas. Along with technological development, more and more genes are reported to be alternatively spliced during mRNA maturation. Here, I report the alternative splicing of SKU5-Similar 3 (SKS3) and its special splicing site in Arabidopsis. SKS3 was predicted to be alternatively transcribed into two variants, SKS3.1 and SKS3.2, which encoded a GPI-anchored protein and a soluble secretory protein, respectively. But, according to experimental data, instead of SKS3.2, a novel variant, SKS3.3, which encodes a protein with a transmembrane region at its C-terminus, was demonstrated. Interestingly, it exhibites a different organ-specific expression pattern with SKS3.1, and an unusual intron splicing site not following 'GT-AG' rule or any reported rule.
Collapse
Affiliation(s)
- Ke Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
15
|
Rabeh K, Gaboun F, Belkadi B, Filali-Maltouf A. In Silico development of new SSRs primer for aquaporin linked to drought tolerance in plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1536630. [PMID: 30380988 PMCID: PMC6279315 DOI: 10.1080/15592324.2018.1536630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants are exposed to various stress factors including biotic and abiotic stresses. Drought is a limiting factor that minimizes the development and growth of several plants in arid and semi-arid regions. Stress response is usually occur at different levels, Morphological, physiological and biochemical while at the molecular level a large number of genes are involved. This study aims at developing a new SSR primer for aquaporin related to drought stress in plants. A total of 177 complete coding sequences (CDS) available in the NCBI database are downloaded. After analyzing with BLAST, 163 sequences are selected. 1294 SSR derived from these sequences are characterized with MISA and indicating that all sequences contained SSRs. The most abundant SSR has been tetra-nucleotide repeat motif (36%) and among all the tetra-nucleotide repeats, the motif AAAG/CTTT was the most common type, whereas in tri-nucleotide, the motif CCG/CGG has been the predominate type. By using Primer3, 1120 primer pairs are generated and after analyzing, only 735 non redundant primer pairs that present the good characteristics are selected. Among them, some of the pairs of primers are randomly selected and validated on DNA of various species using PCR and agarose gel.
Collapse
Affiliation(s)
- Karim Rabeh
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Fatima Gaboun
- Biotechnology Unit, National Institute for Agronomic Research (INRA), Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- CONTACT Abdelkarim Filali-Maltouf ; a.
| |
Collapse
|
16
|
Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:861-873. [PMID: 28628238 DOI: 10.1111/tpj.13614] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/19/2017] [Indexed: 05/18/2023]
Abstract
Uncovering the genetic basis of agronomic traits in wheat landraces is important for ensuring global food security via the development of improved varieties. Here, 723 wheat landraces from 10 Chinese agro-ecological zones were evaluated for 23 agronomic traits in six environments. All accessions could be clustered into five subgroups based on phenotypic data via discriminant function analysis, which was highly consistent with genotypic classification. A genome-wide association study was conducted for these traits using 52 303 DArT-seq markers to identify marker-trait associations and candidate genes. Using both the general linear model and the mixed linear model, 149 significant markers were identified for 21 agronomic traits based on best linear unbiased prediction values. Considering the linkage disequilibrium decay distance in this study, significant markers within 10 cM were combined as a quantitative trait locus (QTL), with a total of 29 QTL identified for 15 traits. Of these, five QTL for heading date, flag leaf width, peduncle length, and thousand kernel weight had been reported previously. Twenty-five candidate genes associated with significant markers were identified. These included the known vernalization genes VRN-B1 and vrn-B3 and the photoperiod response genes Ppd and PRR. Overall, this study should be helpful in elucidating the underlying genetic mechanisms of complex agronomic traits and performing marker-assisted selection in wheat.
Collapse
Affiliation(s)
- Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shang Gao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhanyi Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
17
|
Robles Luna G, Reyes CA, Peña EJ, Ocolotobiche E, Baeza C, Borniego MB, Kormelink R, García ML. Identification and characterization of two RNA silencing suppressors encoded by ophioviruses. Virus Res 2017; 235:96-105. [PMID: 28428007 DOI: 10.1016/j.virusres.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Citrus psorosis virus and Mirafiori lettuce big-vein virus are two members of the genus Ophiovirus, family Ophioviridae. So far, how these viruses can interfere in the antiviral RNA silencing pathway is not known. In this study, using a local GFP silencing assay on Nicotiana benthamiana, the 24K-25K and the movement protein (MP) of both viruses were identified as RNA silencing suppressor proteins. Upon their co-expression with GFP in N. benthamiana 16c plants, the proteins also showed to suppress systemic RNA (GFP) silencing. The MPCPsV and 24KCPsV proteins bind long (114 nucleotides) but not short-interfering (21 nt) dsRNA, and upon transgenic expression, plants showed developmental abnormalities that coincided with an altered miRNA accumulation pattern. Furthermore, both proteins were able to suppress miRNA-induced silencing of a GFP-sensor construct and the co-expression of MPCPsV and 24KCPsV exhibited a stronger effect, suggesting they act at different stages of the RNAi pathway.
