1
|
Alakärppä E, Salo HM, Suokas M, Jokipii-Lukkari S, Vuosku J, Häggman H. Targeted bisulfite sequencing of Scots pine adaptation-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112173. [PMID: 38944158 DOI: 10.1016/j.plantsci.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.
| | - Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Soile Jokipii-Lukkari
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
2
|
Tumas H, Ilska JJ, Gérardi S, Laroche J, A’Hara S, Boyle B, Janes M, McLean P, Lopez G, Lee SJ, Cottrell J, Gorjanc G, Bousquet J, Woolliams JA, MacKay JJ. High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers. G3 (BETHESDA, MD.) 2024; 14:jkae020. [PMID: 38366548 PMCID: PMC10989875 DOI: 10.1093/g3journal/jkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
In species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-seq and genotyping array SNP data for 528 individuals from 2 full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and Picea glauca based on 27,052 markers and 11,609 gene sequences. Altogether, these 2 linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed, herein, open new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.
Collapse
Affiliation(s)
- Hayley Tumas
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Joana J Ilska
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Sebastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Jerome Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Stuart A’Hara
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Mateja Janes
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Paul McLean
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gustavo Lopez
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Steve J Lee
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gregor Gorjanc
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - John A Woolliams
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
3
|
Hung TH, Wu ETY, Zeltiņš P, Jansons Ā, Ullah A, Erbilgin N, Bohlmann J, Bousquet J, Birol I, Clegg SM, MacKay JJ. Long-insert sequence capture detects high copy numbers in a defence-related beta-glucosidase gene βglu-1 with large variations in white spruce but not Norway spruce. BMC Genomics 2024; 25:118. [PMID: 38281030 PMCID: PMC10821269 DOI: 10.1186/s12864-024-09978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and βglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of βglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of βglu-1 and Ugt5 genes. We observed very large copy numbers of βglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of βglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Ernest T Y Wu
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Pauls Zeltiņš
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Āris Jansons
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Sonya M Clegg
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
4
|
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, Thomson A. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response. G3 (BETHESDA, MD.) 2023; 14:jkad247. [PMID: 37875130 PMCID: PMC10755193 DOI: 10.1093/g3journal/jkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.
Collapse
Affiliation(s)
- Theodora Lo
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Alex Marr
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Heather Kirk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Pawan Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Richard A Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Ashley Thomson
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
5
|
Zhu P, He T, Zheng Y, Chen L. The need for masked genomes in gymnosperms. FRONTIERS IN PLANT SCIENCE 2023; 14:1309744. [PMID: 38146270 PMCID: PMC10749308 DOI: 10.3389/fpls.2023.1309744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Affiliation(s)
| | | | | | - Lingyan Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Teyssier C, Rogier O, Claverol S, Gautier F, Lelu-Walter MA, Duruflé H. Comprehensive Organ-Specific Profiling of Douglas Fir ( Pseudotsuga menziesii) Proteome. Biomolecules 2023; 13:1400. [PMID: 37759800 PMCID: PMC10526743 DOI: 10.3390/biom13091400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The Douglas fir (Pseudotsuga menziesii) is a conifer native to North America that has become increasingly popular in plantations in France due to its many advantages as timber: rapid growth, quality wood, and good adaptation to climate change. Tree genetic improvement programs require knowledge of a species' genetic structure and history and the development of genetic markers. The very slow progress in this field, for Douglas fir as well as the entire genus Pinus, can be explained using the very large size of their genomes, as well as by the presence of numerous highly repeated sequences. Proteomics, therefore, provides a powerful way to access genomic information of otherwise challenging species. Here, we present the first Douglas fir proteomes acquired using nLC-MS/MS from 12 different plant organs or tissues. We identified 3975 different proteins and quantified 3462 of them, then examined the distribution of specific proteins across plant organs/tissues and their implications in various molecular processes. As the first large proteomic study of a resinous tree species with organ-specific profiling, this short note provides an important foundation for future genomic annotations of conifers and other trees.
Collapse
Affiliation(s)
| | - Odile Rogier
- INRAE, ONF, BioForA, UMR 0588, 45075 Orleans, France
| | - Stéphane Claverol
- Plateforme de Protéomique, Université de Bordeaux, 33405 Bordeaux, France
| | | | | | | |
Collapse
|
7
|
Nip KM, Hafezqorani S, Gagalova KK, Chiu R, Yang C, Warren RL, Birol I. Reference-free assembly of long-read transcriptome sequencing data with RNA-Bloom2. Nat Commun 2023; 14:2940. [PMID: 37217540 PMCID: PMC10202958 DOI: 10.1038/s41467-023-38553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Long-read sequencing technologies have improved significantly since their emergence. Their read lengths, potentially spanning entire transcripts, is advantageous for reconstructing transcriptomes. Existing long-read transcriptome assembly methods are primarily reference-based and to date, there is little focus on reference-free transcriptome assembly. We introduce "RNA-Bloom2 [ https://github.com/bcgsc/RNA-Bloom ]", a reference-free assembly method for long-read transcriptome sequencing data. Using simulated datasets and spike-in control data, we show that the transcriptome assembly quality of RNA-Bloom2 is competitive to those of reference-based methods. Furthermore, we find that RNA-Bloom2 requires 27.0 to 80.6% of the peak memory and 3.6 to 10.8% of the total wall-clock runtime of a competing reference-free method. Finally, we showcase RNA-Bloom2 in assembling a transcriptome sample of Picea sitchensis (Sitka spruce). Since our method does not rely on a reference, it further sets the groundwork for large-scale comparative transcriptomics where high-quality draft genome assemblies are not readily available.
Collapse
Affiliation(s)
- Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada.
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, V5Z 4S6, Canada.
