1
|
Chen J, Ji F, Gao R, He D. Reducing red light proportion in full-spectrum LEDs enhances runner plant propagation by promoting the growth and development of mother plants in strawberry. FRONTIERS IN PLANT SCIENCE 2024; 15:1465004. [PMID: 39445138 PMCID: PMC11497633 DOI: 10.3389/fpls.2024.1465004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Full-spectrum light-emitting diodes (LEDs) have gradually replaced narrow-spectrum LEDs and are widely used in plant factories with artificial lighting (PFALs). However, the specific effect of LED light quality on dry mass allocation in runner plant propagation remains unclear. Hence, we cultivated "Akihime" strawberries as mother plants for 115 days to conduct runner plant propagation experiment under white LEDs (W100), white and red LEDs (W84R16 and W55R45), red and blue LEDs (RB100), and red, blue and green LEDs (RB80G20) in PFALs, and determined key factors affecting dry mass accumulation and allocation among mother plants and runner plants based on growth component analysis. The results showed that the net photosynthetic rate and total leaf area in mother plants in W100 increased by 11% and 31%, respectively, compared with W55R45. In comparison to W84R16 and W55R45, W100 increased the dry mass (23%-30%) of runner plants mainly by increasing the total dry mass (TDM) (23%) of strawberry plants, without significantly affecting the fraction of dry mass partitioning to runner plants. However, the number of runners in W55R45 was 5.1 per plant, representing only 78% of that in W100. Compared with RB100, RB80G20 significantly increased the number of runner plants and runner numbers by 16% and 19% to 13.0 per plant and 5.8 per plant, respectively. The partial replacement of blue light with green light in RB80G20 induced a shade avoidance response in runner plants, resulting in a 55% increase in the total leaf area of runner plants compared with RB100. Data from growth component analysis showed that compared with red and blue LEDs, white LEDs increased the TDM of runner plants by 83% by increasing the plant TDM accumulation (44%) and the fraction of dry mass partitioning to runner plants (37%). Additionally, the dry mass (g) of runner plants per mol and per kilowatt-hour under in W100 were 0.11 and 0.75, respectively, significantly higher than other treatments. Therefore, reducing red light proportion in full-spectrum LEDs is beneficial for strawberry runner plant propagation in PFALs.
Collapse
Affiliation(s)
| | - Fang Ji
- Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
2
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
3
|
Rehman AU, Iso-Touru T, Junkers J, Rantanen M, Karhu S, Fischer D, Alsheikh M, Hjeltnes SH, Mezzetti B, Davik J, Schulman AH, Hytönen T, Haikonen T. Multi-model GWAS reveals key loci for horticultural traits in reconstructed garden strawberry. PHYSIOLOGIA PLANTARUM 2024; 176:e14440. [PMID: 39030778 DOI: 10.1111/ppl.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
The cultivated garden strawberry (Fragaria × ananassa) has a rich history, originating from the hybridization of two wild octoploid strawberry species in the 18th century. Two-step reconstruction of Fragaria × ananassa through controlled crossings between pre-improved selections of its parental species is a promising approach for enriching the breeding germplasm of strawberry for wider adaptability. We created a population of reconstructed strawberry by hybridizing elite selections of F. virginiana and F. chiloensis. A replicated field experiment was conducted to evaluate the population's performance for eleven horticulturally important traits, over multiple years. Population structure analyses based on Fana-50 k SNP array data confirmed pedigree-based grouping of the progenies into four distinct groups. As complex traits are often influenced by environmental variables, and population structure can lead to spurious associations, we tested multiple genome-wide association study (GWAS) models. GWAS uncovered 39 quantitative trait loci (QTL) regions for eight traits distributed across twenty chromosomes, including 11 consistent and 28 putative QTLs. Candidate genes for traits including winter survival, flowering time, runnering vigor, and hermaphrodism were identified within the QTL regions. To our knowledge, this study marks the first comprehensive investigation of adaptive and horticultural traits in a large, multi-familial reconstructed strawberry population using SNP markers.
Collapse
Affiliation(s)
- Attiq Ur Rehman
- Natural Resources Institute Finland (Luke), Finland
- Doctoral Program in Plant Sciences, University of Helsinki, Finland
| | | | - Jakob Junkers
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Saila Karhu
- Natural Resources Institute Finland (Luke), Finland
| | | | - Muath Alsheikh
- Graminor AS, Norway
- Faculty of Life Sciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jahn Davik
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Alan H Schulman
- Natural Resources Institute Finland (Luke), Finland
- Viikki Plant Science Centre, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| | - Timo Hytönen
- Viikki Plant Science Centre, Finland
- Department of Agricultural Sciences, University of Helsinki, Finland
| | - Tuuli Haikonen
- Natural Resources Institute Finland (Luke), Finland
- Viikki Plant Science Centre, Finland
| |
Collapse
|
4
|
Han Y, Qu M, Liu Z, Kang C. Transcription factor FveMYB117a inhibits axillary bud outgrowth by regulating cytokinin homeostasis in woodland strawberry. THE PLANT CELL 2024; 36:2427-2446. [PMID: 38547429 PMCID: PMC11132891 DOI: 10.1093/plcell/koae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024]
Abstract
Shoot branching affects plant architecture. In strawberry (Fragaria L.), short branches (crowns) develop from dormant axillary buds to form inflorescences and flowers. While this developmental transition contributes greatly to perenniality and yield in strawberry, its regulatory mechanism remains unclear and understudied. In the woodland strawberry (Fragaria vesca), we identified and characterized 2 independent mutants showing more crowns. Both mutant alleles reside in FveMYB117a, a R2R3-MYB transcription factor gene highly expressed in shoot apical meristems, axillary buds, and young leaves. Transcriptome analysis revealed that the expression of several cytokinin pathway genes was altered in the fvemyb117a mutant. Consistently, active cytokinins were significantly increased in the axillary buds of the fvemyb117a mutant. Exogenous application of cytokinin enhanced crown outgrowth in the wild type, whereas the cytokinin inhibitors suppressed crown outgrowth in the fvemyb117a mutant. FveMYB117a binds directly to the promoters of the cytokinin homeostasis genes FveIPT2 encoding an isopentenyltransferase and FveCKX1 encoding a cytokinin oxidase to regulate their expression. Conversely, the type-B Arabidopsis response regulators FveARR1 and FveARR2b can directly inhibit the expression of FveMYB117a, indicative of a negative feedback regulation. In conclusion, we identified FveMYB117a as a key repressor of crown outgrowth by inhibiting cytokinin accumulation and provide a mechanistic basis for bud fate transition in an herbaceous perennial plant.