Collapse
Affiliation(s)
- Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina.
| | - Eduardo J Peña
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Eliana Ocolotobiche
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Cecilia Baeza
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Maria Belén Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, The Netherlands
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Conti G, Rodriguez MC, Venturuzzi AL, Asurmendi S. Modulation of host plant immunity by Tobamovirus proteins. ANNALS OF BOTANY 2017; 119:737-747. [PMID: 27941090 PMCID: PMC5378186 DOI: 10.1093/aob/mcw216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND To establish successful infection, plant viruses produce profound alterations of host physiology, disturbing unrelated endogenous processes and contributing to the development of disease. In tobamoviruses, emerging evidence suggests that viral-encoded proteins display a great variety of functions beyond the canonical roles required for virus structure and replication. Among these, their modulation of host immunity appears to be relevant in infection progression. SCOPE In this review, some recently described effects on host plant physiology of Tobacco mosaic virus (TMV)-encoded proteins, namely replicase, movement protein (MP) and coat protein (CP), are summarized. The discussion is focused on the effects of each viral component on the modulation of host defense responses, through mechanisms involving hormonal imbalance, innate immunity modulation and antiviral RNA silencing. These effects are described taking into consideration the differential spatial distribution and temporality of viral proteins during the dynamic process of replication and spread of the virus. CONCLUSION In discussion of these mechanisms, it is shown that both individual and combined effects of viral-encoded proteins contribute to the development of the pathogenesis process, with the host plant's ability to control infection to some extent potentially advantageous to the invading virus.
Collapse
Affiliation(s)
- G. Conti
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | | | - A. L. Venturuzzi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | - S. Asurmendi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
- For correspondence. E-mail
| |
Collapse
|
19
|
Atabekova AK, Pankratenko AV, Makarova SS, Lazareva EA, Owens RA, Solovyev AG, Morozov SY. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins. Biochimie 2017; 132:28-37. [PMID: 27770627 DOI: 10.1016/j.biochi.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Anna V Pankratenko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Svetlana S Makarova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
20
|
Cheng X, Wang A. The Potyvirus Silencing Suppressor Protein VPg Mediates Degradation of SGS3 via Ubiquitination and Autophagy Pathways. J Virol 2017; 91:e01478-16. [PMID: 27795417 PMCID: PMC5165207 DOI: 10.1128/jvi.01478-16] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
RNA silencing is an innate antiviral immunity response of plants and animals. To counteract this host immune response, viruses have evolved an effective strategy to protect themselves by the expression of viral suppressors of RNA silencing (VSRs). Most potyviruses encode two VSRs, helper component-proteinase (HC-Pro) and viral genome-linked protein (VPg). The molecular biology of the former has been well characterized, whereas how VPg exerts its function in the suppression of RNA silencing is yet to be understood. In this study, we show that infection by Turnip mosaic virus (TuMV) causes reduced levels of suppressor of gene silencing 3 (SGS3), a key component of the RNA silencing pathway that functions in double-stranded RNA synthesis for virus-derived small interfering RNA (vsiRNA) production. We also demonstrate that among 11 TuMV-encoded viral proteins, VPg is the only one that interacts with SGS3. We furthermore present evidence that the expression of VPg alone, independent of viral infection, is sufficient to induce the degradation of SGS3 and its intimate partner RNA-dependent RNA polymerase 6 (RDR6). Moreover, we discover that the VPg-mediated degradation of SGS3 occurs via both the 20S ubiquitin-proteasome and autophagy pathways. Taken together, our data suggest a role for VPg-mediated degradation of SGS3 in suppression of silencing by VPg. IMPORTANCE Potyviruses represent the largest group of known plant viruses and cause significant losses of many agriculturally important crops in the world. In order to establish infection, potyviruses must overcome the host antiviral silencing response. A viral protein called VPg has been shown to play a role in this process, but how it works is unclear. In this paper, we found that the VPg protein of Turnip mosaic virus (TuMV), which is a potyvirus, interacts with a host protein named SGS3, a key protein in the RNA silencing pathway. Moreover, this interaction leads to the degradation of SGS3 and its interacting and functional partner RDR6, which is another essential component of the RNA silencing pathway. We also identified the cellular pathways that are recruited for the VPg-mediated degradation of SGS3. Therefore, this work reveals a possible mechanism by which VPg sabotages host antiviral RNA silencing to promote virus infection.