| | - Saber Hafezqorani
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, V5Z 4S6, Canada
| | - Readman Chiu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Chen Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Cerbin S, Ou S, Li Y, Sun Y, Jiang N. Distinct composition and amplification dynamics of transposable elements in sacred lotus (Nelumbo nucifera Gaertn.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:172-192. [PMID: 35959634 PMCID: PMC9804982 DOI: 10.1111/tpj.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a basal eudicot plant with a unique lifestyle, physiological features, and evolutionary characteristics. Here we report the unique profile of transposable elements (TEs) in the genome, using a manually curated repeat library. TEs account for 59% of the genome, and hAT (Ac/Ds) elements alone represent 8%, more than in any other known plant genome. About 18% of the lotus genome is comprised of Copia LTR retrotransposons, and over 25% of them are associated with non-canonical termini (non-TGCA). Such high abundance of non-canonical LTR retrotransposons has not been reported for any other organism. TEs are very abundant in genic regions, with retrotransposons enriched in introns and DNA transposons primarily in flanking regions of genes. The recent insertion of TEs in introns has led to significant intron size expansion, with a total of 200 Mb in the 28 455 genes. This is accompanied by declining TE activity in intergenic regions, suggesting distinct control efficacy of TE amplification in different genomic compartments. Despite the prevalence of TEs in genic regions, some genes are associated with fewer TEs, such as those involved in fruit ripening and stress responses. Other genes are enriched with TEs, and genes in epigenetic pathways are the most associated with TEs in introns, indicating a dynamic interaction between TEs and the host surveillance machinery. The dramatic differential abundance of TEs with genes involved in different biological processes as well as the variation of target preference of different TEs suggests the composition and activity of TEs influence the path of evolution.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Ecology & Evolutionary BiologyUniversity of Kansas1200 Sunnyside AvenueLawrenceKS66045USA
| | - Shujun Ou
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
| | - Yang Li
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Yanni Sun
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Ning Jiang
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
| |
Collapse
|
9
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
10
|
Liu X, Zain ul Arifeen M, Xue Y, Liu C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Front Microbiol 2022; 13:923451. [PMID: 36003943 PMCID: PMC9393519 DOI: 10.3389/fmicb.2022.923451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Laccases are ligninolytic enzymes that play a crucial role in various biological processes of filamentous fungi, including fruiting-body formation and lignin degradation. Lignin degradation is a complex process and its degradation in Schizophyllum commune is greatly affected by the availability of oxygen. Here, a total of six putative laccase genes (ScLAC) were identified from the S. commune 20R-7-F01 genome. These genes, which include three typical Cu-oxidase domains, can be classified into three groups based on phylogenetic analysis. ScLAC showed distinct intron-exon structures and conserved motifs, suggesting the conservation and diversity of ScLAC in gene structures. Additionally, the number and type of cis-acting elements, such as substrate utilization-, stress-, cell division- and transcription activation-related cis-elements, varied between ScLAC genes, suggesting that the transcription of laccase genes in S. commune 20R-7-F01 could be induced by different substrates, stresses, or other factors. The SNP analysis of resequencing data demonstrated that the ScLAC of S. commune inhabiting deep subseafloor sediments were significantly different from those of S. commune inhabiting terrestrial environments. Similarly, the large variation of conserved motifs number and arrangement of laccase between subseafloor and terrestrial strains indicated that ScLAC had a diverse structure. The expression of ScLAC5 and ScLAC6 genes was significantly up-regulated in lignin/lignite medium, suggesting that these two laccase genes might be involved in fungal utilization and degradation of lignite and lignin under anaerobic conditions. These findings might help in understanding the function of laccase in white-rot fungi and could provide a scientific basis for further exploring the relationship between the LAC family and anaerobic degradation of lignin by S. commune.
Collapse
Affiliation(s)
| | | | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | |
Collapse
|
11
|
Annotation of Siberian Larch (Larix sibirica Ledeb.) Nuclear Genome—One of the Most Cold-Resistant Tree Species in the Only Deciduous GENUS in Pinaceae. PLANTS 2022; 11:plants11152062. [PMID: 35956540 PMCID: PMC9370799 DOI: 10.3390/plants11152062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
The recent release of the nuclear, chloroplast and mitochondrial genome assemblies of Siberian larch (Larix sibirica Ledeb.), one of the most cold-resistant tree species in the only deciduous genus of Pinaceae, with seasonal senescence and a rot-resistant valuable timber widely used in construction, greatly contributed to the development of genomic resources for the larch genus. Here, we present an extensive repeatome analysis and the first annotation of the draft nuclear Siberian larch genome assembly. About 66% of the larch genome consists of highly repetitive elements (REs), with the likely wave of retrotransposons insertions into the larch genome estimated to occur 4–5 MYA. In total, 39,370 gene models were predicted, with 87% of them having homology to the Arabidopsis-annotated proteins and 78% having at least one GO term assignment. The current state of the genome annotations allows for the exploration of the gymnosperm and angiosperm species for relative gene abundance in different functional categories. Comparative analysis of functional gene categories across different angiosperm and gymnosperm species finds that the Siberian larch genome has an overabundance of genes associated with programmed cell death (PCD), autophagy, stress hormone biosynthesis and regulatory pathways; genes that may play important roles in seasonal senescence and stress response to extreme cold in larch. Despite being incomplete, the draft assemblies and annotations of the conifer genomes are at a point of development where they now represent a valuable source for further genomic, genetic and population studies.
Collapse
|
12
|
Liu X, Huang X, Chu C, Xu H, Wang L, Xue Y, Arifeen Muhammad ZU, Inagaki F, Liu C. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience 2022; 25:104417. [PMID: 35663011 PMCID: PMC9156946 DOI: 10.1016/j.isci.2022.104417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
To understand the genomic evolution and adaptation strategies of fungi to subseafloor sedimentary environments, we de novo assembled the genome of Schizophyllum commune strain 20R-7-F01 isolated from ∼2.0 km-deep, ∼20-millionyearsago (Mya) coal-bearing sediments. Phylogenomics study revealed a differentiation time of 28-73 Mya between this strain and the terrestrial type-strain H4-8, in line with sediment age records. Comparative genome analyses showed that FunK1 protein kinase, NmrA family, and transposons in this strain are significantly expanded, possibly linking to the environmental adaptation and persistence in sediment for over millions of years. Re-sequencing study of 14 S. commune strains sampled from different habitats revealed that subseafloor strains have much lower nucleotide diversity, substitution rate, and homologous recombination rate than other strains, reflecting that the growth and/or reproduction of subseafloor strains are extremely slow. Our data provide new insights into the adaptation and long-term survival of the fungi in the subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | | | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai 980-8574, Japan
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Xu Q, Niu SC, Li KL, Zheng PJ, Zhang XJ, Jia Y, Liu Y, Niu YX, Yu LH, Chen DF, Zhang GQ. Chromosome-Scale Assembly of the Dendrobium nobile Genome Provides Insights Into the Molecular Mechanism of the Biosynthesis of the Medicinal Active Ingredient of Dendrobium. Front Genet 2022; 13:844622. [PMID: 35299950 PMCID: PMC8921531 DOI: 10.3389/fgene.2022.844622] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 01/07/2023] Open
Abstract
Orchids constitute approximately 10% of flowering plant species. However, only about 10 orchid genomes have been published. Metabolites are the main way through which orchids respond to their environment. Dendrobium nobile, belonging to Dendrobium, the second largest genus in Orchidaceae, has high ornamental, medicinal, and ecological value. D. nobile is the source of many popular horticultural varieties. Among the Dendrobium species, D. nobile has the highest amount of dendrobine, which is regarded as one of the criteria for evaluating medicinal quality. Due to lack of data and analysis at the genomic level, the biosynthesis pathways of dendrobine and other related medicinal ingredients in D. nobile are unknown. In this paper, we report a chromosome-scale reference genome of D. nobile to facilitate the investigation of its genomic characteristics for comparison with other Dendrobium species. The assembled genome size of D. nobile was 1.19 Gb. Of the sequences, 99.45% were anchored to 19 chromosomes. Furthermore, we identified differences in gene number and gene expression patterns compared with two other Dendrobium species by integrating whole-genome sequencing and transcriptomic analysis [e.g., genes in the polysaccharide biosynthesis pathway and upstream of the alkaloid (dendrobine) biosynthesis pathway]. Differences in the TPS and CYP450 gene families were also found among orchid species. All the above differences might contribute to the species-specific medicinal ingredient biosynthesis pathways. The metabolic pathway-related analysis will provide further insight into orchid responses to the environment. Additionally, the reference genome will provide important insights for further molecular elucidation of the medicinal active ingredients of Dendrobium and enhance the understanding of orchid evolution.
Collapse
Affiliation(s)
- Qing Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Kang-Li Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pei-Ji Zheng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Jing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yin Jia
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yun-Xia Niu
- School of Vocational Education, Tianjin University of Technology and Education, Tianjin, China
| | - Li-Hong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Duan-Fen Chen
- College of Horticulture, Hebei Agricultural University, Baoding, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| | - Guo-Qiang Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| |
Collapse
|
14
|
Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, Chen X, Han F, Yang J, Song Y, Nie Y, Zhou B, Wang P, Zuo Q, Zhang H, Ma J, Wang J, Wang L, Zhu Q, Zhao H, Liu Z, Zhang X, Liu T, Pei S, Li Z, Hu Y, Yang Y, Li W, Zan Y, Zhou L, Lin J, Yuan T, Li W, Li Y, Wei H, Wu HX. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2021; 185:204-217.e14. [PMID: 34965378 DOI: 10.1016/j.cell.2021.12.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.
