1
|
Xi R, Ma J, Qiao X, Wang X, Ye H, Zhou H, Yue M, Zhao P. Genome-Wide Identification of the WD40 Gene Family in Walnut ( Juglans regia L.) and Its Expression Profile in Different Colored Varieties. Int J Mol Sci 2025; 26:1071. [PMID: 39940845 PMCID: PMC11817448 DOI: 10.3390/ijms26031071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut varieties have emerged, attracting consumer interest due to their high nutritional values as they are rich in anthocyanins. WD40 is a widespread superfamily in eukaryotes that play roles in plant color regulation and resistance to stresses. In order to screen for JrWD40 associated with walnut color, we identified 265 JrWD40s in walnuts by genome-wide identification, which were unevenly distributed on 16 chromosomes. According to the phylogenetic tree, all JrWD40s were classified into six clades. WGD (Whole genome duplication) is the main reason for the expansion of the JrWD40 gene family. JrWD40s were relatively conserved during evolution, but their gene structures were highly varied; lower sequence similarity may be the main reason for the functional diversity of JrWD40s. Some JrWD40s were highly expressed only in red or green walnuts. In addition, we screened 16 unique JrWD40s to walnuts based on collinearity analysis. By qRT-PCR, we found that JrWD40-133, JrWD40-150, JrWD40-155, and JrWD40-206 may regulate anthocyanin synthesis through positive regulation, whereas JrWD40-65, JrWD40-172, JrWD40-191, JrWD40-224, and JrWD40-254 may inhibit anthocyanin synthesis, suggesting that these JrWD40s are key genes affecting walnut color variation.
Collapse
Affiliation(s)
- Ruimin Xi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (R.X.); (J.M.); (X.Q.); (X.W.); (H.Y.)
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (R.X.); (J.M.); (X.Q.); (X.W.); (H.Y.)
| | - Xinyi Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (R.X.); (J.M.); (X.Q.); (X.W.); (H.Y.)
| | - Xinhao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (R.X.); (J.M.); (X.Q.); (X.W.); (H.Y.)
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (R.X.); (J.M.); (X.Q.); (X.W.); (H.Y.)
| | - Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, Shaanxi Academy of Science, Xi’an 710061, China; (H.Z.); (M.Y.)
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, Shaanxi Academy of Science, Xi’an 710061, China; (H.Z.); (M.Y.)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (R.X.); (J.M.); (X.Q.); (X.W.); (H.Y.)
| |
Collapse
|
2
|
Yang L, Yang L, Zhao C, Bai Z, Xie M, Liu J, Cui X, Bouwmeester K, Liu S. Unravelling alternative splicing patterns in susceptible and resistant Brassica napus lines in response to Xanthomonas campestris infection. BMC PLANT BIOLOGY 2024; 24:1027. [PMID: 39472805 PMCID: PMC11523580 DOI: 10.1186/s12870-024-05728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an important oil and industrial crop worldwide. Black rot caused by the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is an infectious vascular disease that leads to considerable yield losses in rapeseed. Resistance improvement through genetic breeding is an effective and sustainable approach to control black rot disease in B. napus. However, the molecular mechanisms underlying Brassica-Xcc interactions are not yet fully understood, especially regarding the impact of post-transcriptional gene regulation via alternative splicing (AS). RESULTS In this study, we compared the AS landscapes of a susceptible parental line and two mutagenized B. napus lines with contrasting levels of black rot resistance. Different types of AS events were identified in these B. napus lines at three time points upon Xcc infection, among which intron retention was the most common AS type. A total of 1,932 genes was found to show differential AS patterns between different B. napus lines. Multiple defense-related differential alternative splicing (DAS) hub candidates were pinpointed through an isoform-based co-expression network analysis, including genes involved in pathogen recognition, defense signalling, transcriptional regulation, and oxidation reduction. CONCLUSION This study provides new insights into the potential effects of post-transcriptional regulation on immune responses in B. napus towards Xcc attack. These findings could be beneficial for the genetic improvement of B. napus to achieve durable black rot resistance in the future.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
- Present Address: School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Present Address: National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Jie Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Xiaobo Cui
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| |
Collapse
|
3
|
Robinson KM, Schiffthaler B, Liu H, Rydman SM, Rendón-Anaya M, Kalman TA, Kumar V, Canovi C, Bernhardsson C, Delhomme N, Jenkins J, Wang J, Mähler N, Richau KH, Stokes V, A'Hara S, Cottrell J, Coeck K, Diels T, Vandepoele K, Mannapperuma C, Park EJ, Plaisance S, Jansson S, Ingvarsson PK, Street NR. An Improved Chromosome-scale Genome Assembly and Population Genetics resource for Populus tremula. PHYSIOLOGIA PLANTARUM 2024; 176:e14511. [PMID: 39279509 DOI: 10.1111/ppl.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Aspen (Populus tremula L.) is a keystone species and a model system for forest tree genomics. We present an updated resource comprising a chromosome-scale assembly, population genetics and genomics data. Using the resource, we explore the genetic basis of natural variation in leaf size and shape, traits with complex genetic architecture. We generated the genome assembly using long-read sequencing, optical and high-density genetic maps. We conducted whole-genome resequencing of the Umeå Aspen (UmAsp) collection. Using the assembly and re-sequencing data from the UmAsp, Swedish Aspen (SwAsp) and Scottish Aspen (ScotAsp) collections we performed genome-wide association analyses (GWAS) using Single Nucleotide Polymorphisms (SNPs) for 26 leaf physiognomy phenotypes. We conducted Assay of Transposase Accessible Chromatin sequencing (ATAC-Seq), identified genomic regions of accessible chromatin, and subset SNPs to these regions, improving the GWAS detection rate. We identified candidate long non-coding RNAs in leaf samples, quantified their expression in an updated co-expression network, and used this to explore the functions of candidate genes identified from the GWAS. A GWAS found SNP associations for seven traits. The associated SNPs were in or near genes annotated with developmental functions, which represent candidates for further study. Of particular interest was a ~177-kbp region harbouring associations with several leaf phenotypes in ScotAsp. We have incorporated the assembly, population genetics, genomics, and GWAS data into the PlantGenIE.org web resource, including updating existing genomics data to the new genome version, to enable easy exploration and visualisation. We provide all raw and processed data to facilitate reuse in future studies.
Collapse
Affiliation(s)
- Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Hui Liu
- National Engineering Laboratory for Tree Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Sara M Rydman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Martha Rendón-Anaya
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Teitur Ahlgren Kalman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Vikash Kumar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Camilla Canovi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Carolina Bernhardsson
- Evolutionary Biology Centre, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Jerry Jenkins
- Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Kerstin H Richau
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | - Stuart A'Hara
- Forest Research, Northern Research Station, Roslin, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Roslin, UK
| | - Kizi Coeck
- Vlaams Instituut voor Biotechnologie Nucleomics Core, Leuven, Belgium
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Eung-Jun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Suwon, Korea
| | | | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
5
|
Xiong W, Li D, Ao F, Tu Z, Xiong J. The role and molecular mechanism of NOP16 in the pathogenesis of nasopharyngeal carcinoma. Cell Biochem Funct 2024; 42:e3939. [PMID: 38454810 DOI: 10.1002/cbf.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
We aimed to explore the effects of NOP16 on the pathogenesis of nasopharyngeal carcinoma (NPC) and the related mechanism. In this study, the expression level of NOP16 in NPC tissues and adjacent tissues was measured by qRT-polymerase chain reaction (PCR) and immunohistochemistry (IHC) tests. In the in vitro study, the expression levels of NOP16 and RhoA/phosphatidylinositol 3-kinase (PI3K)/Akt/c-Myc and IKK/IKB/NF-κB signalling pathway-related proteins in NPC cells were measured by qRT-PCR and Western blot (WB). CCK8 assays and colony formation assays were used to detect cell proliferation. Transwell assays were used to detect the migration and invasion ability of NPC cells. Flow cytometry and WB were used to measure the level of apoptosis. For the in vivo study, NPC xenograft models were established in nude mice, and tumour weight and volume were recorded. The expression levels of NOP16 and RhoA/PI3K/Akt/c-Myc signalling pathway-related proteins and mRNAs were measured by immunofluorescence, qRT-PCR and WB experiments. In clinical samples, the results of qRT-PCR and IHC experiments showed that the expression level of NOP16 was significantly increased in NPC tissues. In the in vitro study, the results of qRT-PCR and WB experiments showed that NOP16 was significantly increased in NPC cells. The CCK8 assay, colony formation assay, transwell assay and flow cytometry results showed that knocking out NOP16 inhibited the proliferation, migration and invasion of NPC cells and increased apoptosis. WB results showed that knocking out NOP16 inhibited the RhoA/PI3K/Akt/c-Myc and IKK/IKB/NF-κB signalling pathways. These effects were reversed by 740Y-P (PI3K activator). In the in vivo study, knockdown of NOP16 reduced tumour volume and weight and inhibited the RhoA/PI3K/Akt/c-Myc signalling pathway. In conclusion, knockdown of NOP16 inhibited the proliferation, migration and invasion of NPC cells and induced apoptosis by inhibiting the RhoA/PI3K/Akt/c-Myc and IKK/IKB/NF-κB pathways, leading to the malignant phenotype of NPC.