Collapse
Affiliation(s)
- Xiaofei Cheng
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
21
|
Sánchez F, Manrique P, Mansilla C, Lunello P, Wang X, Rodrigo G, López-González S, Jenner C, González-Melendi P, Elena SF, Walsh J, Ponz F. Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1304-1315. [PMID: 26646245 DOI: 10.1094/mpmi-05-15-0111-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.
Collapse
Affiliation(s)
- Flora Sánchez
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Manrique
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Mansilla
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Lunello
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Xiaowu Wang
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Rodrigo
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Silvia López-González
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carol Jenner
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Pablo González-Melendi
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Santiago F Elena
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
- 4 The Santa Fe Institute, Santa Fe, New Mexico, U.S.A
| | - John Walsh
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Fernando Ponz
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
22
|
Li H, Ma D, Jin Y, Tu Y, Liu L, Leng C, Dong J, Wang T. Helper component-proteinase enhances the activity of 1-deoxy-D-xylulose-5-phosphate synthase and promotes the biosynthesis of plastidic isoprenoids in Potato virus Y-infected tobacco. PLANT, CELL & ENVIRONMENT 2015; 38:2023-34. [PMID: 25736930 DOI: 10.1111/pce.12526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Virus-infected plants show strong morphological and physiological alterations. Many physiological processes in chloroplast are affected, including the plastidic isoprenoid biosynthetic pathway [the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway]; indeed, isoprenoid contents have been demonstrated to be altered in virus-infected plants. In this study, we found that the levels of photosynthetic pigments and abscisic acid (ABA) were altered in Potato virus Y (PVY)-infected tobacco. Using yeast two-hybrid assays, we demonstrated an interaction between virus protein PVY helper component-proteinase (HC-Pro) and tobacco chloroplast protein 1-deoxy-D-xylulose-5-phosphate synthase (NtDXS). This interaction was confirmed using bimolecular fluorescence complementation (BiFC) assays and pull-down assays. The Transket_pyr domain (residues 394-561) of NtDXS was required for interaction with HC-Pro, while the N-terminal region of HC-Pro (residues 1-97) was necessary for interaction with NtDXS. Using in vitro enzyme activity assays, PVY HC-Pro was found to promote the synthase activity of NtDXS. We observed increases in photosynthetic pigment contents and ABA levels in transgenic plants with HC-Pro accumulating in the chloroplasts. During virus infection, the enhancement of plastidic isoprenoid biosynthesis was attributed to the enhancement of DXS activity by HC-Pro. Our study reveals a new role of HC-Pro in the host plant metabolic system and will contribute to the study of host-virus relationships.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongyuan Ma
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongsheng Jin
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yayi Tu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunxu Leng
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
23
|
A long downstream probe-based platform for multiplex target capture. Anal Biochem 2015; 491:4-9. [PMID: 26344895 DOI: 10.1016/j.ab.2015.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 11/20/2022]
Abstract
A simple and rapid detection platform was established for multiplex target capture through generating single-strand long downstream probe (ssLDP), which was integrated with the ligase detection reaction (LDR) method for the purpose of multiplicity and high specificity. To increase sensitivity, the ladder-like polymerase chain reaction (PCR) amplicons were generated by using universal primers that complement ligated products. Each of the amplicons contained a stuffer sequence with a defined yet variable length. Thus, the length of the amplicon is an index of the specific suppressor, allowing its identification via electrophoresis. The multiplexed diagnostic platform was optimized using standard plasmids and validated by using potato virus suppressors as a detection model. This technique can detect down to 1.2 × 10(3) copies for single or two mixed target plasmids. When compared with microarray results, the electrophoresis showed 98.73-100% concordance rates for the seven suppressors in the 79 field samples. This strategy could be applied to detect a large number of targets in field and clinical surveillance.