Collapse
Affiliation(s)
- Yafan Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Minghao Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
6
|
Han N, Li F, Zhu H, Li T, Wang X, Li T, Kang J, Zhang Z. Comprehensive analysis of WOX transcription factors provide insight into genes related to the regulation of unisexual flowers development in Akebia trifoliata. Int J Biol Macromol 2024; 260:129486. [PMID: 38237833 DOI: 10.1016/j.ijbiomac.2024.129486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Akebia trifoliata is a fascinating economic and medicinal plant that produces functionally unisexual flowers due to stamen/pistil abortion during flower development, and the genetic regulation pathway of this process remain completely unknown. Here, 10 AktWOXs were identified for the first time, all contained a highly conserved homeodomain. AktWOXs were divided into three clades, each with the same or similar intron, exon, and motifs distribution. Many cis-elements related to stress response, growth and development, and hormone response were found in the AktWOXs promoter region. In addition, four candidate genes AktWOX8, AktWOX11, AktWOX13.2 and AktWUS that might be involved in unisexual flowers development were screened, all of which were located in the nucleus and showed transcriptional activation activity. Yeast one-hybrid showed that both AktKNU and AktAG1, the potential core transcription factors in the activity termination pathway of flower meristem stem cells, could bind to the promoter region of AktWUS. Dual-luciferase assay further confirmed that only AktKNU inhibited the expression of AktWUS. Collectively, this study revealed the mechanism of AktWUS that might affect the formation of unisexual flowers by regulating the timely termination of flower meristem in A. trifoliata.
Collapse
Affiliation(s)
- Ning Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fengjiao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Huiqin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tian Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiuting Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Juqing Kang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zheng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
7
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Purkait A, Hazra DK, Kole R, Mandal S, Bhattacharrya S, Karmakar R. Harnessing the Carrier Solvent Complexity of Crop Biostimulant Liquid Formulations Using Locally Available Transesterified Waste Cooking Oil: Economic Recycling, Solvent Performance, and Bioefficacy Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1017-1024. [PMID: 38170676 DOI: 10.1021/acs.jafc.3c06167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Locally sourced waste cooking oil (WCO) was successfully base-catalyzed and transesterified with methanol into biodiesel to produce biostimulant (nitrobenzene) formulations and replace high-risk carrier solvents. Ideal synthesis conditions were composed of 1% NaOH, MeOH/oil molar ratio (6:1), reaction temperature (65 °C), a 3 h mixing rate, and 97-98% yields. Gas chromatography-mass spectrometry (GC-MS) analysis identified five fatty acid methyl esters (FAMEs) including palmitic, linoleic, oleic, stearic, and eicosenoic acids with high solubilization and olfactory characteristics. Using anionic and nonionic emulsifiers in conjunction with recycled biodiesel, a stable emulsifiable concentrate (NB 35% EC) was created with greater storage stability, wettability, and spreading capabilities than those of organic solvent-based ones. The highest counts of fruits per plant (35.80), flowers per plant (60.00), yield per plant (3.56 kg), and yield per hectare (143.7 quintals) were recorded in treatments with 4 mL/L biodiesel-based EC in field bioassays. In addition to having superior biosafety, FAME-based EC exhibits minimal phytotoxicity and is less harmful to aquatic creatures. It was discovered that the average cost-effectiveness was 5.49 times less expensive than solvent-based EC. In order to utilize waste oils as a locally obtained, sustainable alternative solvent with a wide solubilization range, low ecotax profile, circular economy, and high renewable carbon index, this integrative technique was expanded.
Collapse
Affiliation(s)
- Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli-Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Birbhum, 731 236 Sriniketan, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Ramen Kole
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Swagata Mandal
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Sudip Bhattacharrya
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| | - Rajib Karmakar
- All India Network Project n Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252 Nadia, West Bengal, India
| |
Collapse
|
9
|
Guo C, Lin W, Gao W, Lan C, Xu H, Zou J, Fallah N, Wang W, Lin W, Chen T, Lin W. Physiological Properties of Perennial Rice Regenerating Cultivation in Two Years with Four Harvests. PLANTS (BASEL, SWITZERLAND) 2023; 12:3910. [PMID: 38005807 PMCID: PMC10674883 DOI: 10.3390/plants12223910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Crop perennialization has garnered global attention recently due to its role in sustainable agriculture. However, there is still a lack of detailed information regarding perennial rice's regenerative characteristics and physiological mechanisms in crop ratooning systems with different rice stubble heights. In addition, the response of phytohormones to varying stubble heights and how this response influences the regenerative characteristics of ratoon rice remains poorly documented. Here, we explored the regenerative characteristics and physiological mechanisms of an annual hybrid rice, AR2640, and a perennial rice, PR25, subjected to different stubble heights (5, 10, and 15 cm). The response of phytohormones to varying stubble heights and how this response influences the regenerative characteristics of ratoon rice were also investigated. The results show that PR25 overwintered successfully and produced the highest yield, especially in the second ratoon season, mainly due to its extended growth duration, higher number of mother stems, tillers at the basal nodes, higher number of effective panicles, and heavier grain weight when subjected to lower stubble heights. Further analysis revealed that PR25 exhibited a higher regeneration rate from the lower-position nodes in the stem with lower stubble heights. this was primarily due to the higher contents of phytohormones, especially auxin (IAA) and gibberellin (GA3) at an early stage and abscisic acid (ABA) at a later stage after harvesting of the main crop. Our findings reveal how ratoon rice enhances performance based on different stubble heights, which provides valuable insights and serves as crucial references for delving deeper into cultivating high-yielding perennial rice.
Collapse
Affiliation(s)
- Chunlin Guo
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Lin
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wujie Gao
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaojie Lan
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailong Xu
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
| | - Jingnan Zou
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
| | - Nyumah Fallah
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
| | - Wenfei Wang
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfang Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Chen
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- Fujian Key Laboratory for Crop Physiology and Molecular Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.G.); (W.G.); (J.Z.)
- Fujian Key Laboratory for Agroecological Processes and Safety Monitoring, College of Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Liang F, Xu W, Wu H, Zheng B, Liang Q, Li Y, Wang S. Widely targeted metabolite profiling of mango stem apex during floral induction by compond of mepiquat chloride, prohexadione-calcium and uniconazole. PeerJ 2022; 10:e14458. [PMID: 36530389 PMCID: PMC9753738 DOI: 10.7717/peerj.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background Insufficient low temperatures in winter and soil residues caused by paclobutrazol (PBZ) application pose a considerable challenge for mango floral induction (FI). Gibberellin inhibitors SPD (compound of mepiquat chloride, prohexadione-calcium and uniconazole) had a significant influence on enhancing the flowering rate and yield of mango for two consecutive years (2020-2021). Researchers have indicated that FI is regulated at the metabolic level; however, little is known about the metabolic changes during FI in response to SPD treatment. Methods Here, ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based widely targeted metabolomic analysis was carried out to assess the metabolic differences in the mango stem apex during different stage of mango FI (30, 80, 100 days after SPD/water treatment). Results A total of 582 compounds were annotated and 372 metabolites showed two-fold differences in abundance (variable importance in projection, VIP ≥ 1 and fold change, FC≥ 2 or≤ 0.5) between buds at 30, 80, 100 days after SPD/water treatment or between buds under different treatment. Lipids, phenolic acids, amino acids, carbohydrates, and vitamins were among metabolites showing significant differences over time after SPD treatment. Here, 18 out of 20 lipids, including the lysophosphatidylethanolamine (12, LPE), lysophosphatidylcholine (7, LPC), and free fatty acids (1, FA), were significantly upregulated from 80 to 100 days after SPD treatment comared to water treatment. Meanwhile, the dormancy release of mango buds from 80 to 100 days after SPD treatment was accompanied by the accumulation of proline, ascorbic acid, carbohydrates, and tannins. In addition, metabolites, such as L-homocysteine, L-histidine, and L-homomethionine, showed more than a ten-fold difference in relative abundance from 30 to 100 days after SPD treatment, however, there were no significant changes after water treatment. The present study reveals novel metabolites involved in mango FI in response to SPD, which would provide a theoretical basis for utilizing SPD to induce mango flowering.
