1
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Resolving the current controversy of use and reuse of housekeeping proteins in ageing research: Focus on saving people's tax dollars. Ageing Res Rev 2024; 100:102437. [PMID: 39067773 PMCID: PMC11384260 DOI: 10.1016/j.arr.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The use of housekeeping genes and proteins to normalize mRNA and protein levels in biomedical research has faced growing scrutiny. Researchers encounter challenges in determining the optimal frequency for running housekeeping proteins such as β-actin, Tubulin, and GAPDH for nuclear-encoded proteins, and Porin, HSP60, and TOM20 for mitochondrial proteins alongside experimental proteins. The regulation of these proteins varies with age, gender, disease progression, epitope nature, gel running conditions, and their reported sizes can differ among antibody suppliers. Additionally, anonymous readers have raised concerns about peer-reviewed and published articles, creating confusion and concern within the research and academic institutions. To clarify these matters, this minireview discusses the role of reference housekeeping proteins in Western blot analysis and outlines key considerations for their use as normalization controls. Instead of Western blotting of housekeeping proteins, staining of total proteins, using Amido Black and Coomassie Blue can be visualized the total protein content on a membrane. The reducing repeated Western blotting analysis of housekeeping proteins, will save resources, time and efforts and in turn increase the number of competitive grants from NIH and funding agencies. We also discussed the use of dot blots over traditional Western blots, when protein levels are low in rare tissues/specimens and cell lines. We sincerely hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding housekeeping protein(s) use, reuse, and functional aspects of housekeeping proteins. The contents presented in our article will be useful to students, scholars and researchers of all levels in cell biology, protein chemistry and mitochondrial research.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Guo W, Jing W. N-Acetyl-L-Cysteine Reduces Cervical Carcinogenesis by Promoting Apoptosis. Drugs R D 2023:10.1007/s40268-023-00423-9. [PMID: 37266883 DOI: 10.1007/s40268-023-00423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Cervical cancer is the fourth leading cause of cancer death in women, and is one of the most common malignant tumors of the reproductive system. However, more effective treatment for cervical cancer is needed. In this study, we aim to investigate whether N-acetyl-L-cysteine (NAC) could inhibit the proliferation of human papillomavirus (HPV)-positive cells, and reduce cervical carcinogenesis. METHODS The cervical cancer cell lines SiHa, HeLa, HPV-negative cell line C33A, and the immortalized human cervical keratinocyte cells S12 were used. The protein expression was determined using Western blot assay. mRNA expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation was determined by Cell Counting Kit-8 assay. Cell apoptosis was evaluated using Annexin V-FITC apoptosis kits. The numbers of colonies were measured using colony-forming assay. Xenograft tumor necrosis and HPV16 E7 expression were determined using hematoxylin and eosin (H&E) staining and immunohistochemistry. RESULTS Our results showed that NAC treatment at the concentration of 1.5 mM significantly promoted cell apoptosis and reduced cell growth by inhibiting HPV16 E7 expression. NAC inhibited HPV16-oncoprotein-induced hypoxia-inducible factor (HIF)-1α protein expression and Akt activation in vitro. Additionally, NAC suppressed tumor growth, as evidenced by the smaller tumor size in the xenograft mouse model and decreased HPV16 E7 expression in tumor tissues. CONCLUSION Our findings demonstrate that NAC exhibits the potential to promote HPV-positive cell apoptosis, and suppress the proliferation of HPV-positive cells by inhibiting cell inhibitor of apoptosis protein 2 and HIF-1α.
Collapse
Affiliation(s)
- Wenping Guo
- Department of Gynecology and Obstetrics, Peking University International Hospital, Life Park Road No. 1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, 102206, China.
| | - Wang Jing
- Department of Gynecology and Obstetrics, Peking University International Hospital, Life Park Road No. 1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, 102206, China
| |
Collapse
|
3
|
Baloche V, Ferrand FR, Makowska A, Even C, Kontny U, Busson P. Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opin Ther Targets 2020; 24:545-558. [PMID: 32249657 DOI: 10.1080/14728222.2020.1751820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a major public health problem in several countries, especially those in Southeast Asia and North Africa. In its typical poorly differentiated form, the Epstein-Barr virus (EBV) genome is present in the nuclei of all malignant cells with restricted expression of a few viral genes. The malignant phenotype of NPC cells results from the influence of these viral products in combination with cellular genetic, epigenetic and functional alterations. With regard to host/tumor interactions, NPC is a remarkable example of immune escape in the context of a hot tumor.Areas covered: This article has an emphasis on emerging therapeutic targets that are considered upstream or at an early stage of clinical application. It examines targets related to cellular oncogenic alterations, latent EBV infection and tumor interactions with the immune system.Expert opinion: There is a remarkable emergence of new agents that target EBV products. The clinical application of these agents would benefit from a systematic and comprehensive molecular classification of NPCs and from easy access to pre-clinical models in public repositories. There is a strong rationale for more investigations on the potential of immune modulators, especially those related to NK cells.