Collapse
|
24
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
25
|
Garcia-Ruiz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, Garcia Ruiz MT, McGinn MG, Lowery N, Martinez Baladejo MT, Carrington JC. Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection. PLoS Pathog 2015; 11:e1004755. [PMID: 25806948 PMCID: PMC4373807 DOI: 10.1371/journal.ppat.1004755] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022] Open
Abstract
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro. RNA silencing is a primary, adaptive defense system against viruses in plants. Viruses have evolved counter-defensive mechanisms that inhibit RNA silencing through the activity of silencing suppressor proteins. Understanding how antiviral silencing is controlled, and how suppressor proteins function, is essential for understanding how plants normally resist viruses, why some viruses are highly virulent in different hosts, and how sustainable antiviral resistance strategies can be deployed in agricultural settings. We used a mutant version of Turnip mosaic virus lacking a functional silencing suppressor (HC-Pro) to understand the genetic requirements for resistance in the model plant Arabidopsis thaliana. We focused on ARGONAUTE proteins, which have long been hypothesized to bind short interfering RNAs (siRNAs) derived from virus genomes for use as sequence-specific guides to recognize and target viral RNA for degradation or repression. We demonstrated specialized antiviral roles for specific ARGONAUTES and showed that several can bind viral siRNAs from across the entire viral genome. However, ARGONAUTE proteins are only loaded with virus-derived siRNAs in the absence of HC-Pro, which we showed binds siRNAs from the viral genome. This indicates that several AGO proteins, which collectively are necessary for full anti-TuMV defense, need to properly load virus-derived siRNAs to execute their antiviral roles.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Steen Hoyer
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Computational and Systems Biology Program, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Atsushi Takeda
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Annalisa Giampetruzzi
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mayra T. Garcia Ruiz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Michaela G. McGinn
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Nicholas Lowery
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | | | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
27
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
28
|
Dombrovsky A, Reingold V, Antignus Y. Ipomovirus--an atypical genus in the family Potyviridae transmitted by whiteflies. PEST MANAGEMENT SCIENCE 2014; 70:1553-67. [PMID: 24464680 DOI: 10.1002/ps.3735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/16/2014] [Indexed: 05/02/2023]
Abstract
Ipomoviruses (genus Ipomovirus) are whitefly-transmitted viruses assigned to the family Potyviridae. They are characterised by filamentous flexible particles and a positive-sense single-stranded RNA (+ssRNA) genome. The viral genome is translated into a polyprotein precursor, which is processed into mature proteins and a short overlapping open reading frame. The genus Ipomovirus contains four accepted species and one unapproved species, and two other tentative members have recently been characterised. Ipomoviruses cause serious economic losses in many important crops, including cassava, sweet potato, cucurbits, tomato and aubergine. These viruses are transmitted by whiteflies in a non-circulative, semi-persistent manner, the virions being retained on the external surface of the vectors' mouthparts for a few days or weeks. Comparison of the available complete genome sequences of different ipomoviruses revealed differences in their genome organisation and a considerable variation in their proteins and conserved motifs that may reflect functional differences. This review summarises the current knowledge of the members within the genus Ipomovirus, focusing on genome organisation, taxonomic classification and the mechanism by which they are transmitted.
Collapse
Affiliation(s)
- Aviv Dombrovsky
- Department of Plant Pathology, ARO, The Volcani Centre, Bet Dagan, Israel
| | | | | |
Collapse
|
29
|
Jada B, Soitamo AJ, Siddiqui SA, Murukesan G, Aro EM, Salakoski T, Lehto K. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus. PLoS One 2014; 9:e107778. [PMID: 25244327 PMCID: PMC4171492 DOI: 10.1371/journal.pone.0107778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication complex.
Collapse
Affiliation(s)
- Balaji Jada
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| | - Arto J. Soitamo
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| | | | - Gayatri Murukesan
- Department of Information Technology, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tapio Salakoski
- Department of Information Technology, University of Turku, Turku, Finland
| | - Kirsi Lehto
- Department of Biochemistry, Laboratory of Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Solovyev AG, Savenkov EI. Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1689-97. [PMID: 24420565 DOI: 10.1093/jxb/ert449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Compatible virus-host interactions depend on a suitable milieu in the host cells permitting viral gene expression, replication, and spread. During pathogenesis, viruses hijack the plant cellular machinery to access molecules, subcellular structures, and host transport pathways needed for infection. Vascular trafficking of virus transport forms (VTF) within the phloem is a crucial step in setting-up virus infection within the entire plant. Moreover, vascular trafficking is an essential step for the further transmission of the viruses by their natural vectors as movement of the viruses to the distant parts of the plant from the initial site of infection guarantees accessibility of the virus particle for vector transmission. With the recent advances in the field of plant virology several emerging themes of viral systemic movement occur linking the role of virus-mediated transcriptional reprogramming and nuclear factors in vascular trafficking. Recent studies have uncovered host factors involved in virus vascular trafficking. Surprisingly, it appears that the role of the nucleus and nuclear factors in virus movement is still under-appreciated. This review describes how these new themes started to emerge by using two contrasting modes of virus vascular trafficking. It is argued that the translocation of viral movement proteins into the nuclei is, in many cases, an essential step in promoting virus systemic infection.