Collapse
Affiliation(s)
- Fei Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China,Binhai Agricultural College of Guangdong Ocean University, Zhanjiang, China
| | - Wentian Xu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hongxia Wu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Bin Zheng
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yingzhi Li
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang, China
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
11
|
Muñoz-Avila JC, Prieto C, Sánchez-Sevilla JF, Amaya I, Castillejo C. Role of FaSOC1 and FaCO in the seasonal control of reproductive and vegetative development in the perennial crop Fragaria × ananassa. FRONTIERS IN PLANT SCIENCE 2022; 13:971846. [PMID: 36061771 PMCID: PMC9428485 DOI: 10.3389/fpls.2022.971846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The diploid woodland strawberry (F. vesca) represents an important model for the genus Fragaria. Significant advances in the understanding of the molecular mechanisms regulating seasonal alternance of flower induction and vegetative reproduction has been made in this species. However, this research area has received little attention on the cultivated octoploid strawberry (F. × ananassa) despite its enormous agronomical and economic importance. To advance in the characterization of this intricated molecular network, expression analysis of key flowering time genes was performed both in short and long days and in cultivars with seasonal and perpetual flowering. Analysis of overexpression of FaCO and FaSOC1 in the seasonal flowering 'Camarosa' allowed functional validation of a number of responses already observed in F. vesca while uncovered differences related to the regulation of FaFTs expression and gibberellins (GAs) biosynthesis. While FvCO has been shown to promote flowering and inhibit runner development in the perpetual flowering H4 accession of F. vesca, our study showed that FaCO responds to LD photoperiods as in F. vesca but delayed flowering to some extent, possibly by induction of the strong FaTFL1 repressor in crowns. A contrasting effect on runnering was observed in FaCO transgenic plants, some lines showing reduced runner number whereas in others runnering was slightly accelerated. We demonstrate that the role of the MADS-box transcription factor FaSOC1 as a strong repressor of flowering and promoter of vegetative growth is conserved in woodland and cultivated strawberry. Our study further indicates an important role of FaSOC1 in the photoperiodic repression of FLOWERING LOCUS T (FT) genes FaFT2 and FaFT3 while FaTFL1 upregulation was less prominent than that observed in F. vesca. In our experimental conditions, FaSOC1 promotion of vegetative growth do not require induction of GA biosynthesis, despite GA biosynthesis genes showed a marked photoperiodic upregulation in response to long days, supporting GA requirement for the promotion of vegetative growth. Our results also provided insights into additional factors, such as FaTEM, associated with the vegetative developmental phase that deserve further characterization in the future.
Collapse
Affiliation(s)
- Julio C. Muñoz-Avila
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
| | - Concepción Prieto
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
| | - José F. Sánchez-Sevilla
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-CSIC, Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Iraida Amaya
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-CSIC, Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Cristina Castillejo
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
| |
Collapse
|
12
|
Liang J, Wu Z, Zheng J, Koskela EA, Fan L, Fan G, Gao D, Dong Z, Hou S, Feng Z, Wang F, Hytönen T, Wang H. The GATA factor HANABA TARANU promotes runner formation by regulating axillary bud initiation and outgrowth in cultivated strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1237-1254. [PMID: 35384101 DOI: 10.1111/tpj.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A runner, as an elongated branch, develops from the axillary bud (AXB) in the leaf axil and is crucial for the clonal propagation of cultivated strawberry (Fragaria × ananassa Duch.). Runner formation occurs in at least two steps: AXB initiation and AXB outgrowth. HANABA TARANU (HAN ) encodes a GATA transcription factor that affects AXB initiation in Arabidopsis and promotes branching in grass species, but the underlying mechanism is largely unknown. Here, the function of a strawberry HAN homolog FaHAN in runner formation was characterized. FaHAN transcripts can be detected in the leaf axils. Overexpression (OE) of FaHAN increased the number of runners, mainly by enhancing AXB outgrowth, in strawberry. The expression of the strawberry homolog of BRANCHED1 , a key inhibitor of AXB outgrowth in many plant species, was significantly downregulated in the AXBs of FaHAN -OE lines, whereas the expression of the strawberry homolog of SHOOT MERISTEMLESS, a marker gene for AXB initiation in Arabidopsis, was upregulated. Moreover, several genes of gibberellin biosynthesis and cytokinin signaling pathways were activated, whereas the auxin response pathway genes were repressed. Further assays indicated that FaHAN could be directly activated by FaNAC2, the overexpression of which in strawberry also increased the number of runners. The silencing of FaNAC2 or FaHAN inhibited AXB initiation and led to a higher proportion of dormant AXBs, confirming their roles in the control of runner formation. Taken together, our results revealed a FaNAC2-FaHAN pathway in the control of runner formation and have provided a means to enhance the vegetative propagation of cultivated strawberry.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Elli A Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Lingjiao Fan
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenfei Dong
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shengfan Hou
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zekun Feng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Feng Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
- NIAB EMR, Kent, ME19 6BJ, UK
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Liang J, Zheng J, Wu Z, Wang H. Time-Course Transcriptomic Profiling of Floral Induction in Cultivated Strawberry. Int J Mol Sci 2022; 23:ijms23116126. [PMID: 35682808 PMCID: PMC9181015 DOI: 10.3390/ijms23116126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
The initiation and quality of flowering directly affect the time to market and economic benefit of cultivated strawberries, but the underlying mechanisms of these processes are largely unknown. To investigate the gene activity during the key period of floral induction in strawberries, time-course transcriptome analysis was performed on the shoot apex of the strawberry cultivar ‘Benihoppe.’ A total of 7177 differentially expressed genes (DEGs) were identified through pairwise comparisons. These DEGs were grouped into four clusters with dynamic expression patterns. By analyzing the key genes in the potential flowering pathways and the development of the leaf and flower, at least 73 DEGs that may be involved in the regulatory network of floral induction in strawberries were identified, some of which belong to the NAC, MYB, MADS, and SEB families. A variety of eight hormone signaling pathway genes that might play important roles in floral induction were analyzed. In particular, the gene encoding DELLA, a key inhibitor of the gibberellin signaling pathway, was found to be significantly differentially expressed during the floral induction. Furthermore, the differential expression of some important candidate genes, such as TFL1, SOC1, and GAI-like, was further verified by qRT-PCR. Therefore, we used this time-course transcriptome data for a preliminary exploration of the regulatory network of floral induction and to provide potential candidate genes for future studies of flowering in strawberries.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
- Correspondence: ; Tel.: +86-136-8301-8901
| |
Collapse
|
14
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
15
|
Andrés J, Caruana J, Liang J, Samad S, Monfort A, Liu Z, Hytönen T, Koskela EA. Woodland strawberry axillary bud fate is dictated by a crosstalk of environmental and endogenous factors. PLANT PHYSIOLOGY 2021; 187:1221-1234. [PMID: 34618090 PMCID: PMC8567079 DOI: 10.1093/plphys/kiab421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/26/2021] [Indexed: 05/18/2023]
Abstract
Plant architecture is defined by fates and positions of meristematic tissues and has direct consequences on yield potential and environmental adaptation of the plant. In strawberries (Fragaria vesca L. and F. × ananassa Duch.), shoot apical meristems can remain vegetative or differentiate into a terminal inflorescence meristem. Strawberry axillary buds (AXBs) are located in leaf axils and can either remain dormant or follow one of the two possible developmental fates. AXBs can either develop into stolons needed for clonal reproduction or into branch crowns (BCs) that can bear their own terminal inflorescences under favorable conditions. Although AXB fate has direct consequences on yield potential and vegetative propagation of strawberries, the regulation of AXB fate has so far remained obscure. We subjected a number of woodland strawberry (F. vesca L.) natural accessions and transgenic genotypes to different environmental conditions and growth regulator treatments to demonstrate that strawberry AXB fate is regulated either by environmental or endogenous factors, depending on the AXB position on the plant. We confirm that the F. vesca GIBBERELLIN20-oxidase4 (FvGA20ox4) gene is indispensable for stolon development and under tight environmental regulation. Moreover, our data show that apical dominance inhibits the outgrowth of the youngest AXB as BCs, although the effect of apical dominance can be overrun by the activity of FvGA20ox4. Finally, we demonstrate that the FvGA20ox4 is photoperiodically regulated via FvSOC1 (F. vesca SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) at 18°C, but at higher temperature of 22°C an unidentified FvSOC1-independent pathway promotes stolon development.