Collapse
Affiliation(s)
- Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenhao Bo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefania Giacomello
- SciLife Lab, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Stockholm, Sweden
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Fangxu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Junhe Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yitong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yumeng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Biao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Peiyi Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Quan Zuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hui Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jingjing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Lvji Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qianya Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanhuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhanmin Liu
- Qigou State-owned Forest Farm, Pingquan, Hebei Province 067509, P. R. China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Yao Hu
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yehui Yang
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Wenzhao Li
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tongqi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; College of Material Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | - Harry X Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden; CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT 2601, Australia.
| |
Collapse
|
15
|
Finkers R, van Kaauwen M, Ament K, Burger-Meijer K, Egging R, Huits H, Kodde L, Kroon L, Shigyo M, Sato S, Vosman B, van Workum W, Scholten O. Insights from the first genome assembly of Onion (Allium cepa). G3 (BETHESDA, MD.) 2021; 11. [PMID: 34544132 DOI: 10.1101/2021.03.05.434149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 05/18/2023]
Abstract
Onion is an important vegetable crop with an estimated genome size of 16 Gb. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with an N50 of 464 Kb. Of this, 2.4 Gb was ordered into eight pseudomolecules using four genetic linkage maps. The remainder of the genome is available in 89.6 K scaffolds. Only 72.4% of the genome could be identified as repetitive sequences and consist, to a large extent, of (retro) transposons. In addition, an estimated 20% of the putative (retro) transposons had accumulated a large number of mutations, hampering their identification, but facilitating their assembly. These elements are probably already quite old. The ab initio gene prediction indicated 540,925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. Of these models, 47,066 showed RNASeq support. No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with Allium sativum (garlic) showed collinearity but also major rearrangements between both species. This assembly is the first high-quality genome sequence available for the study of onion and will be a valuable resource for further research.
Collapse
Affiliation(s)
- Richard Finkers
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Kai Ament
- Bejo Zaden B.V., 1749 CZ Warmerhuizen, The Netherlands
| | - Karin Burger-Meijer
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | | | - Henk Huits
- Bejo Zaden B.V., 1749 CZ Warmerhuizen, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Laurens Kroon
- Bejo Zaden B.V., 1749 CZ Warmerhuizen, The Netherlands
| | - Masayoshi Shigyo
- Laboratory of Vegetable Crop Science, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ben Vosman
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | | | - Olga Scholten
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
16
|
Finkers R, van Kaauwen M, Ament K, Burger-Meijer K, Egging R, Huits H, Kodde L, Kroon L, Shigyo M, Sato S, Vosman B, van Workum W, Scholten O. Insights from the first genome assembly of Onion (Allium cepa). G3 (BETHESDA, MD.) 2021; 11:jkab243. [PMID: 34544132 PMCID: PMC8496297 DOI: 10.1093/g3journal/jkab243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Onion is an important vegetable crop with an estimated genome size of 16 Gb. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with an N50 of 464 Kb. Of this, 2.4 Gb was ordered into eight pseudomolecules using four genetic linkage maps. The remainder of the genome is available in 89.6 K scaffolds. Only 72.4% of the genome could be identified as repetitive sequences and consist, to a large extent, of (retro) transposons. In addition, an estimated 20% of the putative (retro) transposons had accumulated a large number of mutations, hampering their identification, but facilitating their assembly. These elements are probably already quite old. The ab initio gene prediction indicated 540,925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. Of these models, 47,066 showed RNASeq support. No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with Allium sativum (garlic) showed collinearity but also major rearrangements between both species. This assembly is the first high-quality genome sequence available for the study of onion and will be a valuable resource for further research.
Collapse
Affiliation(s)
- Richard Finkers
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Kai Ament
- Bejo Zaden B.V., 1749 CZ Warmerhuizen, The Netherlands
| | - Karin Burger-Meijer
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | | | - Henk Huits
- Bejo Zaden B.V., 1749 CZ Warmerhuizen, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Laurens Kroon
- Bejo Zaden B.V., 1749 CZ Warmerhuizen, The Netherlands
| | - Masayoshi Shigyo
- Laboratory of Vegetable Crop Science, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ben Vosman
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | | | - Olga Scholten
- Plant Breeding, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
17
|
Zhang Y, Zhang GQ, Zhang D, Liu XD, Xu XY, Sun WH, Yu X, Zhu X, Wang ZW, Zhao X, Zhong WY, Chen H, Yin WL, Huang T, Niu SC, Liu ZJ. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. HORTICULTURE RESEARCH 2021; 8:183. [PMID: 34465765 PMCID: PMC8408244 DOI: 10.1038/s41438-021-00621-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 05/03/2023]
Abstract
As one of the largest families of angiosperms, the Orchidaceae family is diverse. Dendrobium represents the second largest genus of the Orchidaceae. However, an assembled high-quality genome of species in this genus is lacking. Here, we report a chromosome-scale reference genome of Dendrobium chrysotoxum, an important ornamental and medicinal orchid species. The assembled genome size of D. chrysotoxum was 1.37 Gb, with a contig N50 value of 1.54 Mb. Of the sequences, 95.75% were anchored to 19 pseudochromosomes. There were 30,044 genes predicted in the D. chrysotoxum genome. Two whole-genome polyploidization events occurred in D. chrysotoxum. In terms of the second event, whole-genome duplication (WGD) was also found to have occurred in other Orchidaceae members, which diverged mainly via gene loss immediately after the WGD event occurred; the first duplication was found to have occurred in most monocots (tau event). We identified sugar transporter (SWEET) gene family expansion, which might be related to the abundant medicinal compounds and fleshy stems of D. chrysotoxum. MADS-box genes were identified in D. chrysotoxum, as well as members of TPS and Hsp90 gene families, which are associated with resistance, which may contribute to the adaptive evolution of orchids. We also investigated the interplay among carotenoid, ABA, and ethylene biosynthesis in D. chrysotoxum to elucidate the regulatory mechanisms of the short flowering period of orchids with yellow flowers. The reference D. chrysotoxum genome will provide important insights for further research on medicinal active ingredients and breeding and enhances the understanding of orchid evolution.
Collapse
Affiliation(s)
- Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Guo-Qiang Zhang
- Laboratory for Orchid Conservation and Utilization, Orchid Conservation and Research Center, The National Orchid Conservation Center, Shenzhen, 518114, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue-Die Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin-Yu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoen Zhu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | | | | | | | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China.
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
González-Thuillier I, Venegas-Calerón M, Moreno-Pérez AJ, Salas JJ, Garcés R, von Wettstein-Knowles P, Martínez-Force E. Sunflower (Helianthus annuus) fatty acid synthase complex: β-Ketoacyl-[acyl carrier protein] reductase genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:689-699. [PMID: 34214779 DOI: 10.1016/j.plaphy.2021.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Fatty acids play many roles in plants, but the function of some key genes involved in fatty acid biosynthesis in plant development are not yet properly understood. Here, we clone two β-ketoacyl-[ACP] reductase (KAR) genes from sunflower, HaKAR1 and HaKAR2, and characterize their functional roles. The enzymes cloned were the only two copies present in the sunflower genome. Both displayed a high degree of similarity, but their promoters infer different regulation. The two sunflower KAR genes were constitutively expressed in all tissues examined, being maximum in developing cotyledons at the start of oil synthesis. Over-expression of HaKAR1 in E. coli changed the fatty acid composition by promoting the elongation of C16:0 to C18:0 fatty acids. The enzymatic characterization of HaKAR1 revealed similar kinetic parameters to homologues from other oil accumulating species. The results point to a partially functional redundancy between HaKAR1 and HaKAR2. This study clearly revealed that these genes play a prominent role in de novo fatty acids synthesis in sunflower seeds.