Collapse
Affiliation(s)
- Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
31
|
Wu G, Wang J, Yang Y, Dong B, Wang Y, Sun G, Yan C, Yan F, Chen J. Transgenic rice expressing rice stripe virus NS3 protein, a suppressor of RNA silencing, shows resistance to rice blast disease. Virus Genes 2014; 48:566-9. [PMID: 24557730 DOI: 10.1007/s11262-014-1051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The NS3 protein of rice stripe virus (RSV), encoded by the virion strand of RNA3, is a viral suppressor of RNA silencing (VSR). Rice expressing NS3 had a normal phenotype, was initially sensitive to RSV but recovered at the later stages of infection. RSV accumulated slightly more in transgenic than in wild-type plants at the early stage of infection, but accumulation was similar later. Transgenic rice expressing NS3 also showed enhanced resistance to the fungus Magnaporthe oryzae. Meanwhile, expressional levels of genes related to the salicylic acid (SA) and jasmonic acid (JA) pathways were not significantly altered, indicating that the defense to M. oryzae was independent of the SA and JA pathways. We propose that NS3 may have dual functions, facilitating viral infection as a VSR and inhibiting pathogenic development as an inducer of host defense.
Collapse
Affiliation(s)
- Gentu Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weinhold A, Kallenbach M, Baldwin IT. Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC PLANT BIOLOGY 2013; 13:99. [PMID: 23837904 PMCID: PMC3716894 DOI: 10.1186/1471-2229-13-99] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/06/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Genetically modified plants are widely used in agriculture and increasingly in ecological research to enable the selective manipulation of plant traits in the field. Despite their broad usage, many aspects of unwanted transgene silencing throughout plant development are still poorly understood. A transgene can be epigenetically silenced by a process called RNA directed DNA methylation (RdDM), which can be seen as a heritable loss of gene expression. The spontaneous nature of transgene silencing has been widely reported, but patterns of acquirement remain still unclear. RESULTS Transgenic wild tobacco plants (Nicotiana attenuata) expressing heterologous genes coding for antimicrobial peptides displayed an erratic and variable occurrence of transgene silencing. We focused on three independently transformed lines (PNA 1.2, PNA 10.1 and ICE 4.4) as they rapidly lost the expression of the resistance marker and down-regulated transgene expression by more than 200 fold after only one plant generation. Bisulfite sequencing indicated hypermethylation within the 35S and NOS promoters of these lines. To shed light on the progress of methylation establishment, we successively sampled leaf tissues from different stages during plant development and found a rapid increase in 35S promoter methylation during vegetative growth (up to 77% absolute increase within 45 days of growth). The levels of de novo methylation were inherited by the offspring without any visible discontinuation. A secondary callus regeneration step could interfere with the establishment of gene silencing and we found successfully restored transgene expression in the offspring of several regenerants. CONCLUSIONS The unpredictability of the gene silencing process requires a thorough selection and early detection of unstable plant lines. De novo methylation of the transgenes was acquired solely during vegetative development and did not require a generational change for its establishment or enhancement. A secondary callus regeneration step provides a convenient way to rescue transgene expression without causing undesirable morphological effects, which is essential for experiments that use transformed plants in the analysis of ecologically important traits.
Collapse
Affiliation(s)
- Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| |
Collapse
|
33
|
Haikonen T, Rajamäki ML, Valkonen JPT. Interaction of the microtubule-associated host protein HIP2 with viral helper component proteinase is important in infection with potato virus A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:734-44. [PMID: 23489059 DOI: 10.1094/mpmi-01-13-0023-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microtubules (MT) outline and maintain the overall shape of cells and can reorganize cellular membranes to serve as sites of RNA virus replication. Here, we provide data on involvement of an MT-associated protein in infection of plants with a potyvirus, Potato virus A (PVA), representing the largest family of plant-infecting RNA viruses. Our results showed that helper-component proteinase (HCpro)-interacting protein 2 (HIP2) of potato (Solanum tuberosum) is an MT-associated protein similar to Arabidopsis SPR2. Virus-induced silencing of HIP2 in Nicotiana benthamiana resulted in a spiral-like growth phenotype, similar to the Arabidopsis spr2 mutant, and the spr2 phenotype in Arabidopsis was complemented with potato HIP2. HCpro of PVA interacted with HIP2 of potato and tobacco (Nicotiana tabacum). The interaction was detected by bimolecular fluorescence complementation in PVA-infected leaves on MT and MT intersections at the cell cortex. HIP2-HCpro interaction was determined by the C-proximal α-helix-rich domain of HIP2, whereas the N-proximal putative TOG domain and the central coiled-coil domain of HIP2 controlled HIP2 dimerization and binding to MT. Accumulation of PVA was significantly reduced in the HIP2-silenced leaves of N. benthamiana, which indicates that HIP2-HCpro interactions are important for virus infection.