Collapse
Affiliation(s)
- Wenmin Xiong
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Daojing Li
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Fenghua Ao
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ziwei Tu
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Mu S, Tian Q, Shen L. NOP16 promotes hepatocellular carcinoma progression and triggers EMT through the Keap1-Nrf2 signaling pathway. Technol Health Care 2024; 32:2463-2483. [PMID: 38251077 PMCID: PMC11322705 DOI: 10.3233/thc-231256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Nucleolar protein 16 (NOP16) is present in the protein complex of the nucleolus. The NOP16 promoter contains a c-Myc binding site, and the transcriptional regulation by c-Myc directly regulates NOP16 expression levels. OBJECTIVE Dysregulation of NOP 16 is currently reported in only a small number of cancers. In this study, the expression profile of NOP 16 in hepatocellular carcinoma (LIHC) and its clinical significance were analyzed. METHODS NOP16 expression in hepatocellular carcinoma (LIHC) and its relationship with the clinical characters of LIHC were examined using the Cancer Genome Atlas (TCGA), the Gene Expression comprehensive database (GEO), Kaplan-Meier survival analysis, univariate Cox analysis, multivariate Cox analysis, ROC curve analysis of KEGG enrichment, GSEA enrichment, in vitro experiments (e.g., siRNA interference of NOP16 expression in hepatoma cells, Keap1-Nrf2 pathway, cell cycle, cell apoptosis and Transwell assays), and LIHC single-cell sequencing (scRNA). RESULTS Pan-cancer analysis revealed that NOP16 was highly expressed in 20 cancer types, including LIHC, and high NOP16 expression was an independent adverse prognostic factor in LIHC patients. The expression levels of NOP16 mRNA and protein were significantly increased in tumour tissues of LIHC patients compared to normal tissues. The functions of co-expressed genes were primarily enriched in the cell cycle and reactive oxygen species metabolism. The experimental results showed that knockdown of NOP16 activated the Keap/Nrf2 signalling pathway and inhibited the invasion, migration, and EMT progression of LIHC cells. LIHC scRNA-seq data showed that NOP16 was primarily expressed in T lymphocytes. CONCLUSIONS NOP16 promoted cancer development in LIHC and caused an imbalance in Keap/Nrf2 signalling, which subsequently caused the aberrant expression of genes typical for EMT, cell cycle progression and apoptosis. NOP16 is a potential prognostic marker and therapeutic target for hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Shangdong Mu
- Department of Oncology, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Qiusi Tian
- Department of Neurosurgery, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Liangyu Shen
- Department of Anesthesia, Operation Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. Expanding the repertoire of human tandem repeat RNA-binding proteins. PLoS One 2023; 18:e0290890. [PMID: 37729217 PMCID: PMC10511089 DOI: 10.1371/journal.pone.0290890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Protein regions consisting of arrays of tandem repeats are known to bind other molecular partners, including nucleic acid molecules. Although the interactions between repeat proteins and DNA are already widely explored, studies characterising tandem repeat RNA-binding proteins are lacking. We performed a large-scale analysis of human proteins devoted to expanding the knowledge about tandem repeat proteins experimentally reported as RNA-binding molecules. This work is timely because of the release of a full set of accurate structural models for the human proteome amenable to repeat detection using structural methods. The main goal of our analysis was to build a comprehensive set of human RNA-binding proteins that contain repeats at the sequence or structure level. Our results showed that the combination of sequence and structural methods finds significantly more tandem repeat proteins than either method alone. We identified 219 tandem repeat proteins that bind RNA molecules and characterised the overlap between repeat regions and RNA-binding regions as a first step towards assessing their functional relationship. We observed differences in the characteristics of repeat regions predicted by sequence-based or structure-based methods in terms of their sequence composition, their functions and their protein domains.
Collapse
Affiliation(s)
- Agustín Ormazábal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Matías Sebastián Carletti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Tadeo Enrique Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul, Buenos Aires, Argentina
| | - Martín Gonzalez Buitron
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
8
|
Jiang A, Liu J, Gao W, Ma R, Tan P, Liu F, Zhang J. Construction of a genetic map and QTL mapping of seed size traits in soybean. Front Genet 2023; 14:1248315. [PMID: 37693311 PMCID: PMC10485605 DOI: 10.3389/fgene.2023.1248315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Soybean seed size and seed shape traits are closely related to plant yield and appearance quality. In this study, 186 individual plants of the F2 generation derived from crosses between Changjiang Chun 2 and JiYu 166 were selected as the mapping population to construct a molecular genetic linkage map, and the phenotypic data of hundred-grain weight, seed length, seed width, and seed length-to-width ratio of soybean under three generations of F2 single plants and F2:3 and F2:4 lines were combined to detect the QTL (quantitative trait loci) for the corresponding traits by ICIM mapping. A soybean genetic map containing 455 markers with an average distance of 6.15 cM and a total length of 2799.2 cM was obtained. Forty-nine QTLs related to the hundred-grain weight, seed length, seed width, and seed length-to-width ratio of soybean were obtained under three environmental conditions. A total of 10 QTLs were detected in more than two environments with a phenotypic variation of over 10%. Twelve QTL clusters were identified on chromosomes 1, 2, 5, 6, 8, 13, 18, and 19, with the majority of the overlapping intervals for hundred-grain weight and seed width. These results will lay the theoretical and technical foundation for molecularly assisted breeding in soybean seed weight and seed shape. Eighteen candidate genes that may be involved in the regulation of soybean seed size were screened by gene functional annotation and GO enrichment analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Ahn E, Botkin J, Ellur V, Lee Y, Poudel K, Prom LK, Magill C. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2344. [PMID: 37375969 DOI: 10.3390/plants12122344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Sorghum is considered the fifth most important crop in the world. Despite the potential value of Senegalese germplasm for various traits, such as resistance to fungal diseases, there is limited information on the study of sorghum seed morphology. In this study, 162 Senegalese germplasms were evaluated for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness and brightness by scanning and analyzing morphology-related traits with SmartGrain software at the USDA-ARS Plant Science Research Unit. Correlations between seed morphology-related traits and traits associated with anthracnose and head smut resistance were analyzed. Lastly, genome-wide association studies were performed on phenotypic data collected from over 16,000 seeds and 193,727 publicly available single nucleotide polymorphisms (SNPs). Several significant SNPs were found and mapped to the reference sorghum genome to uncover multiple candidate genes potentially associated with seed morphology. The results indicate clear correlations among seed morphology-related traits and potential associations between seed morphology and the defense response of sorghum. GWAS analysis listed candidate genes associated with seed morphologies that can be used for sorghum breeding in the future.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Vishnutej Ellur
- Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yoonjung Lee
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kabita Poudel
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Lukanda MM, Dramadri IO, Adjei EA, Badji A, Arusei P, Gitonga HW, Wasswa P, Edema R, Ochwo-Ssemakula M, Tukamuhabwa P, Muthuri HM, Tusiime G. Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean. Genes (Basel) 2023; 14:1271. [PMID: 37372451 PMCID: PMC10298659 DOI: 10.3390/genes14061271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean.
Collapse
Affiliation(s)
- Musondolya Mathe Lukanda
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Faculté des Sciences Agronomiques, Université Catholique du Graben, Butembo P.O. Box 29, Democratic Republic of the Congo
| | - Isaac Onziga Dramadri
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Emmanuel Amponsah Adjei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Council for Scientific and Industrial Research-Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Perpetua Arusei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Department of Biological Sciences, Moi University, Eldoret P.O. Box 3900-30100, Kenya
| | - Hellen Wairimu Gitonga
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Richard Edema
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Mildred Ochwo-Ssemakula
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Harun Murithi Muthuri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA;
- International Institute of Tropical Agriculture (IITA), ILRI, Nairobi P.O. Box 30709-00100, Kenya
| | - Geoffrey Tusiime
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| |
Collapse
|
11
|
Yan C, Yang T, Wang B, Yang H, Wang J, Yu Q. Genome-Wide Identification of the WD40 Gene Family in Tomato ( Solanum lycopersicum L.). Genes (Basel) 2023; 14:1273. [PMID: 37372453 DOI: 10.3390/genes14061273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
WD40 proteins are a superfamily of regulatory proteins widely found in eukaryotes that play an important role in regulating plant growth and development. However, the systematic identification and characterization of WD40 proteins in tomato (Solanum lycopersicum L.) have not been reported. In the present study, we identified 207 WD40 genes in the tomatoes genome and analyzed their chromosomal location, gene structure and evolutionary relationships. A total of 207 tomato WD40 genes were classified by structural domain and phylogenetic tree analyses into five clusters and 12 subfamilies and were found to be unevenly distributed across the 12 tomato chromosomes. We identified six tandem duplication gene pairs and 24 segmental duplication pairs in the WD40 gene family, with segmental duplication being the major mode of expansion in tomatoes. Ka/Ks analysis revealed that paralogs and orthologs of WD40 family genes underwent mainly purifying selection during the evolutionary process. RNA-seq data from different tissues and developmental periods of tomato fruit development showed tissue-specific expression of WD40 genes. In addition, we constructed four coexpression networks according to the transcriptome and metabolome data for WD40 proteins involved in fruit development that may be related to total soluble solid formation. The results provide a comprehensive overview of the tomato WD40 gene family and will provide valuable information for the validation of the function of tomato WD40 genes in fruit development.
