1
|
Abstract
Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.
Collapse
Affiliation(s)
- Job Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sven Bergström
- Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Guellil M, Kersten O, Namouchi A, Bauer EL, Derrick M, Jensen AØ, Stenseth NC, Bramanti B. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc Natl Acad Sci U S A 2018; 115:10422-10427. [PMID: 30249639 PMCID: PMC6187149 DOI: 10.1073/pnas.1807266115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Louse-borne relapsing fever (LBRF) is known to have killed millions of people over the course of European history and remains a major cause of mortality in parts of the world. Its pathogen, Borrelia recurrentis, shares a common vector with global killers such as typhus and plague and is known for its involvement in devastating historical epidemics such as the Irish potato famine. Here, we describe a European and historical genome of Brecurrentis, recovered from a 15th century skeleton from Oslo. Our distinct European lineage has a discrete genomic makeup, displaying an ancestral oppA-1 gene and gene loss in antigenic variation sites. Our results illustrate the potential of ancient DNA research to elucidate dynamics of reductive evolution in a specialized human pathogen and to uncover aspects of human health usually invisible to the archaeological record.
Collapse
Affiliation(s)
- Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Amine Namouchi
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Egil L Bauer
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Michael Derrick
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Anne Ø Jensen
- Norwegian Institute for Cultural Heritage Research, N-0155 Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Biomedical and Specialty Surgical Sciences, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 35-441221 Ferrara, Italy
| |
Collapse
|
3
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Nguyen MT, Deplanche M, Nega M, Le Loir Y, Peisl L, Götz F, Berkova N. Staphylococcus aureus Lpl Lipoproteins Delay G2/M Phase Transition in HeLa Cells. Front Cell Infect Microbiol 2016; 6:201. [PMID: 28083519 PMCID: PMC5187369 DOI: 10.3389/fcimb.2016.00201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022] Open
Abstract
The cell cycle is an ordered set of events, leading to cell growth and division into two daughter cells. The eukaryotic cell cycle consists of interphase (G1, S, and G2 phases), followed by the mitotic phase and G0 phase. Many bacterial pathogens secrete cyclomodulins that interfere with the host cell cycle. In Staphylococcus aureus four cyclomodulins have been described so far that all represent toxins and are secreted into the culture supernatant. Here we show that the membrane-anchored lipoprotein-like proteins (Lpl), encoded on a genomic island called νSaα, interact with the cell cycle of HeLa cells. By comparing wild type and lpl deletion mutant it turned out that the lpl cluster is causative for the G2/M phase transition delay and also contributes to increased invasion frequency. The lipoprotein Lpl1, a representative of the lpl cluster, also caused G2/M phase transition delay. Interestingly, the lipid modification, which is essential for TLR2 signaling and activation of the immune system, is not necessary for cyclomodulin activity. Unlike the other staphylococcal cyclomodulins Lpl1 shows no cytotoxicity even at high concentrations. As all Lpl proteins are highly conserved there might be a common function that is accentuated by their multiplicity in a tandem gene cluster. The cell surface localized Lpls' suggests a correlation between G2/M phase transition delay and host cell invasion.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen, Germany
| | - Martine Deplanche
- Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO) Rennes, France
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen, Germany
| | - Yves Le Loir
- Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO) Rennes, France
| | - Loulou Peisl
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen, Germany
| | - Nadia Berkova
- Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO) Rennes, France
| |
Collapse
|
5
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
6
|
Cutler SJ, Abdissa A, Trape JF. New concepts for the old challenge of African relapsing fever borreliosis. Clin Microbiol Infect 2009; 15:400-6. [PMID: 19489922 DOI: 10.1111/j.1469-0691.2009.02819.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relapsing fever, caused by spirochaetes belonging to the genus Borrelia, was once the cause of worldwide epidemic disease. This was largely through infection with the louse-borne form of the disease, caused by Borrelia recurrentis (louse-borne relapsing fever (LBRF)). During the last century, we have witnessed the demise of this infection, largely owing to improved standards of living and the introduction of the insecticide DDT, resulting in a reduction in the incidence of the body louse, the vector for relapsing fever. In areas of extreme poverty this disease persists, causing a significant burden of disease. It is now looking probable that this infection is caused by a louse-adapted variant of Borrelia duttonii, transmitted by Ornithodoros moubata 'soft' ticks in East Africa. Like LBRF, infection still causes impact, particularly affecting young children and pregnant women. Over recent years, the true burden of relapsing fever caused by infection with the closely related Borrelia crocidurae, transmitted by Ornithodoros sonrai ticks, has only just begun to emerge. Here, the current state of knowledge concerning relapsing fever in Africa is reviewed.
Collapse
Affiliation(s)
- S J Cutler
- School of Health & Bioscience, University of East London, London, UK.
| | | | | |
Collapse
|
7
|
Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M. The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet 2008; 4:e1000185. [PMID: 18787695 PMCID: PMC2525819 DOI: 10.1371/journal.pgen.1000185] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/31/2008] [Indexed: 01/22/2023] Open
Abstract
In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163–1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains. Borreliae are vector-borne spirochetes that are responsible for Lyme disease and recurrent fevers. We completed the genome sequences of the tick-borne Borrelia duttonii and the louse-borne B. recurrentis. The former of these is responsible for emerging infections that mimic malaria in Africa and in travellers, and the latter is responsible for severe recurrent fever in poor African populations. Diagnostic tools for these pathogens remain poor with regard to sensitivity and specificity due, in part, to the lack of genomic sequences. In this study, we show that the genomic content of B. recurrentis is a subset of that of B. duttonii, the genes of which are undergoing a decay process. These phenomena are common to all louse-borne pathogens compared to their tick-borne counterparts. In B. recurrentis, this process may be due to the inactivation of genes encoding DNA repair mechanisms, implying the accumulation of errors in the genome. The increased virulence of B. recurrentis could not be traced back to specific virulence factors, illustrating the lack of correlation between the virulence of a pathogen and so-called virulence genes. Knowledge of these genomes will allow for the development of new molecular tools that provide a more-accurate, sensitive, and specific diagnosis of these emerging infections.
Collapse
Affiliation(s)
- Magali Lescot
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Stéphane Audic
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Catherine Robert
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Thi Tien Nguyen
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Guillaume Blanc
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Sally J. Cutler
- School of Health and Bioscience, University of East London, Stratford, London, United Kingdom
| | | | | | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, CNRS UPR2589, IFR88, Parc Scientifique de Luminy, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Michel Drancourt
- Unité des Rickettsies, UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|