Collapse
Affiliation(s)
- Valentin Baloche
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| | | | - Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Even
- Département de cancérologie cervico-faciale, Gustave Roussy and université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Busson
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
4
|
Abram QH, Vo NTK, Kellendonk C, Bols NC, Katzenback BA, Dixon B. Regulation of endogenous antigen presentation in response to suboptimal temperatures in a walleye skin fibroblast cell line. FISH & SHELLFISH IMMUNOLOGY 2020; 98:788-799. [PMID: 31740400 DOI: 10.1016/j.fsi.2019.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
A skin fibroblast cell line WE-skin11f from walleye (Sander vitreus) was used to study the impact of temperature (26 °C, 20 °C, 14 °C, or 4 °C) on the transcript levels of genes involved in the endogenous antigen processing and presentation pathway (EAPP), which is an important antiviral pathway of vertebrates. Partial coding sequences were found for 4 previously unidentified walleye EAPP members, calreticulin, calnexin, erp57, and tapasin, and the constitutive transcript levels of these genes in WE-skin11f was unchanged by culture incubation temperature. The viral mimic poly (I:C) and viral haemorrhagic septicaemia virus (VHSV) IVb were used to study possible induction of EAPP transcripts (b2m, mhIa, and tapasin). The walleye cells were exquisitely sensitive to poly (I:C), losing adherence and viability at concentrations greater than 100 ng/mL, particularly at suboptimal temperatures. VHSV IVb viral particles were produced from infected WE-skin11f cells at 20 °C, 14 °C, and 4 °C but with much lower production at 4 °C. Under conditions where their impact on the viability of WE-skin11f cultures was slight, poly (I:C) and VHSV IVb were shown to induce b2m, mhIa, and tapasin transcript°s at 26 °C and 20 °C respectively. However, at 4 °C, the up-regulation of EAPP transcript levels was either delayed or completely impaired when compared to the 26 °C and 20 °C control temperatures of the respective experiments. These in vitro results suggest that suboptimal temperatures may be capable of modulating the regulation of the EAPP in walleye cells during viral infection.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Calvin Kellendonk
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
5
|
Bonnin M, Fares N, Testoni B, Estornes Y, Weber K, Vanbervliet B, Lefrançois L, Garcia A, Kfoury A, Pez F, Coste I, Saintigny P, Viari A, Lang K, Guey B, Hervieu V, Bancel B, Bartoch B, Durantel D, Renno T, Merle P, Lebecque S. Toll-like receptor 3 downregulation is an escape mechanism from apoptosis during hepatocarcinogenesis. J Hepatol 2019; 71:763-772. [PMID: 31220470 DOI: 10.1016/j.jhep.2019.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Low levels of toll-like receptor 3 (TLR3) in patients with hepatocellular carcinoma (HCC) are associated with poor prognosis, primarily owing to the loss of inflammatory signaling and subsequent lack of immune cell recruitment to the liver. Herein, we explore the role of TLR3-triggered apoptosis in HCC cells. METHODS Quantitative reverse transcription PCR, western blotting, immunohistochemistry and comparative genomic hybridization were used to analyze human and mouse HCC cell lines, as well as surgically resected primary human HCCs, and to study the impact of TLR3 expression on patient outcomes. Functional analyses were performed in HCC cells, following the restoration of TLR3 by lentiviral transduction. The role of TLR3-triggered apoptosis in HCC was analyzed in vivo in a transgenic mouse model of HCC. RESULTS Lower expression of TLR3 in tumor compared to non-tumor matched tissue was observed at both mRNA and protein levels in primary HCC, and was predictive of shorter recurrence-free survival after surgical resection in both univariate (hazard ratio [HR] 1.79; 95% CI 1.04-3.06; p = 0.03) and multivariate analyses (HR 1.73; CI 1.01-2.97; p = 0.04). Immunohistochemistry confirmed frequent downregulation of TLR3 in human and mouse primary HCC cells. None of the 6 human HCC cell lines analyzed expressed TLR3, and ectopic expression of TLR3 following lentiviral transduction not only restored the inflammatory response but also sensitized cells to TLR3-triggered apoptosis. Lastly, in the transgenic mouse model of HCC, absence of TLR3 expression was accompanied by a lower rate of preneoplastic hepatocyte apoptosis and accelerated hepatocarcinogenesis without altering the tumor immune infiltrate. CONCLUSION Downregulation of TLR3 protects transforming hepatocytes from direct TLR3-triggered apoptosis, thereby contributing to hepatocarcinogenesis and poor patient outcome. LAY SUMMARY Hepatocellular carcinoma (HCC) is a heterogeneous disease associated with a poor prognosis. In patients with HCC, TLR3 downregulation is associated with reduced survival. Herein, we show that the absence of TLR3 is associated with a lower rate of apoptosis, and subsequently more rapid hepatocarcinogenesis, without any change to the immune infiltrate in the liver. Therefore, the poor prognosis associated with low TLR3 expression in HCC is likely linked to tumors ability to escape apoptosis. TLR3 may become a promising therapeutic target in TLR3-positive HCC.