Collapse
Affiliation(s)
- Tuuli Haikonen
- Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
34
|
Carmo LST, Resende RO, Silva LP, Ribeiro SG, Mehta A. Identification of host proteins modulated by the virulence factor AC2 of Tomato chlorotic mottle virus in Nicotiana benthamiana. Proteomics 2013; 13:1947-60. [PMID: 23533094 DOI: 10.1002/pmic.201200547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 11/09/2022]
Abstract
Tomato, one of the most important crops cultivated worldwide, has been severely affected by begomoviruses such as the Tomato chlorotic mottle virus (ToCMoV). Virulence factor AC2 is considered crucial for a successful virus-plant interaction and is known to act as a transcriptional activator and in some begomoviruses to function as an RNA silencing suppressor factor. However, the exact functions of the AC2 protein of the begomovirus ToCMoV are not yet established. The aim of the present study was to identify differentially expressed proteins of the model plant Nicotiana benthamiana in response to the expression of the AC2 gene, isolated from ToCMoV. N. benthamiana plants were inoculated with Agrobacterium tumefaciens containing the viral vector Potato virus X (PVX) and with the PVX-AC2 construction. 2DE was performed and proteins were identified by MS. The results showed that the expression of ToCMoV AC2 alters the levels of several host proteins, which are important for normal plant development, causing an imbalance in cellular homeostasis. This study highlights the effect of AC2 in the modulation of plant defense processes by increasing the expression of several oxidative stress-related and pathogenesis-related proteins, as well as its role in modulating the proteome of the photosynthesis and energy production systems.
Collapse
|
35
|
Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. Citrus tristeza virus-host interactions. Front Microbiol 2013; 4:88. [PMID: 23717303 PMCID: PMC3653117 DOI: 10.3389/fmicb.2013.00088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022] Open
Abstract
Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases.
Collapse
Affiliation(s)
- W. O. Dawson
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. M. Garnsey
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Tatineni
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Y. Folimonova
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | - S. J. Harper
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Gowda
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| |
Collapse
|
36
|
Tian YP, Valkonen JPT. Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:297-305. [PMID: 23113714 DOI: 10.1094/mpmi-09-12-0219-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato virus Y (PVY) (genus Potyvirus) is the most economically damaging and widely distributed virus in potato. Spread of PVY in the field is controlled by growing resistant cultivars. The dominant potato gene Ny(tbr) for hypersensitive resistance (HR) controls ordinary PVY strains (PVY(O)) but is overcome by PVY(N) strains. Studies with infectious PVY chimeras and mutants indicated that the viral determinants necessary and sufficient to overcome Ny(tbr) reside within the helper component proteinase (HC-Pro) (residues 227 to 327). Specifically, eight residues and the modeled three-dimensional conformation of this HC-Pro region distinguish PVY(N) from PVY(O) strains. According to the model, the conserved IGN and CCCT motifs implicated in potyvirus replication and movement, respectively, are situated in a coiled structure and an α-helix, respectively, within this region in PVY(O); however, their locations are reversed in PVY(N). Two residues (R269 and K270) are crucial for the predicted PVY(O)-specific HC-Pro conformation. Two viral chimeras triggered Ny(tbr) and induced veinal necrosis in tobacco, which is novel for PVY. One chimera belonged to strain group PVY(E). Our results suggest a structure-function relationship in recognition of PVY(O) HC-Pro by Ny(tbr), reveal HC-Pro amino acid signatures specific to PVY(O) and PVY(N), and facilitate identification of PVY strains overcoming Ny(tbr).