Collapse
Affiliation(s)
- Javier Andrés
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Julie Caruana
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742, USA
- American Society for Engineering Education, Washington, District of Columbia, USA
| | - Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, China
| | - Samia Samad
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp SE-230 53, Sweden
| | - Amparo Monfort
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742, USA
| | - Timo Hytönen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
- NIAB East Malling Research, West Malling, ME19 6BJ, UK
| | - Elli A Koskela
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, Guo WW, Wu XM, Kang C. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. PLANT PHYSIOLOGY 2021; 186:1970-1984. [PMID: 33890635 PMCID: PMC8331164 DOI: 10.1093/plphys/kiab184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 05/19/2023]
Abstract
Axillary bud development is a major factor that impacts plant architecture. A runner is an elongated shoot that develops from axillary bud and is frequently used for clonal propagation of strawberry. However, the genetic control underlying runner production is largely unknown. Here, we identified and characterized loss of axillary meristems (lam), an ethyl methanesulfonate-induced mutant of the diploid woodland strawberry (Fragaria vesca) that lacked stamens in flowers and had reduced numbers of branch crowns and runners. The reduced branch crown and runner phenotypes were caused by a failure of axillary meristem initiation. The causative mutation of lam was located in FvH4_3g41310, which encodes a GRAS transcription factor, and was validated by a complementation test. lamCR mutants generated by CRISPR/Cas9 produced flowers without stamens and had fewer runners than the wild-type. LAM was broadly expressed in meristematic tissues. Gibberellic acid (GA) application induced runner outgrowth from the remaining buds in lam, but failed to do so at the empty axils of lam. In contrast, treatment with the GA biosynthesis inhibitor paclobutrazol converted the runners into branch crowns. Moreover, genetic studies indicated that lam is epistatic to suppressor of runnerless (srl), a mutant of FveRGA1 in the GA pathway, during runner formation. Our results demonstrate that LAM is required for stamen and runner formation and acts sequentially with GA from bud initiation to runner outgrowth, providing insights into the molecular regulation of these economically important organs in strawberry.
Collapse
Affiliation(s)
- Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiqi Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
17
|
Medina-Puche L, Martínez-Rivas FJ, Molina-Hidalgo FJ, García-Gago JA, Mercado JA, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. Ectopic expression of the atypical HLH FaPRE1 gene determines changes in cell size and morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110830. [PMID: 33691964 DOI: 10.1016/j.plantsci.2021.110830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 05/22/2023]
Abstract
PACLOBUTRAZOL RESISTANCE (PRE) genes code atypical HLH transcriptional regulators characterized by the absence of a DNA-binding domain but present an HLH dimerization domain. In vegetative tissues, the function of these HLH proteins has been related with cell elongation processes. In strawberry, three FaPRE genes are expressed, two of them (FaPRE2 and FaPRE3) in vegetative tissues while FaPRE1 is fruit receptacle-specific. Ubiquitous FaPRE1 accumulation produced elongated flower receptacles and plants due to the elongation of the main aerial vegetative organs, with the exception of leaves. Histological analysis clearly demonstrated that the observed phenotype was due to significant changes in the parenchymal cell's morphology. In addition, transcriptomic studies of the transgenic elongated flower receptacles allowed to identify a small group of differentially expressed genes that encode cell wall-modifying enzymes. Together, the data seem to indicate that, in the strawberry plant vegetative organs, FaPRE proteins could modulate the expression of genes related with the determination of the size and shape of the parenchymal cells.
Collapse
Affiliation(s)
- L Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - F J Martínez-Rivas
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - F J Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - J A García-Gago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain.
| | - J A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain.
| | - J L Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - J Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - R Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
18
|
Guo L, Plunkert M, Luo X, Liu Z. Developmental regulation of stolon and rhizome. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101970. [PMID: 33296747 DOI: 10.1016/j.pbi.2020.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/30/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
Stolons and rhizomes are modified stems for vegetative reproduction. While stolons grow above the ground, rhizomes grow beneath the ground. Stolons and rhizomes maintain the genotypes of hybrids and hence are invaluable for agricultural propagation. Diploid strawberry is a model for studying stolon development. At the axillary meristems, gibberellins and MADS box gene SOC1 promote stolon formation, while the DELLA repressor inhibits stolon development. Photoperiod regulates stolon formation through regulating GA biosynthesis or balancing asexual with sexual mode of reproduction in the axillary meristems. In rhizomatous wild rice, the BLADE-ON-PETIOLE gene promotes sheath-to-blade ratio to confer rhizome tip stiffness and support underground growth. Together, this review aims to encourage further investigations into stolon and rhizome to benefit agriculture and environment.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
A Long-Day Photoperiod and 6-Benzyladenine Promote Runner Formation through Upregulation of Soluble Sugar Content in Strawberry. Int J Mol Sci 2020; 21:ijms21144917. [PMID: 32664642 PMCID: PMC7403970 DOI: 10.3390/ijms21144917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Commercial strawberries are mainly propagated using daughter plants produced on aerial runners because asexual propagation is faster than seed propagation, and daughter plants retain the characteristics of the mother plant. This study was conducted to investigate the effective factors for runner induction, as well as the molecular mechanisms behind the runner induction. An orthogonal test with 4 factors (photoperiod, temperature, gibberellin, and 6-benzyladenine), each with 3 levels was performed. Proteins were also extracted from the crowns with or without runners and separated by two-dimensional electrophoresis. The results of the orthogonal test showed that a long-day (LD) environment was the most influential factor for the runner formation, and 50 mg·L−1 of 6-BA significantly increased the number of runners. A proteomic analysis revealed that 32 proteins were differentially expressed (2-fold, p < 0.05) in the strawberry crowns with and without runners. A total of 16 spots were up-regulated in the crowns with runners induced by LD treatment. Identified proteins were classified into seven groups according to their biological roles. The most prominent groups were carbohydrate metabolism and photosynthesis, which indicated that the carbohydrate content may increase during runner formation. A further analysis demonstrated that the soluble sugar content was positively correlated with the number of runners. Thus, it is suggested that the photoperiod and 6-BA break the dormancy of the axillary buds and produce runners by increasing the soluble sugar content in strawberry.