Collapse
Affiliation(s)
- Irene González-Thuillier
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Biosciences, Jealotts Hill Research Station, Warfield, Bracknell, RG42 6EY, UK
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | | | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
19
|
Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F. Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Res 2021; 31:1409-1418. [PMID: 34244230 PMCID: PMC8327920 DOI: 10.1101/gr.275270.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
R-loops are stable chromatin structures comprising a DNA:RNA hybrid and a displaced single-stranded DNA. R-loops have been implicated in gene expression and chromatin structure, as well as in replication blocks and genome instability. Here, we conducted a genome-wide identification of R-loops and identified more than 700,000 R-loop peaks in the maize (Zea mays) genome. We found that sense R-loops were mainly enriched in promoters and transcription termination sites and relatively less enriched in gene bodies, which is different from the main gene-body localization of sense R-loops in Arabidopsis and Oryza sativa. At the chromosome scale, maize R-loops were enriched in pericentromeric heterochromatin regions, and a significant portion of R-loops were derived from transposable elements. In centromeres, R-loops preferentially formed within the binding regions of the centromere-specific histone CENH3, and centromeric retrotransposons were strongly associated with R-loop formation. Furthermore, centromeric retrotransposon R-loops were observed by applying the single-molecule imaging technique of atomic force microscopy. These findings elucidate the fundamental character of R-loops in the maize genome and reveal the potential role of R-loops in centromeres.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunpeng Liu
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Pyhäjärvi T, Kujala ST, Savolainen O. 275 years of forestry meets genomics in Pinus sylvestris. Evol Appl 2020; 13:11-30. [PMID: 31988655 PMCID: PMC6966708 DOI: 10.1111/eva.12809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pinus sylvestris has a long history of basic and applied research that is relevant for both forestry and evolutionary studies. Its patterns of adaptive variation and role in forest economic and ecological systems have been studied extensively for nearly 275 years, detailed demography for a 100 years and mating system more than 50 years. However, its reference genome sequence is not yet available and genomic studies have been lagging compared to, for example, Pinus taeda and Picea abies, two other economically important conifers. Despite the lack of reference genome, many modern genomic methods are applicable for a more detailed look at its biological characteristics. For example, RNA-seq has revealed a complex transcriptional landscape and targeted DNA sequencing displays an excess of rare variants and geographically homogenously distributed molecular genetic diversity. Current DNA and RNA resources can be used as a reference for gene expression studies, SNP discovery, and further targeted sequencing. In the future, specific consequences of the large genome size, such as functional effects of regulatory open chromatin regions and transposable elements, should be investigated more carefully. For forest breeding and long-term management purposes, genomic data can help in assessing the genetic basis of inbreeding depression and the application of genomic tools for genomic prediction and relatedness estimates. Given the challenges of breeding (long generation time, no easy vegetative propagation) and the economic importance, application of genomic tools has a potential to have a considerable impact. Here, we explore how genomic characteristics of P. sylvestris, such as rare alleles and the low extent of linkage disequilibrium, impact the applicability and power of the tools.
Collapse
Affiliation(s)
- Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | | | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
21
|
Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB. A Reference Genome Sequence for the European Silver Fir ( Abies alba Mill.): A Community-Generated Genomic Resource. G3 (BETHESDA, MD.) 2019; 9:2039-2049. [PMID: 31217262 PMCID: PMC6643874 DOI: 10.1534/g3.119.400083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Silver fir (Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species' future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.
Collapse
Affiliation(s)
- Elena Mosca
- C3A - Centro Agricoltura Alimenti Ambiente, University of Trento, via E. Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
| | - Luca Bianco
- Fondazione Edmund Mach, Via Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - Christian Rellstab
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Sabine Brodbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Katalin Csilléry
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- University of Zürich, Department of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, CH-8057 Zurich
| | - Bruno Fady
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Ecologie des Forêts Méditerranéennes (URFM), Site Agroparc, Domaine Saint Paul, 84914 Avignon, France
| | - Matthias Fladung
- Thünen-Institute of Forest Genetics, Sieker Landstr, 2, 22927 Grosshansdorf, Germany
| | - Barbara Fussi
- Bavarian Office for Forest Seeding and Planting (ASP), Applied Forest Genetics, Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Dušan Gömöry
- Technical University in Zvolen, TG Masaryka 24, 96053 Zvolen, Slovakia
| | - Santiago C González-Martínez
- Institut National de la Recherche Agronomique (INRA), UMR1202 Biodiversity, Genes & Communities (BIOGECO), University of Bordeaux, 69, route d'Arcachon, 33610 Cestas, France
| | - Delphine Grivet
- INIA Forest Research Centre, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain
| | - Ole Kim Hansen
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Katrin Heer
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Zeki Kaya
- Department of Biological Sciences (METU), Middle East Technical University, 06800 Çankaya/Ankara, Turkey
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 11991 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 50a/2 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Birgit Kersten
- Thünen-Institute of Forest Genetics, Sieker Landstr, 2, 22927 Grosshansdorf, Germany
| | - Sascha Liepelt
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Lars Opgenoorth
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Christoph Sperisen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Kristian K Ullrich
- Department of Biological Sciences (METU), Middle East Technical University, 06800 Çankaya/Ankara, Turkey
| | - Giovanni G Vendramin
- Institute of Biosciences and BioResources, National Research Council, Via Madonna del Piano 10,50019 Sesto Fiorentino (Firenze), Italy
| | - Marjana Westergren
- Slovenian Forestry Institute (SFI), Gozdarskiinštitut Slovenije), Večna pot 2, 1000 Ljubljana, Slovenia
| | - Birgit Ziegenhagen
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Berthold Heinze
- Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent Weg 8, 1130 Wien, Austria
| | - Maria Höhn
- Max Planck Institute for Evolutionary Biology, Department for Evolutionary Genetics (MPI), August Thienemann Str. 2, 24306 Ploen, Germany
| | - Michela Troggio
- Fondazione Edmund Mach, Via Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - David B Neale
- Department of Plant Sciences, University of California at Davis (UCD), Davis 95616
| |
Collapse
|
22
|