Collapse
Affiliation(s)
- Marc Bonnin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Nadim Fares
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Barbara Testoni
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Yann Estornes
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Kathrin Weber
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Béatrice Vanbervliet
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Lydie Lefrançois
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Amandine Garcia
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Alain Kfoury
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Floriane Pez
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Isabelle Coste
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Department of Translational Research and Innovation and Department of Medicine, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de Bioinformatique 'Gilles Thomas' Centre Léon Bérard, Lyon, France
| | - Kévin Lang
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Baptiste Guey
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Valérie Hervieu
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Brigitte Bancel
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Birke Bartoch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Toufic Renno
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Philippe Merle
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Groupement Hospitalier Lyon Nord, Hepatology Unit, Lyon, France.
| | - Serge Lebecque
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France; Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France.
| |
Collapse
|
6
|
Radio-sensitization of head and neck cancer cells by a combination of poly(I:C) and cisplatin through downregulation of survivin and c-IAP2. Cell Oncol (Dordr) 2018; 42:29-40. [PMID: 30182341 DOI: 10.1007/s13402-018-0403-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers. Concurrent radio-chemotherapy is the standard of care for advanced tumors. However, there is a need for more efficient regimens with less side effects resulting from high doses. Therefore, we set out to explore the therapeutic potential of ternary combinations by bringing together irradiation, cis-platinum and a TLR3 agonist, poly(I:C), with the aim to reduce the dosage of each treatment. This approach is based on our previous work, which revealed a selective cytotoxic effect of TLR3 agonists against malignant cells when combined with other anti-neoplastic agents. METHODS We explored the survival of HNSCC-derived cells (Detroit 562, FaDu, SQ20B and Cal27) using MTT and caspase 3/7 activation assays. The radio-sensitization effects of poly(I:C) and cisplatin were assessed using Western blotting, cell cycle progression, ROS formation and qRT-PCR assays. RESULTS We found that the combination of poly(I:C) and cisplatin downregulated c-IAP2 and survivin expression, reduced cell survival, induced anti-apoptotic gene expression and apoptosis, increased ROS formation and induced G2/M cell cycle arrest in the HNSCC-derived cells tested. CONCLUSIONS Our results indicate that a combined poly(I:C) and cisplatin treatment reduces the survival and induces the radio-sensitivity of HNSCC-derived cells, thus providing a rationale for the development of novel strategies for the treatment of head and neck cancer.