Collapse
|
20
|
Chen S, Wang XJ, Tan GF, Zhou WQ, Wang GL. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato. PROTOPLASMA 2020; 257:853-861. [PMID: 31863170 DOI: 10.1007/s00709-019-01471-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Fruit shape and ripening are major horticultural traits for many fruits and vegetable crops. Changes in fruit shape and ripening are often accomplished by altered cell division or cell expansion patterns. Gibberellic acids (GAs) are essential for tomato fruit development; however, the exact role and the underlying mechanism are still elusive. To elucidate the relationship between gibberellins and fruit shape and ripening in tomato, GA3 and gibberellin biosynthesis inhibitor paclobutrazol (PAC) were applied to tomato. Fruit shape index was increased when GA3 was applied, which was mainly attributed to the increased organ elongation. The expression levels of genes involved in cell elongation and expansion were altered at the same time. In addition, GA delayed the ripening time by regulating the transcript levels of ethylene-related genes. By contrast, PAC application decreased fruit shape index and shortened fruit ripening time. These results demonstrate that manipulation of GA levels can simultaneously influence tomato fruit shape and ripening. Further studies aimed to regulate fruit shape and ripening can be achieved by altering GA levels.
Collapse
Affiliation(s)
- Shen Chen
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Department of Life Sciences, Shaanxi XueQian Normal University, Xi'an, 710100, China
| | - Xiao-Jing Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wen-Qi Zhou
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
21
|
Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, Bassil NV, Hytönen T, Mackenzie KK, Lee S, Jung S, Main D, Barbey CR, Verma S. A roadmap for research in octoploid strawberry. HORTICULTURE RESEARCH 2020; 7:33. [PMID: 32194969 PMCID: PMC7072068 DOI: 10.1038/s41438-020-0252-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
The cultivated strawberry (Fragaria × ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
Collapse
Affiliation(s)
- Vance M Whitaker
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Steven J Knapp
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Michael A Hardigan
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Patrick P Edger
- 3Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Janet P Slovin
- USDA-ARS Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MA 20705 USA
| | - Nahla V Bassil
- 5USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333 USA
| | - Timo Hytönen
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- 7Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- NIAB EMR, Kent, ME19 6BJ UK
| | - Kathryn K Mackenzie
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
| | - Seonghee Lee
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sook Jung
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Dorrie Main
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Christopher R Barbey
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sujeet Verma
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| |
Collapse
|
22
|
Zhang S, Gottschalk C, van Nocker S. Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.). BMC Genomics 2019; 20:747. [PMID: 31619173 PMCID: PMC6796362 DOI: 10.1186/s12864-019-6090-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gibberellins (GAs) can have profound effects on growth and development in higher plants. In contrast to their flowering-promotive role in many well-studied plants, GAs can repress flowering in woody perennial plants such as apple (Malus x domestica Borkh.). Although this effect of GA on flowering is intriguing and has commercial importance, the genetic mechanisms linking GA perception with flowering have not been well described. RESULTS Application of a mixture of bioactive GAs repressed flower formation without significant effect on node number or shoot elongation. Using Illumina-based transcriptional sequence data and a newly available, high-quality apple genome sequence, we generated transcript models for genes expressed in the shoot apex, and estimated their transcriptional response to GA. GA treatment resulted in downregulation of a diversity of genes participating in GA biosynthesis, and strong upregulation of the GA catabolic GA2 OXIDASE genes, consistent with GA feedback and feedforward regulation, respectively. We also observed strong downregulation of numerous genes encoding potential GA transporters and receptors. Additional GA-responsive genes included potential components of cytokinin (CK), abscisic acid (ABA), brassinosteroid, and auxin signaling pathways. Finally, we observed rapid and strong upregulation of both of two copies of a gene previously observed to inhibit flowering in apple, MdTFL1 (TERMINAL FLOWER 1). CONCLUSION The rapid and robust upregulation of genes associated with GA catabolism in response to exogenous GA, combined with the decreased expression of GA biosynthetic genes, highlights GA feedforward and feedback regulation in the apple shoot apex. The finding that genes with potential roles in GA metabolism, transport and signaling are responsive to GA suggests GA homeostasis may be mediated at multiple levels in these tissues. The observation that TFL1-like genes are induced quickly in response to GA suggests they may be directly targeted by GA-responsive transcription factors, and offers a potential explanation for the flowering-inhibitory effects of GA in apple. These results provide a context for investigating factors that may transduce the GA signal in apple, and contribute to a preliminary genetic framework for the repression of flowering by GAs in a woody perennial plant.
Collapse
Affiliation(s)
- Songwen Zhang
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics, and Biotechnology, Michigan State University, 390 Plant and Soil Science Building, 1066 Bogue St., East Lansing, MI, 48824, USA
| | - Christopher Gottschalk
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics, and Biotechnology, Michigan State University, 390 Plant and Soil Science Building, 1066 Bogue St., East Lansing, MI, 48824, USA
| | - Steve van Nocker
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics, and Biotechnology, Michigan State University, 390 Plant and Soil Science Building, 1066 Bogue St., East Lansing, MI, 48824, USA.
| |
Collapse
|
23
|
Wang H, Yang Y, Li M, Liu J, Jin W. Reinvigoration of diploid strawberry (Fragaria vesca) during adventitious shoot regeneration. Sci Rep 2019; 9:13007. [PMID: 31506476 PMCID: PMC6736952 DOI: 10.1038/s41598-019-49391-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/24/2019] [Indexed: 11/10/2022] Open
Abstract
Diploid strawberry (Fragaria vesca 'Baiguo') is a model plant for studying functional genomics in Rosaceae. Adventitious shoot regeneration is essential for functional genomics by Agrobacterium tumefaciens-mediated transformation. An efficient shoot regeneration method using diploid strawberry leaf explants was conducted on 1/2MS + 1/2B5 medium that contained 2.0 mg L-1 TDZ over 14 days of dark culture; this induced the maximum percentage of shoot regeneration (96.44 ± 1.60%) and the highest number of shoots per explant (23.46 ± 2.14) after 11 weeks of culture. The explants considerably enlarged after 12 days; then, turned greenish brown after 30 days, yellowish brown after 36 days, and completely brown and necrotic after 48 days. Large numbers of adventitious shoots were produced from 48 to 66 days, and the shoots elongated from 66 to 78 days; this represents a critical period of reinvigoration, which included 30 days for leaf explant chlorosis, 36 days for adventitious shoot appearance, and 48 days for generation of numerous shoots. During the reinvigoration process, higher expressions of the hormone synthesis-related genes Ciszog1, CKX2, CKX3, CKX7, YUC2, YUC6, YUC10, YUC9, and GA2ox were detected from 30 to 48 days. Our results indicate that these genes may regulate reinvigoration of shoot regeneration.