Collapse
Affiliation(s)
- Cunyao Yan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Haitao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830000, China
| |
Collapse
|
12
|
Wang T, Xu F, Wang Z, Wu Q, Cheng W, Que Y, Xu L. Mapping of QTLs and Screening Candidate Genes Associated with the Ability of Sugarcane Tillering and Ratooning. Int J Mol Sci 2023; 24:2793. [PMID: 36769121 PMCID: PMC9917849 DOI: 10.3390/ijms24032793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The processes of sugarcane tillering and ratooning, which directly affect the yield of plant cane and ratoon, are of vital importance to the population establishment and the effective stalk number per unit area. In the present study, the phenotypic data of 285 F1 progenies from a cross of sugarcane varieties YT93-159 × ROC22 were collected in eight environments, which consisted of plant cane and ratoon cultivated in three different ecological sites. The broad sense heritability (H2) of the tillering and the ratoon sprouting was 0.64 and 0.63, respectively, indicating that they were middle to middle-high heritable traits, and there is a significantly positive correlation between the two traits. Furthermore, a total of 26 quantitative trait loci (QTLs) related to the tillering ability and 11 QTLs associated with the ratooning ability were mapped on two high-quality genetic maps derived from a 100K SNP chip, and their phenotypic variance explained (PVE) ranged from 4.27-25.70% and 6.20-13.54%, respectively. Among them, four consistent QTLs of qPCTR-R9, qPCTR-Y28, qPCTR-Y60/qRSR-Y60 and PCTR-Y8-1/qRSR-Y8 were mapped in two environments, of which, qPCTR-Y8-1/qRSR-Y8 had the PVEs of 11.90% in the plant cane and 7.88% in the ratoon. Furthermore, a total of 25 candidate genes were identified in the interval of the above four consistent QTLs and four major QTLs of qPCTR-Y8-1, qPCTR-Y8-2, qRSR-R51 and qRSR-Y43-2, with the PVEs from 11.73-25.70%. All these genes were associated with tillering, including eight transcription factors (TFs), while 15 of them were associated with ratooning, of which there were five TFs. These QTLs and genes can provide a scientific reference for genetic improvement of tillering and ratooning traits in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Li YX, Lu J, He C, Wu X, Cui Y, Chen L, Zhang J, Xie Y, An Y, Liu X, Zhen S, Liu Y, Li C, Zhang D, Shi YS, Song Y, Wang J, Li Y, Wang G, Fu J, Wang T. cis-Regulatory variation affecting gene expression contributes to the improvement of maize kernel size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1595-1608. [PMID: 35860955 DOI: 10.1111/tpj.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
cis-Regulatory variations contribute to trait evolution and adaptation during crop domestication and improvement. As the most important harvested organ in maize (Zea mays L.), kernel size has undergone intensive selection for size. However, the associations between maize kernel size and cis-regulatory variations remain unclear. We chose two independent association populations to dissect the genetic architecture of maize kernel size together with transcriptomic and genotypic data. The resulting phenotypes reflected a strong influence of population structure on kernel size. Compared with genome-wide association studies (GWASs), which accounted for population structure and relatedness, GWAS based on a naïve or simple linear model revealed additional associated single-nucleotide polymorphisms significantly involved in the conserved pathways controlling seed size in plants. Regulation analyses through expression quantitative trait locus mapping revealed that cis-regulatory variations likely control kernel size by fine-tuning the expression of proximal genes, among which ZmKL1 (GRMZM2G098305) was transgenically validated. We also proved that the pyramiding of the favorable cis-regulatory variations has contributed to the improvement of maize kernel size. Collectively, our results demonstrate that cis-regulatory variations, together with their regulatory genes, provide excellent targets for future maize improvement.
Collapse
Affiliation(s)
- Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Xun Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yixin An
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuyang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun-Su Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Qian Z, Ji Y, Li R, Lanteri S, Chen H, Li L, Jia Z, Cui Y. Identifying Quantitative Trait Loci for Thousand Grain Weight in Eggplant by Genome Re-Sequencing Analysis. Front Genet 2022; 13:841198. [PMID: 35664340 PMCID: PMC9157640 DOI: 10.3389/fgene.2022.841198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Eggplant (Solanum melongena L.; 2n = 24) is one of the most important Solanaceae vegetables and is primarily cultivated in China (approximately 42% of world production) and India (approximately 39%). Thousand-grain weight (TGW) is an important trait that affects eggplant breeding cost and variety promotion. This trait is controlled by quantitative trait loci (QTLs); however, no quantitative trait loci (QTL) has been reported for TGW in eggplant so far, and its potential genetic basis remain unclear. In this study, two eggplant lines, 17C01 (P1, wild resource, small seed) and 17C02 (P2, cultivar, large seed), were crossed to develop F1, F2 (308 lines), BC1P1 (44 lines), and BC1P2 (44 lines) populations for quantitative trait association analysis. The TGWs of P1, P2 and F1 were determined as 3.00, 3.98 and 3.77 g, respectively. The PG-ADI (polygene-controlled additive-dominance-epistasis) genetic model was identified as the optimal model for TGW and the polygene heritability value in the F2 generation was as high as 80.87%. A high-quality genetic linkage bin map was constructed with resequencing analysis. The map contained 3,918 recombination bins on 12 chromosomes, and the total length was 1,384.62 cM. A major QTL (named as TGW9.1) located on chromosome 9 was identified to be strongly associated with eggplant TGW, with a phenotypic variance explanation of 20.51%. A total of 45 annotated genes were identified in the genetic region of TGW9.1. Based on the annotation of Eggplant genome V3 and orthologous genes in Arabidopsis thaliana, one candidate gene SMEL_009g329850 (SmGTS1, encoding a putative ubiquitin ligase) contains 4 SNPs and 2 Indels consecutive intron mutations in the flank of the same exon in P1. SmGTS1 displayed significantly higher expression in P1 and was selected as a potential candidate gene controlling TGW in eggplant. The present results contribute to shed light on the genetic basis of the traits exploitable in future eggplant marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Zongwei Qian
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yanhai Ji
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Ranhong Li
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Sergio Lanteri
- DISAFA, Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Haili Chen
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Longfei Li
- Jingyan Yinong (Beijing) Seed Sci-Tech Co. Ltd., Beijing, China
| | - Zhiyang Jia
- Jingyan Yinong (Beijing) Seed Sci-Tech Co. Ltd., Beijing, China
| | - Yanling Cui
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
15
|
Oren E, Tzuri G, Dafna A, Rees ER, Song B, Freilich S, Elkind Y, Isaacson T, Schaffer AA, Tadmor Y, Burger J, Buckler ES, Gur A. QTL mapping and genomic analyses of earliness and fruit ripening traits in a melon Recombinant Inbred Lines population supported by de novo assembly of their parental genomes. HORTICULTURE RESEARCH 2022; 9:uhab081. [PMID: 35043206 PMCID: PMC8968493 DOI: 10.1093/hr/uhab081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
Earliness and ripening behavior are important attributes of fruits on and off the vine, and affect quality and preference of both growers and consumers. Fruit ripening is a complex physiological process that involves metabolic shifts affecting fruit color, firmness, and aroma production. Melon is a promising model crop for the study of fruit ripening, as the full spectrum of climacteric behavior is represented across the natural variation. Using Recombinant Inbred Lines (RILs) population derived from the parental lines "Dulce" (reticulatus, climacteric) and "Tam Dew" (inodorus, non-climacteric) that vary in earliness and ripening traits, we mapped QTLs for ethylene emission, fruit firmness and days to flowering and maturity. To further annotate the main QTL intervals and identify candidate genes, we used Oxford Nanopore long-read sequencing in combination with Illumina short-read resequencing, to assemble the parental genomes de-novo. In addition to 2.5 million genome-wide SNPs and short InDels detected between the parents, we also highlight here the structural variation between these lines and the reference melon genome. Through systematic multi-layered prioritization process, we identified 18 potential polymorphisms in candidate genes within multi-trait QTLs. The associations of selected SNPs with earliness and ripening traits were further validated across a panel of 177 diverse melon accessions and across a diallel population of 190 F1 hybrids derived from a core subset of 20 diverse parents. The combination of advanced genomic tools with diverse germplasm and targeted mapping populations is demonstrated as a way to leverage forward genetics strategies to dissect complex horticulturally important traits.