Collapse
|
7
|
Alkurdi L, Virard F, Vanbervliet B, Weber K, Toscano F, Bonnin M, Le Stang N, Lantuejoul S, Micheau O, Renno T, Lebecque S, Estornes Y. Release of c-FLIP brake selectively sensitizes human cancer cells to TLR3-mediated apoptosis. Cell Death Dis 2018; 9:874. [PMID: 30158588 PMCID: PMC6115461 DOI: 10.1038/s41419-018-0850-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Toll-like receptor 3 (TLR3) mediates innate immune responses by sensing viral dsRNA, but also induces apoptosis selectively in cancer cells. Our analysis by immunohistochemistry revealed that TLR3 is frequently overexpressed in 130 non-small cell lung cancer (NSCLC) patients' samples compared with normal bronchial epithelium (P < 0.0001, Mann-Whitney test), supporting the therapeutic potential of TLR3 ligand for this type of cancer. However, a proportion of TLR3-expressing cancer cell lines, including NSCLC, remain resistant to TLR3-mediated apoptosis, and the underlying mechanism of resistance remains unclear. We here investigated the molecular basis conferring resistance to non-transformed vs. transformed cells against TLR3-mediated cell death. In non-transformed epithelial cells cellular FLICE-like inhibitory protein (c-FLIP) and cellular Inhibitor of APoptosis (cIAPs) ubiquitin ligases exerted an efficient double brake on apoptosis signaling. In contrast, releasing only one of these two brakes was sufficient to overcome the resistance of 8/8 cancer cell lines tested. Remarkably, the release of the c-FLIP, but not cIAPs, brake only results in the sensitization of all human cancer cells to TLR3-mediated apoptosis. Taking advantage of the difference between transformed and non-transformed cells, we developed a rational strategy by combining the chemotherapeutic agent paclitaxel, which decreases c-FLIP expression, with TLR3 ligand. This combination was highly synergistic for triggering apoptosis in cancer cells but not in non-transformed cells. In vivo, the combination of paclitaxel with dsRNA delayed tumor growth and prolonged survival in a mouse xenograft lung tumor model. In conclusion, combining the release of the c-FLIP brake with TLR3 ligand synergizes to selectively kill cancer cells, and could represent an efficient and safe therapy against TLR3-expressing cancers such as NSCLC.
Collapse
Affiliation(s)
- Lugain Alkurdi
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - François Virard
- Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Hospices Civils de Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - Béatrice Vanbervliet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - Kathrin Weber
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - Florent Toscano
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - Marc Bonnin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - Nolwenn Le Stang
- Département de Biopathologie - Registre MESONAT, Centre Léon Bérard, 69008 Lyon, U1086 INSERM-UCBN « Cancer & Prévention », Caen, France
| | - Sylvie Lantuejoul
- Département de Biopathologie, Centre Léon Bérard, 69008 Lyon, INSERM U823, Institut A. Bonniot, 38700, La Tronche, France
| | - Olivier Micheau
- Univ. Bourgogne Franche-Comté, INSERM, LNC UMR866, F-21000, Dijon, France
| | - Toufic Renno
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
| | - Serge Lebecque
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service d'Anatomie Pathologique, 69495, Pierre Bénite Cedex, France
| | - Yann Estornes
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, F-69373, Lyon, France.
| |
Collapse
|
8
|
Veyrat M, Durand S, Classe M, Glavan TM, Oker N, Kapetanakis NI, Jiang X, Gelin A, Herman P, Casiraghi O, Zagzag D, Enot D, Busson P, Vérillaud B. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 2018; 7:82580-82593. [PMID: 27791989 PMCID: PMC5347715 DOI: 10.18632/oncotarget.12892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
In this study, a possible link between the innate immune recognition receptor TLR3 and metabolic reprogramming in Head and Neck carcinoma (HNC) cells was investigated. The effects of TLR3 stimulation/knock-down were assessed under several culture conditions in 4 HNC cell-lines by cell growth assays, targeted metabolomics, and glycolysis assays based on time-resolved analysis of proton release (Seahorse analyzer). The stimulation of TLR3 by its synthetic agonist Poly(A:U) resulted in a faster growth of HNC cells under low foetal calf serum conditions. Targeted analysis of glucose metabolism pathways demonstrated a tendency towards a shift from tricarboxylic acid cycle (Krebs cycle) to glycolysis and anabolic reactions in cells treated with Poly(A:U). Glycolysis assays confirmed that TLR3 stimulation enhanced the capacity of malignant cells to switch from oxidative phosphorylation to extra-mitochondrial glycolysis. We found evidence that HIF-1α is involved in this process: addition of the TLR3 agonist resulted in a higher cell concentration of the HIF-1α protein, even in normoxia, whereas knocking-down TLR3 resulted in a lower concentration, even in hypoxia. Finally, we assessed TLR3 expression by immunohistochemistry in a series of 7 HNSCC specimens and found that TLR3 was detected at higher levels in tumors displaying a hypoxic staining pattern. Overall, our results demonstrate that TLR3 stimulation induces the Warburg effect in HNC cells in vitro, and suggest that TLR3 may play a role in tumor adaptation to hypoxia.