Collapse
Affiliation(s)
- Hua Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, China
| | - Yuan Yang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Maofu Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, China
| | - Jiashen Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, China
| | - Wanmei Jin
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, China.
| |
Collapse
|
24
|
Li W, Zhang J, Sun H, Wang S, Chen K, Liu Y, Li H, Ma Y, Zhang Z. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca. PLANTA 2018; 247:941-951. [PMID: 29288326 DOI: 10.1007/s00425-017-2839-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
FveRGA1 was highly expressed in tender tissues such as young leaves and stem apices and was localized in the nucleus. RNAi silencing of FveRGA1 in non-runnering woodland strawberry produced many runners. FveRGA1 is thus a key gene controlling strawberry runner formation. The propagation of strawberry is mainly based on runners, while the genes controlling runner production have not been well characterized. Exogenous applications of optimum concentration gibberellins (GAs) promote runner formation in strawberry cultivation and GA can accelerate the degradation of DELLA proteins. To investigate whether DELLA proteins are responsible for runner production, we analyzed all the DELLA genes in Fragaria vesca and cloned a DELLA protein-encoding gene FveRGA1 in woodland strawberry using RT-PCR. Subcellular localization analysis indicated that FveRGA1 was localized in the nucleus. A transcription analysis suggested that FveRGA1 was expressed ubiquitously in all examined strawberry organs, especially in young leaves, petioles, and stem apices. RNA interference (RNAi) technology was carried out to investigate the function of FveRGA1 in woodland strawberry 'Yellow Wonder' (YW) and 'Ruegen' (RG) via an Agrobacterium-mediated transformation. Interestingly, the RNAi silencing transgenic plants in the naturally non-runnering YW and RG strains produced many runners, suggesting FveRGA1 as a key gene controlling strawberry runner formation. Our study lays a solid basis for unraveling the detailed molecular mechanism of runner formation in strawberry.
Collapse
Affiliation(s)
- Weijia Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Junxiang Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Hongying Sun
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Shouming Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Keqin Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - He Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
25
|
Caruana JC, Sittmann JW, Wang W, Liu Z. Suppressor of Runnerless Encodes a DELLA Protein that Controls Runner Formation for Asexual Reproduction in Strawberry. MOLECULAR PLANT 2018; 11:230-233. [PMID: 29158170 DOI: 10.1016/j.molp.2017.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Affiliation(s)
- Julie C Caruana
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - John W Sittmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wanpeng Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Kurokura T, Samad S, Koskela E, Mouhu K, Hytönen T. Fragaria vesca CONSTANS controls photoperiodic flowering and vegetative development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4839-4850. [PMID: 29048562 PMCID: PMC5853477 DOI: 10.1093/jxb/erx301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 05/18/2023]
Abstract
According to the external coincidence model, photoperiodic flowering occurs when CONSTANS (CO) mRNA expression coincides with light in the afternoon of long days (LDs), leading to the activation of FLOWERING LOCUS T (FT). CO has evolved in Brassicaceae from other Group Ia CO-like (COL) proteins which do not control photoperiodic flowering in Arabidopsis. COLs in other species have evolved different functions as floral activators or even as repressors. To understand photoperiodic development in the perennial rosaceous model species woodland strawberry, we functionally characterized FvCO, the only Group Ia COL in its genome. We demonstrate that FvCO has a major role in the photoperiodic control of flowering and vegetative reproduction through runners. FvCO is needed to generate a bimodal rhythm of FvFT1 which encodes a floral activator in the LD accession Hawaii-4: a sharp FvCO expression peak at dawn is followed by the FvFT1 morning peak in LDs indicating possible direct regulation, but additional factors that may include FvGI and FvFKF1 are probably needed to schedule the second FvFT1 peak around dusk. These results demonstrate that although FvCO and FvFT1 play major roles in photoperiodic development, the CO-based external coincidence around dusk is not fully applicable to the woodland strawberry.
Collapse
Affiliation(s)
- Takeshi Kurokura
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6AS, UK
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
- Faculty of Agriculture, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Samia Samad
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Katriina Mouhu
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
27
|
Tenreira T, Lange MJP, Lange T, Bres C, Labadie M, Monfort A, Hernould M, Rothan C, Denoyes B. A Specific Gibberellin 20-Oxidase Dictates the Flowering-Runnering Decision in Diploid Strawberry. THE PLANT CELL 2017; 29:2168-2182. [PMID: 28874507 PMCID: PMC5635972 DOI: 10.1105/tpc.16.00949] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 05/18/2023]
Abstract
Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato (Solanum tuberosum) and strawberry (Fragaria spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown. Here, we show that the stolon deficiency trait of the runnerless (r) natural mutant in woodland diploid strawberry (Fragaria vesca) is due to a deletion in the active site of a gibberellin20-oxidase (GA20ox) gene, which is expressed primarily in the axillary meristem dome and primordia and in developing stolons. This mutation, which is found in all r mutants, goes back more than three centuries. When FveGA20ox4 is mutated, axillary meristems remain dormant or produce secondary shoots terminated by inflorescences, thus increasing the number of inflorescences in the plant. The application of bioactive gibberellin (GA) restored the runnering phenotype in the r mutant, indicating that GA biosynthesis in the axillary meristem is essential for inducing stolon differentiation. The possibility of regulating the runnering-flowering decision in strawberry via FveGA20ox4 provides a path for improving productivity in strawberry by controlling the trade-off between sexual reproduction and vegetative propagation.
Collapse
Affiliation(s)
- Tracey Tenreira
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | | | - Theo Lange
- TU Braunschweig, Institut für Pfanzenbiologie, 38106 Braunschweig, Germany
| | - Cécile Bres
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marc Labadie
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Amparo Monfort
- IRTA, Center of Research in Agrigenomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Valles), 08193 Barcelona, Spain
| | - Michel Hernould
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| | - Béatrice Denoyes
- UMR 1332 BFP, INRA, Université Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
28
|
Lockhart J. Flowering Versus Runnering: Uncovering the Protein Behind a Trait That Matters in Strawberry. THE PLANT CELL 2017; 29:2080-2081. [PMID: 28887404 PMCID: PMC5635979 DOI: 10.1105/tpc.17.00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
29
|
Samad S, Kurokura T, Koskela E, Toivainen T, Patel V, Mouhu K, Sargent DJ, Hytönen T. Additive QTLs on three chromosomes control flowering time in woodland strawberry ( Fragaria vesca L.). HORTICULTURE RESEARCH 2017; 4:17020. [PMID: 28580150 PMCID: PMC5442962 DOI: 10.1038/hortres.2017.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 05/18/2023]
Abstract
Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.