Collapse
Affiliation(s)
- Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Evan R Rees
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Baoxing Song
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Shiri Freilich
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Yonatan Elkind
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZiyyon 7507101, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| |
Collapse
|
16
|
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, Jia HL, Zhang JB, Chen JH. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis 2022; 13:57. [PMID: 35027547 PMCID: PMC8758774 DOI: 10.1038/s41419-022-04506-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a hallmark of cancer. The communication between cancer-derived exosomes and stroma plays an irreplaceable role in facilitating pre-metastatic niche formation and cancer metastasis. However, the mechanisms underlying exosome-mediated pre-metastatic niche formation during colorectal cancer (CRC) liver metastasis remain incompletely understood. Here we identified HSPC111 was the leading upregulated gene in hepatic stellate cells (HSCs) incubated with CRC cell-derived exosomes. In xenograft mouse model, CRC cell-derived exosomal HSPC111 facilitated pre-metastatic niche formation and CRC liver metastases (CRLM). Consistently, CRC patients with liver metastasis had higher level of HSPC111 in serum exosomes, primary tumors and cancer-associated fibroblasts (CAFs) in liver metastasis than those without. Mechanistically, HSPC111 altered lipid metabolism of CAFs by phosphorylating ATP-citrate lyase (ACLY), which upregulated the level of acetyl-CoA. The accumulation of acetyl-CoA further promoted CXCL5 expression and secretion by increasing H3K27 acetylation in CAFs. Moreover, CXCL5-CXCR2 axis reinforced exosomal HSPC111 excretion from CRC cells and promoted liver metastasis. These results uncovered that CRC cell-derived exosomal HSPC111 promotes pre-metastatic niche formation and CRLM via reprogramming lipid metabolism in CAFs, and implicate HSPC111 may be a potential therapeutic target for preventing CRLM.
Collapse
Affiliation(s)
- Chong Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Tao-Chen He
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Jia-Hao Han
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China. .,Institute of Cancer Metastasis, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Moeskjær S, Skovbjerg CK, Tausen M, Wind R, Roulund N, Janss L, Andersen SU. Major effect loci for plant size before onset of nitrogen fixation allow accurate prediction of yield in white clover. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:125-143. [PMID: 34628514 DOI: 10.1007/s00122-021-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Accurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material. White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate the effects of clover and rhizobium genetic variation by monitoring plant growth and quantifying dry matter yield of 704 combinations of 145 clover genotypes and 170 rhizobium inocula. We find no significant effect of rhizobium variation. In contrast, we can predict yield based on a few white clover markers strongly associated with plant size prior to nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 1, which regulates growth rate and biomass accumulation. Our work provides fundamental insight into the genetics of white clover yield and identifies specific candidate genes as breeding targets.
Collapse
Affiliation(s)
- Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Marni Tausen
- Bioinformatics Research Centre, Aarhus University, 8000, Aarhus C, Denmark
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus C, Denmark
| | - Rune Wind
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
18
|
Ghorbani F, Abolghasemi R, Haghighi M, Etemadi N, Wang S, Karimi M, Soorni A. Global identification of long non-coding RNAs involved in the induction of spinach flowering. BMC Genomics 2021; 22:704. [PMID: 34587906 PMCID: PMC8482690 DOI: 10.1186/s12864-021-07989-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Spinach is a beneficial annual vegetable species and sensitive to the bolting or early flowering, which causes a large reduction in quality and productivity. Indeed, bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although some key flowering responsive genes have been identified in spinach, non-coding RNA molecules like long non-coding RNAs (lncRNAs) were not investigated yet. Herein, we used bioinformatic approaches to analyze the transcriptome datasets from two different accessions Viroflay and Kashan at two vegetative and reproductive stages to reveal novel lncRNAs and the construction of the lncRNA-mRNA co-expression network. Additionally, correlations among gene expression modules and phenotypic traits were investigated; day to flowering was chosen as our interesting trait. Results In the present study, we identified a total of 1141 lncRNAs, of which 111 were differentially expressed between vegetative and reproductive stages. The GO and KEGG analyses carried out on the cis target gene of lncRNAs showed that the lncRNAs play an important role in the regulation of flowering spinach. Network analysis pinpointed several well-known flowering-related genes such as ELF, COL1, FLT, and FPF1 and also some putative TFs like MYB, WRKY, GATA, and MADS-box that are important regulators of flowering in spinach and could be potential targets for lncRNAs. Conclusions This study is the first report on identifying bolting and flowering-related lncRNAs based on transcriptome sequencing in spinach, which provides a useful resource for future functional genomics studies, genes expression researches, evaluating genes regulatory networks and molecular breeding programs in the regulation of the genetic mechanisms related to bolting in spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07989-1.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Reza Abolghasemi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shui Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Marzieh Karimi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.,Department of Plant Breeding and Biotechnology, College of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
19
|
Mondo JM, Agre PA, Asiedu R, Akoroda MO, Asfaw A. Genome-Wide Association Studies for Sex Determination and Cross-Compatibility in Water Yam ( Dioscorea alata L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1412. [PMID: 34371615 PMCID: PMC8309230 DOI: 10.3390/plants10071412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Yam (Dioscorea spp.) species are predominantly dioecious, with male and female flowers borne on separate individuals. Cross-pollination is, therefore, essential for gene flow among and within yam species to achieve breeding objectives. Understanding genetic mechanisms underlying sex determination and cross-compatibility is crucial for planning a successful hybridization program. This study used the genome-wide association study (GWAS) approach for identifying genomic regions linked to sex and cross-compatibility in water yam (Dioscorea alata L.). We identified 54 markers linked to flower sex determination, among which 53 markers were on chromosome 6 and one on chromosome 11. Our result ascertained that D. alata is characterized by the male heterogametic sex determination system (XX/XY). The cross-compatibility indices, average crossability rate (ACR) and percentage high crossability (PHC), were controlled by loci on chromosomes 1, 6 and 17. Of the significant loci, SNPs located on chromosomes 1 and 17 were the most promising for ACR and PHC, respectively, and should be validated for use in D. alata hybridization activities to predict cross-compatibility success. A total of 61 putative gene/protein families with direct or indirect influence on plant reproduction were annotated in chromosomic regions controlling the target traits. This study provides valuable insights into the genetic control of D. alata sexual reproduction. It opens an avenue for developing genomic tools for predicting hybridization success in water yam breeding programs.
Collapse
Affiliation(s)
- Jean M. Mondo
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
- Institute of Life and Earth Sciences, Pan African University, University of Ibadan, Ibadan 200284, Nigeria
- Department of Crop Production, Université Evangélique en Afrique (UEA), Bukavu 3323, Democratic Republic of the Congo
| | - Paterne A. Agre
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
| | | | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
| |
Collapse
|
20
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim EJ, Silva J, Lee J, Lee S, Kim ST, Park SK, Jung KH. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1645-1664. [PMID: 33345419 DOI: 10.1111/tpj.15139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinwon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
21
|
Tan L, Salih H, Htet NNW, Azeem F, Zhan R. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci Rep 2021; 11:2266. [PMID: 33500544 PMCID: PMC7838414 DOI: 10.1038/s41598-021-81969-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.