Collapse
Affiliation(s)
- Mathieu Veyrat
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Sylvère Durand
- Equipe 11 Labélisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Marion Classe
- Department of Pathology, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | | | - Natalie Oker
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France.,Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | | | - Xiaojun Jiang
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Aurore Gelin
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Philippe Herman
- Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | - Odile Casiraghi
- Department of Biopathology, Gustave Roussy, Villejuif, France
| | - David Zagzag
- Department of Neuropathology, New York University School of Medicine, New York, NY, USA
| | - David Enot
- Equipe 11 Labélisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Pierre Busson
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Benjamin Vérillaud
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France.,Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| |
Collapse
|
9
|
Regulation of inflammatory factors by double-stranded RNA receptors in breast cancer cells. Immunobiology 2017; 223:466-476. [PMID: 29331323 DOI: 10.1016/j.imbio.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
Malignant cells are not the only components of a tumor mass since other cells (e.g., fibroblasts, infiltrating leukocytes and endothelial cells) are also part of it. In combination with the extracellular matrix, all these cells constitute the tumor microenvironment. In the last decade the role of the tumor microenvironment in cancer progression has gained increased attention and prompted efforts directed to abrogate its deleterious effects on anti-cancer therapies. The immune system can detect and attack tumor cells, and tumor-infiltrating lymphocytes (particularly CD8 T cells) have been associated with improved survival or better response to therapies in colorectal, melanoma, breast, prostate and ovarian cancer patients among others. Contrariwise, tumor-associated myeloid cells (myeloid-derived suppressor cells [MDSCs], dendritic cells [DCs], macrophages) or lymphoid cells such as regulatory T cells can stimulate tumor growth via inhibition of immune responses against the tumor or by participating in tumor neoangiogenesis. Herewith we analyzed the chemokine profile of mouse breast tumors regarding their capacity to generate factors capable of attracting and sequestering DCs to their midst. Chemoattractants from tumors were investigated by molecular biology and immunological techniques and tumor infiltrating DCs were investigated for matched chemokine receptors. In addition, we investigated the inflammatory response of breast cancer cells, a major component of the tumor microenvironment, to double-stranded RNA stimulation. By using molecular biology techniques such as qualitative and quantitative PCR, PCR arrays, and immunological techniques (ELISA, cytokine immunoarrays) we examined the effects of dsRNA treatment on the cytokine secretion profiles of mouse and human breast cancer cells and non-transformed cells. We were able to determine that tumors generate chemokines that are able to interact with receptors present on the surface of tumor infiltrating DCs. We observed that PRR signaling is able to modify the production of chemokines by breast tumor cells and normal breast cells, thereby constituting a possible player in shaping the profile of the leukocyte population in the TME.
Collapse
|
10
|
Vázquez-Sánchez EA, Rodríguez-Romero M, Sánchez-Torres LE, Rodríguez-Martínez S, Cancino-Diaz JC, Rodríguez-Cortes O, García-López ES, Cancino-Diaz ME. Peptidoglycan from Staphylococcus aureus has an anti-apoptotic effect in HaCaT keratinocytes mediated by the production of the cellular inhibitor of apoptosis protein-2. Microbiol Immunol 2014; 58:87-95. [PMID: 24372854 DOI: 10.1111/1348-0421.12126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Colonization of epithelium by microorganisms leads to inflammatory responses. In some cases an anti-apoptotic response involving the cellular inhibitor of apoptosis protein-2 (cIAP-2) also occurs. Although strong expression of cIAP-2 has been observed in lesional skin from psoriatic patients and in HaCaT keratinocytes treated with peptidoglycan (PGN) from Staphylococcus aureus, anti-apoptotic responses induced in the skin by cIAP-2 have seldom been studied. In this study, the effect of PGN on TNF-α-induced apoptotic HaCaT keratinocytes was assessed. Morphological analysis, quantification of cells with DNA fragmentation and active caspase-3 detection was performed to assess apoptotic cell death. Greater LL-37 and cIAP-2 production was found in keratinocytes stimulated with PGN than in non-treated cells (P < 0.05). In comparison with cells treated with TNF-α only, a significant reduction in apoptotic cell death was observed when HaCaT were pretreated with PGN before inducing apoptosis with TNF-α (P < 0.05). In addition, an inhibitor of cIAP-2 activity (LCL161) stopped the PGN effect. These findings show that PGN from S. aureus has an anti-apoptotic effect in keratinocytes mediated by cIAP-2 production, suggesting that this anti-apoptotic activity could favor proliferation of keratinocytes in psoriasis.