Collapse
Affiliation(s)
- Samia Samad
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele All'adige, 38010 TN, Italy
| | - Takeshi Kurokura
- Faculty of Agriculture, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Vipul Patel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Katriina Mouhu
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Daniel James Sargent
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele All'adige, 38010 TN, Italy
- Driscoll’s Genetics Limited, East Malling Enterprise Centre, East Malling, Kent ME19 6BJ, UK
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- ()
| |
Collapse
|
30
|
Perrotte J, Guédon Y, Gaston A, Denoyes B. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5643-5655. [PMID: 27664957 PMCID: PMC5066487 DOI: 10.1093/jxb/erw326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years.
Collapse
Affiliation(s)
- Justine Perrotte
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France Ciref, Maison Jeannette, 24140 Douville, France
| | - Yann Guédon
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095 Montpellier, France
| | - Amèlia Gaston
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | - Béatrice Denoyes
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
31
|
Galli V, Borowski JM, Perin EC, Messias RDS, Labonde J, Pereira IDS, Silva SDDA, Rombaldi CV. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 2014; 554:205-14. [PMID: 25445290 DOI: 10.1016/j.gene.2014.10.049] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 01/24/2023]
Abstract
The increasing demand of strawberry (Fragaria×ananassa Duch) fruits is associated mainly with their sensorial characteristics and the content of antioxidant compounds. Nevertheless, the strawberry production has been hampered due to its sensitivity to abiotic stresses. Therefore, to understand the molecular mechanisms highlighting stress response is of great importance to enable genetic engineering approaches aiming to improve strawberry tolerance. However, the study of expression of genes in strawberry requires the use of suitable reference genes. In the present study, seven traditional and novel candidate reference genes were evaluated for transcript normalization in fruits of ten strawberry cultivars and two abiotic stresses, using RefFinder, which integrates the four major currently available software programs: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. The results indicate that the expression stability is dependent on the experimental conditions. The candidate reference gene DBP (DNA binding protein) was considered the most suitable to normalize expression data in samples of strawberry cultivars and under drought stress condition, and the candidate reference gene HISTH4 (histone H4) was the most stable under osmotic stresses and salt stress. The traditional genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 18S (18S ribosomal RNA) were considered the most unstable genes in all conditions. The expression of phenylalanine ammonia lyase (PAL) and 9-cis epoxycarotenoid dioxygenase (NCED1) genes were used to further confirm the validated candidate reference genes, showing that the use of an inappropriate reference gene may induce erroneous results. This study is the first survey on the stability of reference genes in strawberry cultivars and osmotic stresses and provides guidelines to obtain more accurate RT-qPCR results for future breeding efforts.
Collapse
Affiliation(s)
- Vanessa Galli
- Embrapa Clima Temperado, Rodovia BR 396, Km 78 Caixa Postal 403, CEP 96001-970 Pelotas, RS, Brazil; Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Campus Universitário s/n, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil.
| | - Joyce Moura Borowski
- Embrapa Clima Temperado, Rodovia BR 396, Km 78 Caixa Postal 403, CEP 96001-970 Pelotas, RS, Brazil; Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Campus Universitário s/n, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil
| | - Ellen Cristina Perin
- Embrapa Clima Temperado, Rodovia BR 396, Km 78 Caixa Postal 403, CEP 96001-970 Pelotas, RS, Brazil; Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Campus Universitário s/n, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil
| | - Rafael da Silva Messias
- Embrapa Clima Temperado, Rodovia BR 396, Km 78 Caixa Postal 403, CEP 96001-970 Pelotas, RS, Brazil; Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Campus Universitário s/n, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil
| | - Julia Labonde
- Universidade Federal de Pelotas, Centro de Ciências Biológicas, Campus Universitário s/n, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil
| | - Ivan dos Santos Pereira
- Embrapa Clima Temperado, Rodovia BR 396, Km 78 Caixa Postal 403, CEP 96001-970 Pelotas, RS, Brazil
| | | | - Cesar Valmor Rombaldi
- Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Campus Universitário s/n, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
32
|
Liston A, Cronn R, Ashman TL. Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. AMERICAN JOURNAL OF BOTANY 2014; 101:1686-99. [PMID: 25326614 DOI: 10.3732/ajb.1400140] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cultivated strawberry, Fragaria ×ananassa, is one of the youngest domesticated plants. Its 18th century origin via hybridization in Europe between the North American F. virginiana and the South American F. chiloensis was documented by the botanist Antoine Nicolas Duchesne. His 1766 "Natural History of Strawberries" is an extraordinary work that integrates fundamental discoveries on the biology, ecology, and phylogeny of Fragaria with applied information on cultivation and ethnobotanical uses, serving as an inspiration for current research in the genus. Fragaria species exhibit the full range of sexual systems in the gynodioecy pathway from hermaphroditism to dioecy (and back again), as well as variation in self-compatibility, and evidence of sex chromosomes with female heterogamety. The genus is also characterized by interspecific hybridization and polyploidy, with a natural range of ploidy levels from diploids to decaploids. This biological diversity, combined with the availability of genomic resources and the ease of growing and experimenting with the plants, makes Fragaria a very attractive system for ecological and evolutionary genomics. The goal of this review is to introduce Fragaria as a model genus and to provide a roadmap for future integrative research. These research directions will deepen our understanding of the ecological and evolutionary context that shaped the ancestors of the cultivated strawberry, not only providing information that can be applied to efforts to shape the future of this important fruit crop but also our understanding of key transitions in plant evolution.
Collapse
Affiliation(s)
- Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon 97331 USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA
| |
Collapse
|
33
|
Cherian S, Figueroa CR, Nair H. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4705-22. [PMID: 24994760 DOI: 10.1093/jxb/eru280] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
Collapse
Affiliation(s)
- Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Carlos R Figueroa
- Faculty of Forest Sciences and Biotechnology Center, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Helen Nair
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
34
|
Wang L, Mu C, Du M, Chen Y, Tian X, Zhang M, Li Z. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:15-23. [PMID: 25017155 DOI: 10.1016/j.plantsci.2014.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 05/03/2023]
Abstract
The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chun Mu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingwei Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yin Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Mouhu K, Kurokura T, Koskela EA, Albert VA, Elomaa P, Hytönen T. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. THE PLANT CELL 2013; 25:3296-310. [PMID: 24038650 PMCID: PMC3809533 DOI: 10.1105/tpc.113.115055] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/08/2013] [Accepted: 08/17/2013] [Indexed: 05/18/2023]
Abstract
In the annual long-day plant Arabidopsis thaliana, suppressor of overexpression of constans1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv terminal flower1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv flowering locus T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.