Collapse
Affiliation(s)
- Lin Tan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Haron Salih
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,grid.442436.30000 0004 0447 7877Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Sudan
| | - Nwe Ni Win Htet
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,Microbiology Laboratory, Biotechnology Research Department, Kyaukse, 05151 Myanmar
| | - Farrukh Azeem
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Rulin Zhan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| |
Collapse
|
22
|
Shi H, Guan W, Shi Y, Wang S, Fan H, Yang J, Chen W, Zhang W, Sun D, Jing R. QTL mapping and candidate gene analysis of seed vigor-related traits during artificial aging in wheat (Triticum aestivum). Sci Rep 2020; 10:22060. [PMID: 33328518 PMCID: PMC7745025 DOI: 10.1038/s41598-020-75778-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/15/2020] [Indexed: 11/23/2022] Open
Abstract
High vigor seeds have greater yield potential than those with low vigor; however, long-term storage leads to a decline in this trait. The objective of this study was to identify quantitative trait loci (QTLs) for seed vigor-related traits under artificial aging conditions using a high-density genetic linkage map of wheat (Triticum aestivum) and mine the related candidate genes. A doubled haploid population, derived from a cross between Hanxuan 10 × Lumai 14, was used as the experimental material. Six controlled-environment treatments were set up, i.e. the seeds were aged for 0, 24, 36, 48, 60, and 72 h at a high temperature (48 °C) and under high humidity (relative humidity 100%). Eight traits including seed germination percentage, germination energy, germination index, seedling length, root length, seedling weight, vigor index, and simple vigor index were measured. With the prolongation of artificial aging treatment, these traits showed a continuous downward trend and significant correlations were observed between most of them. A total of 49 additive QTLs for seed vigor-related traits were mapped onto 12 chromosomes (1B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 6D, and 7A); and each one accounted for 6.01–17.18% of the phenotypic variations. Twenty-five pairs of epistatic QTLs were detected on all chromosomes, except for 5D, 6A, and 7D, and each epistasis accounted for 7.35–26.06% of the phenotypic variations. Three additive QTL hot spots were found on chromosomes 5A, 5B, and 5D, respectively. 13 QTLs, QGEe5B, QGIe5B, QSLc5B, QSLd5B, QSLf5B, QRLd5B, QRLe5B, QRLf5B, QVId5B, QVIe5B, QVIf5B, QSVId5B, and QSVIe5B, were located in the marker interval AX-94643729 ~ AX-110529646 on 5B and the physical interval 707,412,449–710,959,479 bp. Genes including TRAESCS5B01G564900, TRAESCS5B01G564200, TRAESCS5B01G562600, TraesCS5B02G562700, TRAESCS5B01G561300, TRAESCS5B01G561400, and TRAESCS5B01G562100, located in this marker interval, were found to be involved in regulating the processes of carbohydrate and lipid metabolism, transcription, and cell division during the germination of aging seeds, thus they were viewed as candidate genes for seed viability-related traits. These findings provide the basis for the seed-based cloning and functional identification of related candidate genes for seed vigor.
Collapse
Affiliation(s)
- Huawei Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Wanghui Guan
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Shuguang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Hua Fan
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Jinwen Yang
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Weiguo Chen
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Wenjun Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, People's Republic of China.
| | - Ruilian Jing
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
23
|
Moursi YS, Thabet SG, Amro A, Dawood MFA, Baenziger PS, Sallam A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9111425. [PMID: 33114292 PMCID: PMC7690857 DOI: 10.3390/plants9111425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Drought induces several challenges for plant development, growth, and production. These challenges become more severe, in particular, in arid and semiarid countries like Egypt. In terms of production, barley ranks fourth after wheat, maize, and rice. Seed germination and seedling stages are critical stages for plant establishment and growth. In the current study, 60 diverse barley genotypes were tested for drought tolerance using two different treatments: control (0-PEG) and drought (20%-PEG). Twenty-two traits were estimated for seed germination and seedling parameters. All traits were reduced under drought stress, and a significant variation was found among genotypes under control and stress conditions. The broad-sense heritability estimates were very high under both control and drought for all traits. It ranged from 0.63 to 0.97 under the control condition and from 0.89 to 0.97 under drought, respectively. These high heritabilities suggested that genetic improvement of drought tolerance in barley at both stages is feasible. The principal component analysis revealed that root-related parameters account for the largest portion of phenotypic variation in this collection. The single-marker analysis (SMA) resulted in 71 quantitative trait loci (QTLs) distributed across the seven chromosomes of barley. Thirty-three QTLs were detected for root-length-related traits. Many hotspots of QTLs were detected for various traits. Interestingly, some markers controlled many traits in a pleiotropic manner; thus, they can be used to control multiple traits at a time. Some QTLs were constitutive, i.e., they are mapped under control and drought, and targeting these QTLs makes the selection for drought tolerance a single-step process. The results of gene annotation analysis revealed very potential candidate genes that can be targeted to select for drought tolerance.
Collapse
Affiliation(s)
- Yasser S. Moursi
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Samar G. Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Ahmed Amro
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - Mona F. A. Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Asyut 71526, Egypt
- Correspondence:
| |
Collapse
|
24
|
Martins AA, da Silva MF, Pinto LR. Epigenetic diversity of Saccharum spp. accessions assessed by methylation-sensitive amplification polymorphism (MSAP). 3 Biotech 2020; 10:265. [PMID: 32509498 DOI: 10.1007/s13205-020-02257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/13/2020] [Indexed: 01/15/2023] Open
Abstract
The epigenetic diversity of six genotype groups (commercial cultivars, S. officinarum, S. spontaneum, S. robustum, S. barberi, and Erianthus sp.) was assessed through methylation-sensitive amplification polymorphism (MSAP). A total of 1341 MSAP loci were analyzed, of which 1117 (83.29%) were susceptible to cytosine methylation and responsible for a higher proportion of overall diversity among genotypes. The MSAP selective primer combinations captured different proportions of internal and external cytosine methylation loci across genotype groups, while the average external cytosine frequency was higher for all genotype groups. The genotypes were divided into two subpopulations with a high differentiation index (φst = 0.086) based on epigenetic loci. The genotypes were clustered in three subgroups for both methylated and unmethylated loci, considering dissimilarity values. Four methylated fragments (MFs) were randomly selected and subsequently sequenced and compared with sugarcane public databases using BLASTN. MF alignments suggest that cytosine methylation occurs in sugarcane near CpG islands and tandem repeats within transcribed regions and putative cis-regulatory sequences, which assigned functions are associated with stress adaptation. These results provide the first insights about the distribution of this epigenetic mark in sugarcane genome, and suggest a biological relevance of methylated loci.
Collapse
Affiliation(s)
| | - Marcel F da Silva
- Instituto Agronômico, Centro de Cana, CP 206, Ribeirão Preto, SP CEP 14001‑970 Brazil
| | - Luciana Rossini Pinto
- Instituto Agronômico, Centro de Cana, CP 206, Ribeirão Preto, SP CEP 14001‑970 Brazil
| |
Collapse
|
25
|
Identification and evaluation of reference genes for reliable normalization of real-time quantitative PCR data in acerola fruit, leaf, and flower. Mol Biol Rep 2019; 47:953-965. [DOI: 10.1007/s11033-019-05187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/07/2019] [Indexed: 01/13/2023]
|
26
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
27
|
Wang Y, Chen J, Guan Z, Zhang X, Zhang Y, Ma L, Yao Y, Peng H, Zhang Q, Zhang B, Liu P, Zou C, Shen Y, Ge F, Pan G. Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize. Mol Genet Genomics 2019; 294:1421-1440. [PMID: 31289944 DOI: 10.1007/s00438-019-01586-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
Abstract
Maize tassel architecture is a complex quantitative trait that is significantly correlated with biomass yield and grain yield. The present study evaluated the major trait of maize tassel architecture, namely, tassel branch number (TBN), in an association population of 359 inbred lines and an IBM Syn 10 population of 273 doubled haploid lines across three environments. Approximately 43,958 high-quality single nucleotide polymorphisms were utilized to detect significant QTNs associated with TBN based on new multi-locus genome-wide association study methods. There were 30, 38, 73, 40, 47, and 53 QTNs associated with tassel architecture that were detected using the FastmrEMMA, FastmrMLM, EM-BLASSO, mrMLM, pkWMEB, and pLARmEB models, respectively. Among these QTNs, 51 were co-identified by at least two of these methods. In addition, 12 QTNs were consistently detected across multiple environments. Furthermore, 19 QTLs distributed on chromosomes 1, 2, 3, 4, 6, and 7 were detected in 3 environments and the BLUP model based on 6618 bin markers, which explained 3.64-10.96% of the observed phenotypic variations in TBN. Of these, three QTLs were co-detected in two environments. One QTN associated with TBN was localized to one QTL. Approximately 55 candidate genes were detected by common QTNs and LD criteria. One candidate gene, Zm00001d016615, was identified as a putative target of the RA1 gene. Meanwhile, RA1 was previously validated to plays an important role in tassel development. In addition, the newly identified candidate genes Zm00001d003939, Zm00001d030212, Zm00001d011189, and Zm00001d042794 have been reported to involve in a spikelet meristem identity module. The findings of the present study improve our understanding of the genetic basis of tassel architecture in maize.