Sena JS, Lachance D, Duval I, Nguyen TTA, Stewart D, Mackay J, Séguin A. Functional Analysis of the PgCesA3 White Spruce Cellulose Synthase Gene Promoter in Secondary Xylem. FRONTIERS IN PLANT SCIENCE 2019; 10:626. [PMID: 31191566 PMCID: PMC6546725 DOI: 10.3389/fpls.2019.00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Cellulose is an essential structural component of the plant cell wall. Its biosynthesis involves genes encoding cellulose synthase enzymes and a complex transcriptional regulatory network. Three cellulose synthases have been identified in conifers as being potentially involved in secondary cell wall biosynthesis because of their preferential expression in xylem tissues; however, no direct functional association has been made to date. In the present work, we characterized the white spruce [Picea glauca (Moench) Voss] cellulose synthase PgCesA3 gene and 5' regulatory elements. Phylogenetic analysis showed that PgCesA1-3 genes grouped with secondary cell wall-associated Arabidopsis cellulose synthase genes, such as AtCesA8, AtCesA4, and AtCesA7. We produced transgenic spruce expressing the GUS reporter gene driven by the PgCesA3 promoter. We observed blue staining in differentiating xylem cells from stem and roots, and in foliar guard cells indicating that PgCesA3 is clearly involved in secondary cell wall biosynthesis. The promoter region sequence of PgCesA3 contained several putative MYB cis-regulatory elements including AC-I like motifs and secondary wall MYB-responsive element (SMRE); however, it lacked SMRE4, 7 and 8 that correspond to the sequences of AC-I, II, and III. Based on these findings and results of previous transient trans-activation assays that identified interactions between the PgCesA3 promoter and different MYB transcription factors, we performed electrophoretic mobility shift assays with MYB recombinant proteins and cis-regulatory elements present in the PgCesA3 promoter. We found that PgMYB12 bound to a canonical AC-I element identified in the Pinus taeda PAL promoter and two AC-I like elements. We hypothesized that the PgMYB12 could regulate PgCesA3 in roots based on previous expression results. This functional study of PgCesA3 sequences and promoter opens the door for future studies on the interaction between PgMYBs and the PgCesA3 regulatory elements.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Department of Wood and Forest Sciences, Université Laval, Quebec City, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Thi Thuy An Nguyen
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - John Mackay
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| |
Collapse
|
23
|
Liu Y, El-Kassaby YA. Novel Insights into Plant Genome Evolution and Adaptation as Revealed through Transposable Elements and Non-Coding RNAs in Conifers. Genes (Basel) 2019; 10:genes10030228. [PMID: 30889931 PMCID: PMC6470726 DOI: 10.3390/genes10030228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/03/2023] Open
Abstract
Plant genomes are punctuated by repeated bouts of proliferation of transposable elements (TEs), and these mobile bursts are followed by silencing and decay of most of the newly inserted elements. As such, plant genomes reflect TE-related genome expansion and shrinkage. In general, these genome activities involve two mechanisms: small RNA-mediated epigenetic repression and long-term mutational decay and deletion, that is, genome-purging. Furthermore, the spatial relationships between TE insertions and genes are an important force in shaping gene regulatory networks, their downstream metabolic and physiological outputs, and thus their phenotypes. Such cascading regulations finally set up a fitness differential among individuals. This brief review demonstrates factual evidence that unifies most updated conceptual frameworks covering genome size, architecture, epigenetic reprogramming, and gene expression. It aims to give an overview of the impact that TEs may have on genome and adaptive evolution and to provide novel insights into addressing possible causes and consequences of intimidating genome sizes (20⁻30 Gb) in a taxonomic group, conifers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
24
|
Azaiez A, Pavy N, Gérardi S, Laroche J, Boyle B, Gagnon F, Mottet MJ, Beaulieu J, Bousquet J. A catalog of annotated high-confidence SNPs from exome capture and sequencing reveals highly polymorphic genes in Norway spruce (Picea abies). BMC Genomics 2018; 19:942. [PMID: 30558528 PMCID: PMC6296092 DOI: 10.1186/s12864-018-5247-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Norway spruce [Picea abies (L.) Karst.] is ecologically and economically one of the most important conifer worldwide. Our main goal was to develop a large catalog of annotated high confidence gene SNPs that should sustain the development of genomic tools for the conservation of natural and domesticated genetic diversity resources, and hasten tree breeding efforts in this species. RESULTS Targeted sequencing was achieved by capturing P. abies exome with probes previously designed from the sequenced transcriptome of white spruce (Picea glauca (Moench) Voss). Capture efficiency was high (74.5%) given a high level of exome conservation between the two species. Using stringent criteria, we delimited a set of 61,771 high-confidence SNPs across 13,543 genes. To validate SNPs, a high-throughput genotyping array was developed for a subset of 5571 predicted SNPs representing as many different gene loci, and was used to genotype over 1000 trees. The estimated true positive rate of the resource was 84.2%, which was comparable with the genotyping success rate obtained for P. abies control SNPs recycled from previous genotyping efforts. We also analyzed SNP abundance across various gene functional categories. Several GO terms and gene families involved in stress response were found over-represented in highly polymorphic genes. CONCLUSION The annotated high-confidence SNP catalog developed herein represents a valuable genomic resource, being representative of over 13 K genes distributed across the P. abies genome. This resource should serve a variety of population genomics and breeding applications in Norway spruce.
Collapse
Affiliation(s)
- Aïda Azaiez
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Jérôme Laroche
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Brian Boyle
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Marie-Josée Mottet
- Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs du Québec, 2700 Einstein, Québec, Québec G1P 3W8 Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| |
Collapse
|
25
|
Perera D, Magbanua ZV, Thummasuwan S, Mukherjee D, Arick M, Chouvarine P, Nairn CJ, Schmutz J, Grimwood J, Dean JFD, Peterson DG. Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis. Gene 2018; 663:165-177. [PMID: 29655895 DOI: 10.1016/j.gene.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Loblolly pine (LP; Pinus taeda L.) is an economically and ecologically important tree in the southeastern U.S. To advance understanding of the loblolly pine (LP; Pinus taeda L.) genome, we sequenced and analyzed 100 BAC clones and performed a Cot analysis. The Cot analysis indicates that the genome is composed of 57, 24, and 10% highly-repetitive, moderately-repetitive, and single/low-copy sequences, respectively (the remaining 9% of the genome is a combination of fold back and damaged DNA). Although single/low-copy DNA only accounts for 10% of the LP genome, the amount of single/low-copy DNA in LP is still 14 times the size of the Arabidopsis genome. Since gene numbers in LP are similar to those in Arabidopsis, much of the single/low-copy DNA of LP would appear to be composed of DNA that is both gene- and repeat-poor. Macroarrays prepared from a LP bacterial artificial chromosome (BAC) library were hybridized with probes designed from cell wall synthesis/wood development cDNAs, and 50 of the "targeted" clones were selected for further analysis. An additional 25 clones were selected because they contained few repeats, while 25 more clones were selected at random. The 100 BAC clones were Sanger sequenced and assembled. Of the targeted BACs, 80% contained all or part of the cDNA used to target them. One targeted BAC was found to contain fungal DNA and was eliminated from further analysis. Combinations of similarity-based and ab initio gene prediction approaches were utilized to identify and characterize potential coding regions in the 99 BACs containing LP DNA. From this analysis, we identified 154 gene models (GMs) representing both putative protein-coding genes and likely pseudogenes. Ten of the GMs (all of which were specifically targeted) had enough support to be classified as intact genes. Interestingly, the 154 GMs had statistically indistinguishable (α = 0.05) distributions in the targeted and random BAC clones (15.18 and 12.61 GM/Mb, respectively), whereas the low-repeat BACs contained significantly fewer GMs (7.08 GM/Mb). However, when GM length was considered, the targeted BACs had a significantly greater percentage of their length in GMs (3.26%) when compared to random (1.63%) and low-repeat (0.62%) BACs. The results of our study provide insight into LP evolution and inform ongoing efforts to produce a reference genome sequence for LP, while characterization of genes involved in cell wall production highlights carbon metabolism pathways that can be leveraged for increasing wood production.