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, Finland
| | | |
Collapse
|
37
|
Jada B, Soitamo AJ, Lehto K. Organ-specific alterations in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC PLANT BIOLOGY 2013; 13:8. [PMID: 23297695 PMCID: PMC3562197 DOI: 10.1186/1471-2229-13-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA silencing affects a broad range of regulatory processes in all eukaryotes ranging from chromatin structure maintenance to transcriptional and translational regulation and longevity of the mRNAs. Particularly in plants, it functions as the major defense mechanism against viruses. To counter-act this defense, plant viruses produce suppressors of RNA silencing (Viral suppressors of RNA silencing, VSRSs), which are essential for viruses to invade their specific host plants. Interactions of these VSRSs with the hosts' silencing pathways, and their direct and indirect interference with different cellular regulatory networks constitute one of the main lines of the molecular virus-host interactions. Here we have used a microarray approach to study the effects of the Potato virus X Potexvirus (PVX)-specific P25 VSRS protein on the transcript profile of tobacco plants, when expressed as a transgene in these plants. RESULTS The expression of the PVX-specific P25 silencing suppressor in transgenic tobacco plants caused significant up-regulation of 1350 transcripts, but down-regulation of only five transcripts in the leaves, and up- and down-regulation of 51 and 13 transcripts, respectively, in the flowers of these plants, as compared to the wild type control plants. Most of the changes occurred in the transcripts related to biotic and abiotic stresses, transcription regulation, signaling, metabolic pathways and cell wall modifications, and many of them appeared to be induced through up-regulation of the signaling pathways regulated by ethylene, jasmonic acid and salicylic acid. Correlations of these alterations with the protein profile and related biological functions were analyzed. Surprisingly, they did not cause significant alterations in the protein profile, and caused only very mild alteration in the phenotype of the P25-expressing transgenic plants. CONCLUSION Expression of the PVX-specific P25 VSRS protein causes major alterations in the transcriptome of the leaves of transgenic tobacco plants, but very little of any effects in the young flowers of the same plants. The fairly stable protein profile in the leaves and lack of any major changes in the plant phenotype indicate that the complicated interplay and interactions between different regulatory levels are able to maintain homeostasis in the plants.
Collapse
Affiliation(s)
- Balaji Jada
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| |
Collapse
|
38
|
Soitamo AJ, Jada B, Lehto K. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC PLANT BIOLOGY 2012; 12:204. [PMID: 23130567 PMCID: PMC3519546 DOI: 10.1186/1471-2229-12-204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/24/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS) proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum) leaves and in flowers. RESULTS Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. CONCLUSIONS AC2 RSS in transgenic tobacco plants interferes with the silencing machinery. It causes stress and defence reactions for instance via induction of the jasmonate and ethylene biosynthesis, and by consequent gene expression alteration regulated by these hormones. The changed sugar metabolism may cause significant down-regulation of genes encoding ribosomal proteins, thus reducing the general translation level.
Collapse
Affiliation(s)
- Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Vesilinnantie 5, LTII, 2.floor, Turku, 20014, Finland
| | - Balaji Jada
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Vesilinnantie 5, LTII, 2.floor, Turku, 20014, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Vesilinnantie 5, LTII, 2.floor, Turku, 20014, Finland
| |
Collapse
|
39
|
Sochor J, Babula P, Adam V, Krska B, Kizek R. Sharka: the past, the present and the future. Viruses 2012; 4:2853-901. [PMID: 23202508 PMCID: PMC3509676 DOI: 10.3390/v4112853] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Members the Potyviridae family belong to a group of plant viruses that are causing devastating plant diseases with a significant impact on agronomy and economics. Plum pox virus (PPV), as a causative agent of sharka disease, is widely discussed. The understanding of the molecular biology of potyviruses including PPV and the function of individual proteins as products of genome expression are quite necessary for the proposal the new antiviral strategies. This review brings to view the members of Potyviridae family with respect to plum pox virus. The genome of potyviruses is discussed with respect to protein products of its expression and their function. Plum pox virus distribution, genome organization, transmission and biochemical changes in infected plants are introduced. In addition, techniques used in PPV detection are accentuated and discussed, especially with respect to new modern techniques of nucleic acids isolation, based on the nanotechnological approach. Finally, perspectives on the future of possibilities for nanotechnology application in PPV determination/identification are outlined.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Boris Krska
- Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic;
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
40
|
Shi T, Zhuang W, Zhang Z, Sun H, Wang L, Gao Z. Comparative proteomic analysis of pistil abortion in Japanese apricot (Prunus mume Sieb. et Zucc). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1301-1310. [PMID: 22717137 DOI: 10.1016/j.jplph.2012.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/28/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
The phenomenon of pistil abortion widely occurs in Japanese apricot and has seriously affected the yield in production. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight/time of flight (MALDI-TOF/TOF) approaches to identify the differentially expressed proteome between perfect and imperfect flower buds in Japanese apricot. More than 400 highly reproducible protein spots (P<0.05) were detected and 27 protein spots showed a greater than two-fold difference in their expression values. The proteins identified were classified into eight functional classifications and ten process categories, according to the Gene Ontology (GO). Acetyl-CoA produced by ATP citrate lyase (ACL) as a structural substance during formation of the cell wall could regulate pistil abortion in Japanese apricot. S-adenosylmethionine (SAM), xyloglucan endotransglucosylase/hydrolases (XTHs) and caffeoyl-CoA-O-methyl transferase (CCoAOMT) could promote cell wall formation in perfect flower buds of Japanese apricot, greatly contributing to pistil development. Spermidine hydroxycinnamoyl transferase (SHT) may be involved in the O-methylation of spermidine conjugates and could contribute to abnormal floral development. The identification of such differentially expressed proteins provides new targets for future studies that will assess their physiological roles and significance in pistil abortion.