Collapse
Affiliation(s)
- Yanli Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Chen
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, 408000, China
| | - Xiaoxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinchao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiming Yao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Zhang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Biao Zhang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Ge
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Teng RM, Wu ZJ, Ma HY, Wang YX, Zhuang J. Differentially Expressed Protein Are Involved in Dynamic Changes of Catechins Contents in Postharvest Tea Leaves under Different Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7547-7560. [PMID: 31192593 DOI: 10.1021/acs.jafc.9b01705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology were used to investigate three samples from postharvest tea leaves that were treated at room temperature (25 °C, control group), high temperature (38 °C), and low temperature (4 °C) for 4 h. In heat and cold treatments, a total of 635 and 566 differentially expressed proteins (DEPs) were determined, respectively. DEPs were annotated to GO and KEGG databases, which revealed that DEPs involved in various aspects of biological process. Three catechins-related DEPs, CsCHI, CsF3H, and CsANR, were identified. Both catechins contents and the expression profiles of catechins biosynthesis-related genes changed significantly under different temperature treatments. The correlations between catechins contents, gene expression profiles, and DEPs were analyzed. This study provides potential new insights into the molecular basis for tea production of postharvest leaves and catechins content changes at diverse temperature conditions and will guide the improvement of tea-processing technology.
Collapse
|
29
|
Zhang C, Zheng H, Wu X, Xu H, Han K, Peng J, Lu Y, Lin L, Xu P, Wu X, Li G, Chen J, Yan F. Genome-wide identification of new reference genes for RT-qPCR normalization in CGMMV-infected Lagenaria siceraria. PeerJ 2018; 6:e5642. [PMID: 30345167 PMCID: PMC6188008 DOI: 10.7717/peerj.5642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023] Open
Abstract
Lagenaria siceraria is an economically important cucurbitaceous crop, but suitable reference genes (RGs) to use when the plants are infected by cucumber green mottle mosaic virus (CGMMV) have not been determined. Sixteen candidate RGs of both leaf and fruit and 18 candidate RGs mostly from separate RNA-Seq datasets of bottle gourd leaf or fruit were screened and assessed by RT-qPCR. The expression stability of these genes was determined and ranked using geNorm, NormFinder, BestKeeper and RefFinder. Comprehensive analysis resulted in the selection of LsCYP, LsH3, and LsTBP as the optimal RGs for bottle gourd leaves, and LsP4H, LsADP, and LsTBP for fruits. LsWD, LsGAPDH, and LsH3 were optimal for use in both leaves and fruits under the infection of CGMMV. Isopentenyl transferase (IPT) and DNA-directed RNA polymerase (DdRP) were used to validate the applicability of the most stable identified RGs from bottle gourd in response to CGMMV. All the candidate RGs performed in RT-qPCR consistently with the data from the transcriptome database. The results demonstrated that LsWD, LsGAPDH and LsH3 were the most suitable internal RGs for the leaf, and LsH3, LsGAPDH, LsP4H and LsCYP for the fruit.
Collapse
Affiliation(s)
- Chenhua Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyang Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Heng Xu
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kelei Han
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojing Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Liu R, Gong J, Xiao X, Zhang Z, Li J, Liu A, Lu Q, Shang H, Shi Y, Ge Q, Iqbal MS, Deng X, Li S, Pan J, Duan L, Zhang Q, Jiang X, Zou X, Hafeez A, Chen Q, Geng H, Gong W, Yuan Y. GWAS Analysis and QTL Identification of Fiber Quality Traits and Yield Components in Upland Cotton Using Enriched High-Density SNP Markers. FRONTIERS IN PLANT SCIENCE 2018; 9:1067. [PMID: 30283462 PMCID: PMC6157485 DOI: 10.3389/fpls.2018.01067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 05/18/2023]
Abstract
It is of great importance to identify quantitative trait loci (QTL) controlling fiber quality traits and yield components for future marker-assisted selection (MAS) and candidate gene function identifications. In this study, two kinds of traits in 231 F6:8 recombinant inbred lines (RILs), derived from an intraspecific cross between Xinluzao24, a cultivar with elite fiber quality, and Lumianyan28, a cultivar with wide adaptability and high yield potential, were measured in nine environments. This RIL population was genotyped by 122 SSR and 4729 SNP markers, which were also used to construct the genetic map. The map covered 2477.99 cM of hirsutum genome, with an average marker interval of 0.51 cM between adjacent markers. As a result, a total of 134 QTLs for fiber quality traits and 122 QTLs for yield components were detected, with 2.18-24.45 and 1.68-28.27% proportions of the phenotypic variance explained by each QTL, respectively. Among these QTLs, 57 were detected in at least two environments, named stable QTLs. A total of 209 and 139 quantitative trait nucleotides (QTNs) were associated with fiber quality traits and yield components by four multilocus genome-wide association studies methods, respectively. Among these QTNs, 74 were detected by at least two algorithms or in two environments. The candidate genes harbored by 57 stable QTLs were compared with the ones associated with QTN, and 35 common candidate genes were found. Among these common candidate genes, four were possibly "pleiotropic." This study provided important information for MAS and candidate gene functional studies.
Collapse
Affiliation(s)
- Ruixian Liu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianghui Xiao
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad S. Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China
| | - Hongwei Geng
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Youlu Yuan
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
31
|
Zhang Y, Li W, Lin Y, Zhang L, Wang C, Xu R. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing. BMC Genomics 2018; 19:641. [PMID: 30157757 PMCID: PMC6116504 DOI: 10.1186/s12864-018-5035-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soybean is not only an important oil crop, but also an important source of edible protein and industrial raw material. Yield-traits and quality-traits are increasingly attracting the attention of breeders. Therefore, fine mapping the QTLs associated with yield-traits and quality-traits of soybean would be helpful for soybean breeders. In the present study, a high-density linkage map was constructed to identify the QTLs for the yield-traits and quality-traits, using specific length amplified fragment sequencing (SLAF-seq). RESULTS SLAF-seq was performed to screen SLAF markers with 149 F8:11 individuals from a cross between a semi wild soybean, 'Huapidou', and a cultivated soybean, 'Qihuang26', which generated 400.91 M paired-end reads. In total, 53,132 polymorphic SLAF markers were obtained. The genetic linkage map was constructed by 5111 SLAF markers with segregation type of aa×bb. The final map, containing 20 linkage groups (LGs), was 2909.46 cM in length with an average distance of 0.57 cM between adjacent markers. The average coverage for each SLAF marker on the map was 81.26-fold in the male parent, 45.79-fold in the female parent, and 19.84-fold average in each F8:11 individual. According to the high-density map, 35 QTLs for plant height (PH), 100-seeds weight (SW), oil content in seeds (Oil) and protein content in seeds (Protein) were found to be distributed on 17 chromosomes, and 14 novel QTLs were identified for the first time. The physical distance of 11 QTLs was shorter than 100 Kb, suggesting a direct opportunity to find candidate genes. Furthermore, three pairs of epistatic QTLs associated with Protein involving 6 loci on 5 chromosomes were identified. Moreover, 13, 14, 7 and 9 genes, which showed tissue-specific expression patterns, might be associated with PH, SW, Oil and Protein, respectively. CONCLUSIONS With SLAF-sequencing, some novel QTLs and important QTLs for both yield-related and quality traits were identified based on a new, high-density linkage map. Moreover, 43 genes with tissue-specific expression patterns were regarded as potential genes in further study. Our findings might be beneficial to molecular marker-assisted breeding, and could provide detailed information for accurate QTL localization.