Collapse
Affiliation(s)
- Dinum Perera
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Zenaida V Magbanua
- National Institute of Molecular Biology & Biotechnology, National Science Complex, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Supaphan Thummasuwan
- Department of Agricultural Sciences, Naresuan University, Phitsanulok, Thailand.
| | - Dipaloke Mukherjee
- Department of Food Science, Nutrition, & Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Mark Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Philippe Chouvarine
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Campbell J Nairn
- Warnell School of Forest Resources, University of Georgia, Athens, GA 30602, USA.
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35801, USA.
| | - Jane Grimwood
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35801, USA.
| | - Jeffrey F D Dean
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
26
|
García-Gutiérrez Á, Cánovas FM, Ávila C. Glutamate synthases from conifers: gene structure and phylogenetic studies. BMC Genomics 2018; 19:65. [PMID: 29351733 PMCID: PMC5775586 DOI: 10.1186/s12864-018-4454-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plants synthesize glutamate from ammonium by the combined activity of the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) through the glutamate synthase cycle. In plants, there are two forms of glutamate synthases that differ in their electron donors, NADH-GOGAT (EC 1.4.1.14) and Fd-GOGAT (EC 1.4.7.1), which have differential roles either in primary ammonia assimilation or in the reassimilation of ammonium from different catabolic processes. Glutamate synthases are complex iron-sulfur flavoproteins containing functional domains involved in the control and coordination of their catalytic activities in annual plants. In conifers, partial cDNA sequences for GOGATs have been isolated and used for gene expression studies. However, knowledge of the gene structure and of phylogenetic relationships with other plant enzymes is quite scant. RESULTS Technological advances in conifer megagenomes sequencing have made it possible to obtain full-length cDNA sequences encoding Fd- and NADH-GOGAT from maritime pine, as well as BAC clones containing sequences for NADH-GOGAT and Fd-GOGAT genes. In the current study, we studied the genomic organization of pine GOGAT genes, the size of their exons/introns, copy numbers in the pine genome and relationships with other plant genes. Phylogenetic analysis was performed, and the degree of preservation and dissimilarity of key domains for the catalytic activities of these enzymes in different taxa were determined. CONCLUSIONS Fd- and NADH-GOGAT are encoded by single-copy genes in the maritime pine genome. The Fd-GOGAT gene is extremely large spanning more than 330 kb and the presence of very long introns highlights the important contribution of LTR retrotransposons to the gene size in conifers. In contrast, the structure of the NADH-GOGAT gene is similar to the orthologous genes in angiosperms. Our phylogenetic analysis indicates that these two genes had different origins during plant evolution. The results provide new insights into the structure and molecular evolution of these essential genes.
Collapse
Affiliation(s)
- Ángel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
27
|
Prunier J, Caron S, Lamothe M, Blais S, Bousquet J, Isabel N, MacKay J. Gene copy number variations in adaptive evolution: The genomic distribution of gene copy number variations revealed by genetic mapping and their adaptive role in an undomesticated species, white spruce (Picea glauca). Mol Ecol 2017; 26:5989-6001. [PMID: 28833771 DOI: 10.1111/mec.14337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/26/2017] [Accepted: 08/05/2017] [Indexed: 01/09/2023]
Abstract
Gene copy number variation (CNV) has been associated with phenotypic variability in animals and plants, but a genomewide understanding of their impacts on phenotypes is largely restricted to human and agricultural systems. As such, CNVs have rarely been considered in investigations of the genomic architecture of adaptation in wild species. Here, we report on the genetic mapping of gene CNVs in white spruce, which lacks a contiguous assembly of its large genome (~20 Gb), and their relationships with adaptive phenotypic variation. We detected 3,911 gene CNVs including de novo structural variations using comparative genome hybridization on arrays (aCGH) in a large progeny set. We inferred the heterozygosity at CNV loci within parents by comparing haploid and diploid tissues and genetically mapped 82 gene CNVs. Our analysis showed that CNVs were distributed over 10 linkage groups and identified four CNV hotspots that we predict to occur in other species of the Pinaceae. Significant relationships were found between 29 of the gene CNVs and adaptive traits based on regression analyses with timings of bud set and bud flush, and height growth, suggesting a role for CNVs in climate adaptation. The importance of CNVs in adaptive evolution of white spruce was also indicated by functional gene annotations and the clustering of 31% of the mapped adaptive gene CNVs in CNV hotspots. Taken together, these results illustrate the feasibility of studying CNVs in undomesticated species and represent a major step towards a better understanding of the roles of CNVs in adaptive evolution.
Collapse
Affiliation(s)
- Julien Prunier
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada
| | - Sébastien Caron
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Laurentian Forest Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - Sylvie Blais
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - Jean Bousquet
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - Nathalie Isabel
- Laurentian Forest Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - John MacKay
- Centre for Forest Research, Université Laval, Québec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada.,Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Prunier J, Caron S, MacKay J. CNVs into the wild: screening the genomes of conifer trees (Picea spp.) reveals fewer gene copy number variations in hybrids and links to adaptation. BMC Genomics 2017; 18:97. [PMID: 28100184 PMCID: PMC5241962 DOI: 10.1186/s12864-016-3458-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background Copy number variations (CNVs) have been linked to different phenotypes in human, including many diseases. A genome-scale understanding of CNVs is available in a few plants but none are wild species, leaving a knowledge gap regarding their genome biology and evolutionary role. We developed a reliable CNV detection method for species lacking contiguous reference genome. We selected multiple probes within 14,078 gene sequences and developed comparative genome hybridization on arrays. Gene CNVs were assessed in three full-sib families from species with 20 Gb genomes, i.e., white and black spruce, and interior spruce - a natural hybrid. Results We discovered hundreds of gene CNVs in each species, 3612 in total, which were enriched in functions related to stress and defense responses and narrow expression profiles, indicating a potential role in adaptation. The number of shared CNVs was in accordance with the degree of relatedness between individuals and species. The genetically mapped subset of these genes showed a wide distribution across the genome, implying numerous structural variations. The hybrid family presented significantly fewer CNVs, suggesting that the admixture of two species within one genome reduces the occurrence of CNVs. Conclusions The approach we developed is of particular interest in non-model species lacking a reference genome. Our findings point to a role for CNVs in adaptation. Their reduced abundance in the hybrid may limit genetic variability and evolvability of hybrids. We propose that CNVs make a qualitatively distinct contribution to adaptation which could be important for short term change. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3458-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julien Prunier
- Institute for System and Integrative Biology (IBIS), Université Laval, Quebec, QC, G1V 0A6, Canada. .,Centre for Forest Research, Université Laval, Quebec, QC, G1V 0A6, Canada.
| | - Sébastien Caron
- Institute for System and Integrative Biology (IBIS), Université Laval, Quebec, QC, G1V 0A6, Canada
| | - John MacKay
- Centre for Forest Research, Université Laval, Quebec, QC, G1V 0A6, Canada.,Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
29
|
Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee SMY, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W. Draft genome of the living fossil Ginkgo biloba. Gigascience 2016. [PMID: 27871309 DOI: 10.1186/s13742-016-0154-1pmid:27871309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Ginkgo biloba L. (Ginkgoaceae) is one of the most distinctive plants. It possesses a suite of fascinating characteristics including a large genome, outstanding resistance/tolerance to abiotic and biotic stresses, and dioecious reproduction, making it an ideal model species for biological studies. However, the lack of a high-quality genome sequence has been an impediment to our understanding of its biology and evolution. FINDINGS The 10.61 Gb genome sequence containing 41,840 annotated genes was assembled in the present study. Repetitive sequences account for 76.58% of the assembled sequence, and long terminal repeat retrotransposons (LTR-RTs) are particularly prevalent. The diversity and abundance of LTR-RTs is due to their gradual accumulation and a remarkable amplification between 16 and 24 million years ago, and they contribute to the long introns and large genome. Whole genome duplication (WGD) may have occurred twice, with an ancient WGD consistent with that shown to occur in other seed plants, and a more recent event specific to ginkgo. Abundant gene clusters from tandem duplication were also evident, and enrichment of expanded gene families indicates a remarkable array of chemical and antibacterial defense pathways. CONCLUSIONS The ginkgo genome consists mainly of LTR-RTs resulting from ancient gradual accumulation and two WGD events. The multiple defense mechanisms underlying the characteristic resilience of ginkgo are fostered by a remarkable enrichment in ancient duplicated and ginkgo-specific gene clusters. The present study sheds light on sequencing large genomes, and opens an avenue for further genetic and evolutionary research.