Collapse
Affiliation(s)
- Ting Shi
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Pacheco R, García-Marcos A, Barajas D, Martiáñez J, Tenllado F. PVX-potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res 2012; 165:231-5. [PMID: 22387565 DOI: 10.1016/j.virusres.2012.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 01/13/2023]
Abstract
In comparison to single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) or Plum pox virus (PPV), resulted in increased systemic symptoms (synergism in pathology). Previous studies have shown that virus infections affected the accumulation of various microRNAs (miRNAs) and miRNA target genes. Our studies revealed that double infection by PVX and PVY or PPV that produced the most severe symptoms in N. benthamiana altered accumulation of miR156, 171, 398, and 168, and/or their target transcripts to a greater extent or in a different direction than single infections that produced milder symptoms. These findings indicate a differential effect on miRNA metabolism of the combined infection by two unrelated plant viruses, which may account in part for the severe symptoms caused by PVX/potyvirus-associated synergisms.
Collapse
Affiliation(s)
- Remedios Pacheco
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Pacheco R, García-Marcos A, Manzano A, de Lacoba MG, Camañes G, García-Agustín P, Díaz-Ruíz JR, Tenllado F. Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:709-23. [PMID: 22273391 DOI: 10.1094/mpmi-11-11-0305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hypersensitive response-related programmed cell death (PCD) has been extensively analyzed in various plant-virus interactions. However, little is known about the changes in gene expression and phytohormone levels associated with cell death caused by compatible viruses. The synergistic interaction of Potato virus X (PVX) with a number of Potyvirus spp. results in increased symptoms that lead to systemic necrosis (SN) in Nicotiana benthamiana. Here, we show that SN induced by a PVX recombinant virus expressing a potyviral helper component-proteinase (HC-Pro) gene is associated with PCD. We have also compared transcriptomic and hormonal changes that occur in response to a compatible synergistic virus interaction that leads to SN, a systemic incompatible interaction conferred by the Tobacco mosaic virus-resistance gene N, and a PCD response conditioned by depletion of proteasome function. Our analysis indicates that the SN response clusters with the incompatible response by the similarity of their overall gene expression profiles. However, the expression profiles of both defense-related genes and hormone-responsive genes, and also the relative accumulation of several hormones in response to SN, relate more closely to the response to depletion of proteasome function than to that elicited by the incompatible interaction. This suggests a potential contribution of proteasome dysfunction to the increased pathogenicity observed in PVX-Potyvirus mixed infections. Furthermore, silencing of coronatine insensitive 1, a gene involved in jasmonate perception, in N. benthamiana accelerated cell death induced by PVX expressing HC-Pro.
Collapse
Affiliation(s)
- Remedios Pacheco
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sardo L, Wege C, Kober S, Kocher C, Accotto GP, Noris E. RNA viruses and their silencing suppressors boost Abutilon mosaic virus, but not the Old World Tomato yellow leaf curl Sardinia virus. Virus Res 2011; 161:170-80. [PMID: 21843560 DOI: 10.1016/j.virusres.2011.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
Abstract
Mixed viral infections can induce different changes in symptom development, genome accumulation and tissue tropism. These issues were investigated for two phloem-limited begomoviruses, Abutilon mosaic virus (AbMV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) in Nicotiana benthamiana plants doubly infected by either the potyvirus Cowpea aphid-borne mosaic virus (CABMV) or the tombusvirus Artichoke mottled crinkle virus (AMCV). Both RNA viruses induced an increase of the amount of AbMV, led to its occasional egress from the phloem and induced symptom aggravation, while the amount and tissue tropism of TYLCSV were almost unaffected. In transgenic plants expressing the silencing suppressors of CABMV (HC-Pro) or AMCV (P19), AbMV was supported to a much lesser extent than in the mixed infections, with the effect of CABMV HC-Pro being superior to that of AMCV P19. Neither of the silencing suppressors influenced TYLCSV accumulation. These results demonstrate that begomoviruses differentially respond to the invasion of other viruses and to silencing suppression.
Collapse
Affiliation(s)
- Luca Sardo
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | | | | | | | | | | |
Collapse
|