Collapse
Affiliation(s)
- Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| |
Collapse
|
32
|
Salih H, Gong W, Mkulama M, Du X. Genome-wide characterization, identification, and expression analysis of the WD40 protein family in cotton. Genome 2018; 61:539-547. [DOI: 10.1139/gen-2017-0237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
WD40 repeat proteins are largely distributed across the plant kingdom and play an important role in diverse biological activities. In this work, we performed genome-wide identification, characterization, and expression level analysis of WD40 genes in cotton. A total of 579, 318, and 313 WD40 genes were found in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. Based on phylogenetic tree analyses, WD40 genes were divided into 11 groups with high similarities in exon/intron features and protein domains within the group. Expression analysis of WD40 genes showed differential expression at different stages of cotton fiber development (0 and 8 DPA) and cotton stem. A number of miRNAs were identified to target WD40 genes that are significantly involved in cotton fiber development during the initiation and elongation stages. These include miR156, miR160, miR162, miR164, miR166, miR167, miR169, miR171, miR172, miR393, miR396, miR398, miR2950, and miR7505. The findings provide a stronger indication of WD40 gene function and their involvement in the regulation of cotton fiber development during the initiation and elongation stages.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
- College of Life Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Zalingei University, Central Darfur, Sudan
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
| | - Mtawa Mkulama
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
| |
Collapse
|
33
|
Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Kesawat MS, Kim DK, Zeba N, Suh MC, Xia X, Hong CB. Ectopic RING zinc finger gene from hot pepper induces totally different genes in lettuce and tobacco. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:70. [PMID: 29780273 PMCID: PMC5956013 DOI: 10.1007/s11032-018-0812-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 03/27/2018] [Indexed: 05/28/2023]
Abstract
Advances in molecular biology have improved crops through transferring genes from one organism to new hosts, and these efforts have raised concerns about potential unexpected outcomes. Here, we provide evidence that a gene with a specific function in one organism can yield completely different effects in a new host. CaRZFP1 is a C3HC4-type RING zinc finger protein gene previously isolated from a cDNA library for heat-stressed hot pepper. In our previous work investigating in vivo CaRZFP1 function, we transferred CaRZFP1 into tobacco; transgenic tobacco exhibited enhanced growth and tolerance to abiotic stresses. As further analysis of CaRZFP1 ectopic expression in a heterologous host plant, here we mobilized and constitutively overexpressed CaRZFP1 in lettuce. In contrast to tobacco, transgenic lettuce exhibited poorer growth and delayed flowering compared with vector-only controls. To identify genes that might be involved in this phenotypic effect, transcriptome analyses on transgenic plants of both species were performed, uncovering dozens of genes that reflect the different outcomes between tobacco and lettuce. These included protein kinase, transcriptional factor, transporter protein, hormone and metabolism-related genes, and some unannotated genes. The opposite effects of CaRZFP1 ectopic expression in lettuce and tobacco address concerns of unexpectedly different outcomes in different host species.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742 South Korea
| | - Dong Kyun Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742 South Korea
| | - Naheed Zeba
- Present Address: Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mi Chung Suh
- Present Address: Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757 South Korea
| | - Xinli Xia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Choo Bong Hong
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742 South Korea
| |
Collapse
|
35
|
Chen X, Ludewig U. Biomass increase under zinc deficiency caused by delay of early flowering in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1269-1279. [PMID: 29340613 DOI: 10.1093/jxb/erx478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Plants generally produce more biomass when all nutrients are available in sufficient amounts. In addition to environmental constraints, genetic and developmental factors, such as the transition from vegetative to reproductive growth, restrict maximal biomass yield. Here, we report the peculiar observation that a subset of Arabidopsis thaliana accessions produced larger shoot rosette diameters when grown in zinc (Zn)-deficient conditions, compared with Zn-sufficient conditions. This was associated with early flowering that restricted the leaf length under Zn sufficiency. Zinc deficiency repressed the expression of FLOWERING LOCUS T (FT), which encodes a major regulator of flowering. Repression or loss of FT increased the rosette diameter via a delay of the transition to flowering, a longer phase of leaf growth, and an increased leaf number. The transition to flowering reduced, but did not terminate, the proliferation of established leaves. The size of individual leaf mesophyll cells was not affected by Zn deficiency or by loss of FT, indicating that the larger rosette diameter was caused by maintained proliferation of vegetative tissue. As a consequence, early-flowering accessions under Zn deficiency grew to have larger rosette diameters due to a delay of flowering, which explains the unusual increase of vegetative biomass under nutrient deficiency.
Collapse
Affiliation(s)
- Xiaochao Chen
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
36
|
Hua Y, Luo T, Yang Y, Dong D, Wang R, Wang Y, Xu M, Guo X, Hu F, He P. Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter baumannii in Mice. Front Microbiol 2018; 8:2659. [PMID: 29375524 PMCID: PMC5767256 DOI: 10.3389/fmicb.2017.02659] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) which is noted as a major pathogen associated with healthcare-associated infections has steadily developed beyond antibiotic control. Lytic bacteriophages with the characteristics of infecting and lysing specific bacteria have been used as a potential alternative to traditional antibiotics to solve multidrug-resistant bacterial infections. Here, we isolated A. baumannii-specific lytic phages and evaluated their potential therapeutic effect against lung infection caused by CRAB clinical strains. The combined lysis spectrum of four lytic phages' ranges was 87.5% (42 of 48) against CRAB clinical isolates. Genome sequence and analysis indicated that phage SH-Ab15519 is a novel phage which does not contain the virulence or antibiotic resistance genes. In vivo study indicated that phage SH-Ab15519 administered intranasally can effectively rescue mice from lethal A. baumannii lung infection without deleterious side effects. Our work explores the potential use of phages as an alternative therapeutic agent against the lung infection caused by CRAB strains.
Collapse
Affiliation(s)
- Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Yang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Dong
- Institute of Antibiotics, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjun Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengsha Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaokui Guo
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping He
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Hsiao YC, Hsu YF, Chen YC, Chang YL, Wang CS. A WD40 protein, AtGHS40, negatively modulates abscisic acid degrading and signaling genes during seedling growth under high glucose conditions. JOURNAL OF PLANT RESEARCH 2016; 129:1127-1140. [PMID: 27443795 DOI: 10.1007/s10265-016-0849-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
The Arabidopsis thaliana T-DNA insertion mutant glucose hypersensitive (ghs) 40-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The ghs40-1 mutant displayed severely impaired cotyledon greening and expansion and showed enhanced reduction in hypocotyl elongation of dark-grown seedlings when grown in Glc concentrations higher than 3 %. The Glc-hypersensitivity of ghs40-1 was correlated with the hyposensitive phenotype of 35S::AtGHS40 seedlings. The phenotypes of ghs40-1 were recovered by complementation with 35S::AtGHS40. The AtGHS40 (At5g11240) gene encodes a WD40 protein localized primarily in the nucleus and nucleolus using transient expression of AtGHS40-mRFP in onion cells and of AtGHS40-EGFP and EGFP-AtGHS40 in Arabidopsis protoplasts. The ABA biosynthesis inhibitor fluridone extensively rescued Glc-mediated growth arrest. Quantitative real time-PCR analysis showed that AtGHS40 was involved in the control of Glc-responsive genes. AtGHS40 acts downstream of HXK1 and is activated by ABI4 while ABI4 expression is negatively modulated by AtGHS40 in the Glc signaling network. However, AtGHS40 may not affect ABI1 and SnRK2.6 gene expression. Given that AtGHS40 inhibited ABA degrading and signaling gene expression levels under high Glc conditions, a new circuit of fine-tuning modulation by which ABA and ABA signaling gene expression are modulated in balance, occurred in plants. Thus, AtGHS40 may play a role in ABA-mediated Glc signaling during early seedling development. The biochemical function of AtGHS40 is also discussed.
Collapse
Affiliation(s)
- Yu-Chun Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan
| | - Yi-Feng Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yun-Chu Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan
| | - Yi-Lin Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan.
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan.
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan.
| |
Collapse
|
38
|
A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy. Genetics 2016; 204:21-33. [PMID: 27356613 PMCID: PMC5012387 DOI: 10.1534/genetics.115.183947] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production.
Collapse
|
39
|
Qin X, Huang Q, Xiao H, Zhang Q, Ni C, Xu Y, Liu G, Yang D, Zhu Y, Hu J. The rice DUF1620-containing and WD40-like repeat protein is required for the assembly of the restoration of fertility complex. THE NEW PHYTOLOGIST 2016; 210:934-945. [PMID: 26781807 DOI: 10.1111/nph.13824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Cytoplasmic male sterility (CMS) and restoration of fertility (Rf) are widely distributed in plant species utilized by humans. RF5 and GRP162 are subunits of the restoration of fertility complex (RFC) in Hong-Lian rice. Despite the fact that the RFC is 400-500 kDa in size, the other proteins or factors in the complex still remain unknown. Here, we identified RFC subunit 3, which encodes a DUF1620-containing and WD40-like repeat protein (RFC3) that is present in all tissues but highly expressed in leaves. We established that RFC3 interacts with both RF5 and GRP162 in vitro and in vivo, and is transported into the mitochondria as a membrane protein. Furthermore, CMS RNA (atp6-orfH79) and CMS cytotoxic protein (ORFH79) accumulate when RFC3 is silenced in restorer lines. We presented the analysis with blue-native polyacrylamide gel electrophoresis, indicating that RFC is disrupted in the RNAi line. We concluded that RCF3 is indispensable as a scaffold protein for the assembly of the RFC complex. We unveil a new molecular player of the RFC in the Rf pathway in rice and propose the model of RFC based on these data.