Collapse
Affiliation(s)
- Rui Guan
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenbin Zhou
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China
| | | | | | - Weiqing Liu
- BGI-Wuhan, BGI-Shenzhen, Wuhan, 430074, China
| | | | - Yuanyuan Fu
- BGI-Shenzhen, Shenzhen, 518083, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | | | - Lijun Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China
| | - Fumin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Chengxin Fu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China.
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Wenbin Chen
- BGI-Shenzhen, Shenzhen, 518083, China.
- BGI-Qingdao, Qingdao, 266555, China.
| |
Collapse
|
30
|
Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee SMY, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W. Draft genome of the living fossil Ginkgo biloba. Gigascience 2016; 5:49. [PMID: 27871309 PMCID: PMC5118899 DOI: 10.1186/s13742-016-0154-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ginkgo biloba L. (Ginkgoaceae) is one of the most distinctive plants. It possesses a suite of fascinating characteristics including a large genome, outstanding resistance/tolerance to abiotic and biotic stresses, and dioecious reproduction, making it an ideal model species for biological studies. However, the lack of a high-quality genome sequence has been an impediment to our understanding of its biology and evolution. FINDINGS The 10.61 Gb genome sequence containing 41,840 annotated genes was assembled in the present study. Repetitive sequences account for 76.58% of the assembled sequence, and long terminal repeat retrotransposons (LTR-RTs) are particularly prevalent. The diversity and abundance of LTR-RTs is due to their gradual accumulation and a remarkable amplification between 16 and 24 million years ago, and they contribute to the long introns and large genome. Whole genome duplication (WGD) may have occurred twice, with an ancient WGD consistent with that shown to occur in other seed plants, and a more recent event specific to ginkgo. Abundant gene clusters from tandem duplication were also evident, and enrichment of expanded gene families indicates a remarkable array of chemical and antibacterial defense pathways. CONCLUSIONS The ginkgo genome consists mainly of LTR-RTs resulting from ancient gradual accumulation and two WGD events. The multiple defense mechanisms underlying the characteristic resilience of ginkgo are fostered by a remarkable enrichment in ancient duplicated and ginkgo-specific gene clusters. The present study sheds light on sequencing large genomes, and opens an avenue for further genetic and evolutionary research.
Collapse
Affiliation(s)
- Rui Guan
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenbin Zhou
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China
| | | | | | - Weiqing Liu
- BGI-Wuhan, BGI-Shenzhen, Wuhan, 430074, China
| | | | - Yuanyuan Fu
- BGI-Shenzhen, Shenzhen, 518083, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | | | - Lijun Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China
| | - Fumin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Chengxin Fu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, 310058, China.
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Wenbin Chen
- BGI-Shenzhen, Shenzhen, 518083, China.
- BGI-Qingdao, Qingdao, 266555, China.
| |
Collapse
|
31
|
Li W, Lu J, Lu K, Yuan J, Huang J, Du H, Li J. Cloning and Phylogenetic Analysis of Brassica napus L. Caffeic Acid O-Methyltransferase 1 Gene Family and Its Expression Pattern under Drought Stress. PLoS One 2016; 11:e0165975. [PMID: 27832102 PMCID: PMC5104432 DOI: 10.1371/journal.pone.0165975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 01/25/2023] Open
Abstract
For many plants, regulating lignin content and composition to improve lodging resistance is a crucial issue. Caffeic acid O-methyltransferase (COMT) is a lignin monomer-specific enzyme that controls S subunit synthesis in plant vascular cell walls. Here, we identified 12 BnCOMT1 gene homologues, namely BnCOMT1-1 to BnCOMT1-12. Ten of 12 genes were composed of four highly conserved exons and three weakly conserved introns. The length of intron I, in particular, showed enormous diversification. Intron I of homologous BnCOMT1 genes showed high identity with counterpart genes in Brassica rapa and Brassica oleracea, and intron I from positional close genes in the same chromosome were relatively highly conserved. A phylogenetic analysis suggested that COMT genes experience considerable diversification and conservation in Brassicaceae species, and some COMT1 genes are unique in the Brassica genus. Our expression studies indicated that BnCOMT1 genes were differentially expressed in different tissues, with BnCOMT1-4, BnCOMT1-5, BnCOMT1-8, and BnCOMT1-10 exhibiting stem specificity. These four BnCOMT1 genes were expressed at all developmental periods (the bud, early flowering, late flowering and mature stages) and their expression level peaked in the early flowering stage in the stem. Drought stress augmented and accelerated lignin accumulation in high-lignin plants but delayed it in low-lignin plants. The expression levels of BnCOMT1s were generally reduced in water deficit condition. The desynchrony of the accumulation processes of total lignin and BnCOMT1s transcripts in most growth stages indicated that BnCOMT1s could be responsible for the synthesis of a specific subunit of lignin or that they participate in other pathways such as the melatonin biosynthesis pathway.
Collapse
Affiliation(s)
- Wei Li
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Junxing Lu
- Chongqing Key Laboratory of Molecular Biology of Plants Environment Adaption, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Kun Lu
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Jianglian Yuan
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Jieheng Huang
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Hai Du
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Jiana Li
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
- * E-mail:
| |
Collapse
|
32
|
Seoane-Zonjic P, Cañas RA, Bautista R, Gómez-Maldonado J, Arrillaga I, Fernández-Pozo N, Claros MG, Cánovas FM, Ávila C. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing. BMC Genomics 2016; 17:148. [PMID: 26922242 PMCID: PMC4769843 DOI: 10.1186/s12864-016-2490-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. RESULTS In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. CONCLUSIONS The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.
Collapse
Affiliation(s)
- Pedro Seoane-Zonjic
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - Rocío Bautista
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - Josefa Gómez-Maldonado
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Facultad de Farmacia, ERI Biotecmed, Universidad de Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Noé Fernández-Pozo
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - M Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| |
Collapse
|
33
|
Prunier J, Verta JP, MacKay JJ. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. THE NEW PHYTOLOGIST 2016; 209:44-62. [PMID: 26206592 DOI: 10.1111/nph.13565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/14/2015] [Indexed: 05/21/2023]
Abstract
Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.