Collapse
Affiliation(s)
- Katriina Mouhu
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Takeshi Kurokura
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Elli A. Koskela
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Victor A. Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paula Elomaa
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
- Address correspondence to
| |
Collapse
|
36
|
Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama L, Juchaux M, Sakr S, Foucher F. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6543-54. [PMID: 23175671 PMCID: PMC3504503 DOI: 10.1093/jxb/ers310] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of gibberellins (GAs) during floral induction has been widely studied in the annual plant Arabidopsis thaliana. Less is known about this control in perennials. It is thought that GA is a major regulator of flowering in rose. In spring, low GA content may be necessary for floral initiation. GA inhibited flowering in once-flowering roses, whereas GA did not block blooming in continuous-flowering roses. Recently, RoKSN, a homologue of TFL1, was shown to control continuous flowering. The loss of RoKSN function led to continuous flowering behaviour. The objective of this study was to understand the molecular control of flowering by GA and the involvement of RoKSN in this inhibition. In once-flowering rose, the exogenous application of GA(3) in spring inhibited floral initiation. Application of GA(3) during a short period of 1 month, corresponding to the floral transition, was sufficient to inhibit flowering. At the molecular level, RoKSN transcripts were accumulated after GA(3) treatment. In spring, this accumulation is correlated with floral inhibition. Other floral genes such as RoFT, RoSOC1, and RoAP1 were repressed in a RoKSN-dependent pathway, whereas RoLFY and RoFD repression was RoKSN independent. The RoKSN promoter contained GA-responsive cis-elements, whose deletion suppressed the response to GA in a heterologous system. In summer, once-flowering roses did not flower even after exogenous application of a GA synthesis inhibitor that failed to repress RoKSN. A model is presented for the GA inhibition of flowering in spring mediated by the induction of RoKSN. In summer, factors other than GA may control RoKSN.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Florigen/metabolism
- Florigen/pharmacology
- Flowers/genetics
- Flowers/growth & development
- Flowers/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/drug effects
- Gibberellins/genetics
- Gibberellins/metabolism
- Gibberellins/pharmacology
- Green Fluorescent Proteins/metabolism
- Microscopy, Confocal
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic/drug effects
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Rosa/genetics
- Rosa/growth & development
- Rosa/metabolism
- Seasons
- Sequence Alignment
- Sequence Analysis, DNA
- Nicotiana/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Marie Randoux
- INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, BP 60057, 49071 Beaucouzé Cedex, France
| | - Julien Jeauffre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, BP 60057, 49071 Beaucouzé Cedex, France
| | - Tatiana Thouroude
- INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, BP 60057, 49071 Beaucouzé Cedex, France
| | - François Vasseur
- INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, BP 60057, 49071 Beaucouzé Cedex, France
| | - Latifa Hamama
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, 2 rue Le Nôtre, 49045 Angers, France
- Université d’Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, PRES LUNAM, BP 60057, 49071 Beaucouzé Cedex, France
| | - Marjorie Juchaux
- Université d’Angers, SFR 4207 QUASAV, IMAC, PRES LUNAM, BP 60057, 49071 Beaucouzé Cedex, France
| | - Soulaiman Sakr
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, 2 rue Le Nôtre, 49045 Angers, France
| | - Fabrice Foucher
- INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocacmpus-Ouest, Université d’Angers), SFR 4207 QUASAV, BP 60057, 49071 Beaucouzé Cedex, France
| |
Collapse
|
37
|
Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, Sargent DJ, Battey NH, Coupland G, Elomaa P, Hytönen T. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. PLANT PHYSIOLOGY 2012; 159:1043-54. [PMID: 22566495 PMCID: PMC3387692 DOI: 10.1104/pp.112.196659] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/03/2012] [Indexed: 05/18/2023]
Abstract
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.
Collapse
|
38
|
Hollender CA, Geretz AC, Slovin JP, Liu Z. Flower and early fruit development in a diploid strawberry, Fragaria vesca. PLANTA 2012; 235:1123-39. [PMID: 22198460 DOI: 10.1007/s00425-011-1562-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/24/2011] [Indexed: 05/23/2023]
Abstract
The diploid woodland strawberry, Fragaria vesca, is being recognized as a model for the more complex octoploid commercial strawberry, Fragaria × ananassa. F. vesca exhibits a short seed to seed cycle, can be easily transformed by Agrobacteria, and a draft genome sequence has been published. These features, together with its similar flower structure, potentially make F. vesca a good model for studying the flower development of other members of the Rosaceae family, which contains many economically important fruit trees and ornamental plants. To propel F. vesca's role in genetic and genomic research and to facilitate the study of its reproductive development, we have investigated in detail F. vesca flower and early fruit development using a seventh generation inbred diploid line, Yellow Wonder 5AF7. We present here standardized developmental staging and detailed descriptions of morphological changes associated with flower and early fruit development based on images of hand dissected flowers, histological sections, and scanning electron microscopy. In situ hybridization with the F. vesca AGAMOUS homolog, FvAG, showed expression in young stamen and carpel primordia. This work lays the essential groundwork and standardization for future molecular, genetic, and genomic studies of F. vesca.
Collapse
Affiliation(s)
- Courtney A Hollender
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 0229 Bioscience Research Building, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
39
|
Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, Fernie AR, Rathjen JP, Botella MA, Valpuesta V, Medina-Escobar N. Gibberellin biosynthesis and signalling during development of the strawberry receptacle. THE NEW PHYTOLOGIST 2011; 191:376-390. [PMID: 21443649 DOI: 10.1111/j.1469-8137.2011.03700.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The enlargement of receptacle cells during strawberry (Fragaria × ananassa) fruit development is a critical factor determining fruit size, with the increase in cell expansion being one of the most important physiological processes regulated by the phytohormone gibberellin (GA). Here, we studied the role of GA during strawberry fruit development by analyzing the endogenous content of bioactive GAs and the expression of key components of GA signalling and metabolism. Bioactive GA(1) , GA(3) and GA(4) were monitored during fruit development, with the content of GA(4) being extremely high in the receptacle, peaking at the white stage of development. •Genes with high homology to genes encoding GA pathway components, including receptors (FaGID1(GIBBERELLIN-INSENSITIVE DWARF1)b and FaGID1c), DELLA (FaRGA(REPRESSOR OF GA) and FaGAI(GA-INSENSITIVE)), and enzymes involved in GA biosynthesis (FaGA3ox) and catabolism (FaGA2ox), were identified, and their expression in different tissues and developmental stages of strawberry fruit was studied in detail. The expression of all of these genes showed a stage-specific pattern during fruit development and was highest in the receptacle. FaGID1c bound GA in vitro, interacted with FaRGA in vitro and in vivo, and increased GA responses when ectopically expressed in Arabidopsis. This study thus reveals key elements of GA responses in strawberry and points to a critical role for GA in the development of the receptacle.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| | - Sonia Osorio
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Jun Kitamura
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo 113-8657, Japan
| | - Patrick Giavalisco
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo 113-8657, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| | - Nieves Medina-Escobar
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| |
Collapse
|