Collapse
Affiliation(s)
- Xiaojian Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Haijun Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qiannan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chenzi Ni
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanghong Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Gai Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Engineering Research Center for Plant Biotechnology and Germplasm, Utilization, Ministry of Education, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
40
|
Carvalho SD, Chatterjee M, Coleman L, Clancy MA, Folta KM. Analysis of Block of cell proliferation 1 (BOP1) activity in strawberry and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:84-93. [PMID: 26940494 DOI: 10.1016/j.plantsci.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/30/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Block of cell proliferation (BOP) proteins are conserved among eukaryotes, and studies in mammals and yeast have described their role in ribosome biogenesis and cell cycle regulation. A BOP1 orthologue was identified in plants, and loss-of-function analyses in tobacco cells confirmed similar activities. This report characterizes a role for BOP1 activity in planta. Two transgenic plant species were used: the diploid strawberry (Fragaria vesca) and Arabidopsis thaliana. FvBOP1 silencing showed changes in pre-rRNA processing, and demonstrated FvBOP1's role in growth and physiology throughout different stages of plant development. In the strawberry, repression of FvBOP1 activity decreased plant fitness prior to flowering, followed by plant death after the reproductive transition, indicating that BOP1 activity is required for transition back to vegetative growth after flowering. A T-DNA null allele of the AtBOP1 gene is lethal, and a 50% decrease in transcript accumulation is sufficient to cause severe developmental defects linked to defective cell division. The conserved protein BOP1 is essential for viability. Lower transcript levels result in defects in rRNA processing and developmental abnormalities that are consistent with its predicted role in ribosome biogenesis.
Collapse
Affiliation(s)
- Sofia D Carvalho
- Horticultural Sciences Department, University of Florida, Gainesville, FL,USA
| | - Mithu Chatterjee
- Horticultural Sciences Department, University of Florida, Gainesville, FL,USA
| | - Lauren Coleman
- Horticultural Sciences Department, University of Florida, Gainesville, FL,USA
| | - Maureen A Clancy
- Horticultural Sciences Department, University of Florida, Gainesville, FL,USA
| | - Kevin M Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL,USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
41
|
Chuang HW, Feng JH, Feng YL, Wei MJ. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:23-31. [PMID: 26706055 DOI: 10.1016/j.plantsci.2015.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events.
Collapse
Affiliation(s)
- Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan.
| | - Ji-Huan Feng
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yung-Lin Feng
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Miam-Ju Wei
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
42
|
Zhao Q, Gao J, Suo J, Chen S, Wang T, Dai S. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. FRONTIERS IN PLANT SCIENCE 2015; 6:441. [PMID: 26136760 PMCID: PMC4469821 DOI: 10.3389/fpls.2015.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/29/2015] [Indexed: 05/25/2023]
Abstract
Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern spore asymmetric division and rhizoid polar growth.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Jing Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Jinwei Suo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology Research, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Tai Wang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| |
Collapse
|
43
|
The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genomics 2015; 15:495-507. [PMID: 25877816 DOI: 10.1007/s10142-015-0438-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.
Collapse
|
44
|
Kong D, Li M, Dong Z, Ji H, Li X. Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses. PLANT CELL REPORTS 2015; 34:395-410. [PMID: 25447637 DOI: 10.1007/s00299-014-1717-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE TaWD40D that encodes a member of WD40 family proteins is a novel gene involved in the wheat response to abiotic stress. TaWD40D functions as a positive regulator of plant responses to salt stress and osmotic stress in plant. Abiotic stresses can severely affect plant growth and crop productivity. WD40 repeat-containing proteins play a key role in protein-protein or protein-DNA interactions by acting as scaffolding molecules and promoting protein activity. In this study, a stress-inducible gene, TaWD40D, was identified from Chinese spring wheat (Triticum aestivum L.). TaWD40D encodes a protein containing seven WD40 domains. Subcellular localization in Nicotiana benthamiana mesophyll cells and Arabidopsis root cells showed the presence of TaWD40D in the cytoplasm and nucleus. Heterologous overexpression of TaWD40D in Arabidopsis greatly increased plant tolerance to abscisic acid (ABA), salt stress, and osmotic stress during seed germination and seedling development. The expression patterns of two genes from the SOS pathway (SOS2 and SOS3) and three ABA genes (ABI2, RAB18 and DREB2A) functioning in ABA-dependent and ABA-independent pathways were altered in the transgenic lines overexpressing TaWD40D under the treatments. Notably, the basal level of the ABI2 expression was substantially increased in the TaWD40D overexpression lines. The down-regulation of TaWD40D in wheat by virus-induced gene silencing resulted in a decreased relative water content and less vigorous growth compared to non-silenced lines. Our results suggest that TaWD40D functions as a positive regulator of plant responses to salt stress and osmotic stress that could be utilized for the genetic improvement of stress tolerance in crop plants.
Collapse
Affiliation(s)
- Dejing Kong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | | | | | | | | |
Collapse
|
45
|
Simm S, Fragkostefanakis S, Paul P, Keller M, Einloft J, Scharf KD, Schleiff E. Identification and Expression Analysis of Ribosome Biogenesis Factor Co-orthologs in Solanum lycopersicum. Bioinform Biol Insights 2015; 9:1-17. [PMID: 25698879 PMCID: PMC4325683 DOI: 10.4137/bbi.s20751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 12/12/2022] Open
Abstract
Ribosome biogenesis involves a large inventory of proteinaceous and RNA cofactors. More than 250 ribosome biogenesis factors (RBFs) have been described in yeast. These factors are involved in multiple aspects like rRNA processing, folding, and modification as well as in ribosomal protein (RP) assembly. Considering the importance of RBFs for particular developmental processes, we examined the complexity of RBF and RP (co-)orthologs by bioinformatic assignment in 14 different plant species and expression profiling in the model crop Solanum lycopersicum. Assigning (co-)orthologs to each RBF revealed that at least 25% of all predicted RBFs are encoded by more than one gene. At first we realized that the occurrence of multiple RBF co-orthologs is not globally correlated to the existence of multiple RP co-orthologs. The transcript abundance of genes coding for predicted RBFs and RPs in leaves and anthers of S. lycopersicum was determined by next generation sequencing (NGS). In combination with existing expression profiles, we can conclude that co-orthologs of RBFs by large account for a preferential function in different tissue or at distinct developmental stages. This notion is supported by the differential expression of selected RBFs during male gametophyte development. In addition, co-regulated clusters of RBF and RP coding genes have been observed. The relevance of these results is discussed.
Collapse
Affiliation(s)
- Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany. ; Cluster of Excellence Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany. ; Cluster of Excellence Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Jens Einloft
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany. ; Center of Membrane Proteomics, Goethe University, Frankfurt/Main, Germany. ; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
46
|
Gachomo EW, Jno Baptiste L, Kefela T, Saidel WM, Kotchoni SO. The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC PLANT BIOLOGY 2014; 14:221. [PMID: 25158860 PMCID: PMC4244047 DOI: 10.1186/s12870-014-0221-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/05/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND A molecular-level understanding of the loss of CURVY1 (CVY1) gene expression (which encodes a member of the receptor-like protein kinase family) was investigated to gain insights into the mechanisms controlling cell morphogenesis and development in Arabidopsis thaliana. RESULTS Using a reverse genetic and cell biology approaches, we demonstrate that CVY1 is a new DISTORTED gene with similar phenotypic characterization to previously characterized ARP2/3 distorted mutants. Compared to the wild type, cvy1 mutant displayed a strong distorted trichome and altered pavement cell phenotypes. In addition, cvy1 null-mutant flowers earlier, grows faster and produces more siliques than WT and the arp2/3 mutants. The CVY1 gene is ubiquitously expressed in all tissues and seems to negatively regulate growth and yield in higher plants. CONCLUSIONS Our results suggest that CURVY1 gene participates in several biochemical pathways in Arabidopsis thaliana including (i) cell morphogenesis regulation through actin cytoskeleton functional networks, (ii) the transition of vegetative to the reproductive stage and (iii) the production of seeds.
Collapse
Affiliation(s)
- Emma W Gachomo
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
- />Center for Computational and Integrative Biology, 315 Penn St, Camden, NJ 08102 USA
| | - Lyla Jno Baptiste
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
| | - Timnit Kefela
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
| | - William M Saidel
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
- />Center for Computational and Integrative Biology, 315 Penn St, Camden, NJ 08102 USA
| | - Simeon O Kotchoni
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
- />Center for Computational and Integrative Biology, 315 Penn St, Camden, NJ 08102 USA
| |
Collapse
|
47
|
Takahashi M, Morikawa H. Nitrogen dioxide accelerates flowering without changing the number of leaves at flowering in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e970433. [PMID: 25482805 PMCID: PMC4623349 DOI: 10.4161/15592316.2014.970433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 05/19/2023]
Abstract
A negative correlation has consistently been reported between the change in flowering time and the change in leaf number at flowering in response to environmental stimuli, such as the application of exogenous compounds, cold temperature, day length and light quality treatments in Arabidopsis thaliana (Arabidopsis). However, we show here that the application of exogenous nitrogen dioxide (NO2) did not change the number of rosette leaves at flowering, but actually accelerated flowering in Arabidopsis. Furthermore, NO2 treatment was found to increase the rate of leaf appearance. Based on these results, reaching the maximum rosette leaf number earlier in response to NO2 treatment resulted in earlier flowering relative to controls.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
- Correspondence to: Misa Takahashi;
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| |
Collapse
|