Collapse
Affiliation(s)
- Julien Prunier
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jukka-Pekka Verta
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tübingen, 72076, Germany
| | - John J MacKay
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
34
|
Piovesan A, Caracausi M, Ricci M, Strippoli P, Vitale L, Pelleri MC. Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank. DNA Res 2015; 22:495-503. [PMID: 26581719 PMCID: PMC4675715 DOI: 10.1093/dnares/dsv028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/07/2015] [Indexed: 01/26/2023] Open
Abstract
We have developed GeneBase, a full parser of the National Center for Biotechnology Information (NCBI) Gene database, which generates a fully structured local database with an intuitive user-friendly graphic interface for personal computers. Features of all the annotated eukaryotic genes are accessible through three main software tables, including for each entry details such as the gene summary, the gene exon/intron structure and the specific Gene Ontology attributions. The structuring of the data, the creation of additional calculation fields and the integration with nucleotide sequences allow users to make many types of comparisons and calculations that are useful for data retrieval and analysis. We provide an original example analysis of the existing introns across all the available species, through which the classic biological problem of the ‘minimal intron’ may find a solution using available data. Based on all currently available data, we can define the shortest known eukaryotic GT-AG intron length, setting the physical limit at the 30 base pair intron belonging to the human MST1L gene. This ‘model intron’ will shed light on the minimal requirement elements of recognition used for conventional splicing functioning. Remarkably, this size is indeed consistent with the sum of the splicing consensus sequence lengths.
Collapse
Affiliation(s)
- Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Marco Ricci
- Department of Biological, Geological and Environmental Sciences (BIGeA), University of Bologna, Bologna, BO 40126, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| |
Collapse
|
35
|
Pavy N, Gagnon F, Deschênes A, Boyle B, Beaulieu J, Bousquet J. Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana). Mol Ecol Resour 2015; 16:588-98. [PMID: 26391535 DOI: 10.1111/1755-0998.12468] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 11/29/2022]
Abstract
Picea mariana is a widely distributed boreal conifer across Canada and the subject of advanced breeding programmes for which population genomics and genomic selection approaches are being developed. Targeted sequencing was achieved after capturing P. mariana exome with probes designed from the sequenced transcriptome of Picea glauca, a distant relative. A high capture efficiency of 75.9% was reached although spruce has a complex and large genome including gene sequences interspersed by some long introns. The results confirmed the relevance of using probes from congeneric species to perform successfully interspecific exome capture in the genus Picea. A bioinformatics pipeline was developed including stringent criteria that helped detect a set of 97,075 highly reliable in silico SNPs. These SNPs were distributed across 14,909 genes. Part of an Infinium iSelect array was used to estimate the rate of true positives by validating 4267 of the predicted in silico SNPs by genotyping trees from P. mariana populations. The true positive rate was 96.2% for in silico SNPs, compared to a genotyping success rate of 96.7% for a set 1115 P. mariana control SNPs recycled from previous genotyping arrays. These results indicate the high success rate of the genotyping array and the relevance of the selection criteria used to delineate the new P. mariana in silico SNP resource. Furthermore, in silico SNPs were generally of medium to high frequency in natural populations, thus providing high informative value for future population genomics applications.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research, Université Laval, Québec, QC, G1V 0A6, Canada.,Institute of Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - France Gagnon
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research, Université Laval, Québec, QC, G1V 0A6, Canada.,Institute of Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Astrid Deschênes
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research, Université Laval, Québec, QC, G1V 0A6, Canada.,Institute of Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Brian Boyle
- Institute of Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research, Université Laval, Québec, QC, G1V 0A6, Canada.,Natural Resources Canada, Canadian Wood Fibre Centre, 1055 Rue du P.E.P.S., PO Box 10380, Station Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research, Université Laval, Québec, QC, G1V 0A6, Canada.,Institute of Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
36
|
Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol I, Bohlmann J. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:189-212. [PMID: 26017574 DOI: 10.1111/tpj.12886] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/15/2015] [Indexed: 05/21/2023]
Abstract
White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.
Collapse
Affiliation(s)
- René L Warren
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony Raymond
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Greg A Taylor
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Benjamin P Vandervalk
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Hamid Mohamadi
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Daniel Paulino
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Readman Chiu
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Shaun D Jackman
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Gordon Robertson
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Chen Yang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Margarete Hoffmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Alvin Yanchuk
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Jean Bousquet
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - John MacKay
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Inanc Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
37
|
Rastogi S, Kalra A, Gupta V, Khan F, Lal RK, Tripathi AK, Parameswaran S, Gopalakrishnan C, Ramaswamy G, Shasany AK. Unravelling the genome of Holy basil: an "incomparable" "elixir of life" of traditional Indian medicine. BMC Genomics 2015; 16:413. [PMID: 26017011 PMCID: PMC4445982 DOI: 10.1186/s12864-015-1640-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/18/2015] [Indexed: 01/22/2023] Open
Abstract
Background Ocimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition of medicine as well as culture around the world, and hence is known as “Holy basil” in India. This plant is mentioned in the ancient texts of Ayurveda as an “elixir of life” (life saving) herb and worshipped for over 3000 years due to its healing properties. Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components. With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms. Results The saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp, turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active molecules. Conclusion The genome sequence and annotation of O. sanctum provides new insights into the function of genes and the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining biosynthetic pathways for important metabolites in related species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1640-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, U.P., India.
| | - Alok Kalra
- Microbial Technology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
| | - Vikrant Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, U.P., India.
| | - Feroz Khan
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, U.P., India.
| | - Raj Kishori Lal
- Genetics and Plant Breeding Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, U.P., India.
| | - Anil Kumar Tripathi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, U.P., India.
| | - Sriram Parameswaran
- Research and Development Unit, Genotypic Technology Private Limited, Bangalore, Karnataka, 560094, India.
| | - Chellappa Gopalakrishnan
- Research and Development Unit, Genotypic Technology Private Limited, Bangalore, Karnataka, 560094, India.
| | - Gopalakrishna Ramaswamy
- Research and Development Unit, Genotypic Technology Private Limited, Bangalore, Karnataka, 560094, India.
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, U.P., India.
| |
Collapse
|
38
|
De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, MacKay J, Nilsson O, Ritland K, Street N, Yanchuk A, Zerbe P, Bohlmann J. Insights into conifer giga-genomes. PLANT PHYSIOLOGY 2014; 166:1724-32. [PMID: 25349325 PMCID: PMC4256843 DOI: 10.1104/pp.114.248708] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Inanc Birol
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Jean Bousquet
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Stefan Jansson
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Steven J M Jones
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Christopher I Keeling
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - John MacKay
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Ove Nilsson
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Kermit Ritland
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Nathaniel Street
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Alvin Yanchuk
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Philipp Zerbe
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Jörg Bohlmann
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| |
Collapse
|
39
|
Karam MJ, Lefèvre F, Dagher-Kharrat MB, Pinosio S, Vendramin G. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Mol Ecol Resour 2014; 15:601-12. [DOI: 10.1111/1755-0998.12329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 01/05/2023]
Affiliation(s)
- M.-J. Karam
- INRA; UR 629 Ecologie des Forêts Méditerranéennes; URFM; Avignon France
| | - F. Lefèvre
- INRA; UR 629 Ecologie des Forêts Méditerranéennes; URFM; Avignon France
| | - M. Bou Dagher-Kharrat
- Laboratoire Caractérisation Génomique des Plantes; Département Sciences de la Vie et de la Terre; Faculté des Sciences; Campus Sciences et Technologies; Université Saint-Joseph; Mar Roukos Mkalles Lebanon
| | - S. Pinosio
- Istituto di Genomica Applicata (IGA); Udine Italy
- Institute of Biosciences and Bioresources; National Research Council; Florence Italy
| | - G.G. Vendramin
- Institute of Biosciences and Bioresources; National Research Council; Florence Italy
| |
Collapse
|