Collapse
Affiliation(s)
- Ernesto Antonio Vázquez-Sánchez
- Department of Immunology, National School of Biological Sciences-National Polytechnic Institute, Col. Santo Tomás, Del. Miguel Hidalgo, C.P., 11340
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Emeagi PU, Thielemans K, Breckpot K. The role of SMAC mimetics in regulation of tumor cell death and immunity. Oncoimmunology 2014; 1:965-967. [PMID: 23162773 PMCID: PMC3489761 DOI: 10.4161/onci.20369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mimetics of second mitochondria-derived activator of caspases (SMAC) enhance tumor cell death in a variety of cancers. Several molecular mechanisms of action have been identified. However, it was only recently that the modus of action was linked to stimulation of anti-tumor immunity. Here we comment on these findings, highlighting several remaining questions.
Collapse
Affiliation(s)
- Perpetua U Emeagi
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology; Vrije Universiteit Brussel; Laarbeeklaan, Jette, Belgium
| | | | | |
Collapse
|
12
|
Functional toll-like receptor 3 expressed by oral squamous cell carcinoma induced cell apoptosis and decreased migration. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118:92-100. [DOI: 10.1016/j.oooo.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/30/2023]
|
13
|
Arcangeletti MC, Germini D, Rodighiero I, Mirandola P, De Conto F, Medici MC, Gatti R, Chezzi C, Calderaro A. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages. Virology 2013; 440:19-30. [PMID: 23497941 DOI: 10.1016/j.virol.2013.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/06/2012] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle.
Collapse
|
14
|
Gourzones C, Busson P, Raab-Traub N. Epstein-Barr Virus and the Pathogenesis of Nasopharyngeal Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Vérillaud B, Gressette M, Morel Y, Paturel C, Herman P, Lo KW, Tsao SW, Wassef M, Jimenez-Pailhes AS, Busson P. Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic. Infect Agent Cancer 2012. [PMID: 23198710 PMCID: PMC3599303 DOI: 10.1186/1750-9378-7-36] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Though NPCs are more radiosensitive and chemosensitive than other tumors of the upper aero-digestive tract, many therapeutic challenges remain. In a previous report, we have presented data supporting a possible therapeutic strategy based on artificial TLR3 stimulation combined to the inhibition of the IAP protein family (Inhibitor of Apoptosis Proteins). The present study was designed to progress towards practical applications of this strategy pursuing 2 main objectives: 1) to formally demonstrate expression of the TLR3 protein by malignant NPC cells; 2) to investigate the effect of poly(A:U) as a novel TLR3-agonist more specific than poly(I:C) which was used in our previous study. Methods TLR3 expression was investigated in a series of NPC cell lines and clinical specimens by Western blot analysis and immunohistochemistry, respectively. The effects on NPC cells growth of the TLR3 ligand poly(A:U) used either alone or in combination with RMT5265, an IAP inhibitor based on Smac-mimicry, were assessed using MTT assays and clonogenic assays. Results TLR3 was detected at a high level in all NPC cell lines and clinical specimens. Low concentrations of poly(A:U) were applied to several types of NPC cells including cells from the C17 xenograft which for the first time have been adapted to permanent propagation in vitro. As a single agent, poly(A:U) had no significant effects on cell growth and cell survival. In contrast, dramatic effects were obtained when it was combined with the IAP inhibitor RMT5265. These effects were obtained using concentrations as low as 0.5 μg/ml (poly(A:U)) and 50 nM (RMT5265). Conclusion These data confirm that TLR3 expression is a factor of vulnerability for NPC cells. They suggest that in some specific pathological and pharmacological contexts, it might be worth to use Smac-mimetics at very low doses, allowing a better management of secondary effects. In light of our observations, combined use of both types of compounds should be considered for treatment of nasopharyngeal carcinomas.
Collapse
Affiliation(s)
- Benjamin Vérillaud
- CNRS-UMR 8126, Institut de Cancérologie Gustave Roussy, University Paris-Sud 11, 39 rue Camille Desmoulins, 94805, Villejuif cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schlegel A, Bigey P, Dhotel H, Scherman D, Escriou V. Reduced in vitro and in vivo toxicity of siRNA-lipoplexes with addition of polyglutamate. J Control Release 2012; 165:1-8. [PMID: 23123257 DOI: 10.1016/j.jconrel.2012.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 01/13/2023]
Abstract
We previously designed a new siRNA vector that efficiently silences genes in vitro and in vivo. The vector originality is based on the fact that, in addition to the siRNA molecule, it contains two components: 1) a cationic liposome that auto-associates with the siRNA to form particles called "lipoplexes" and, 2) an anionic polymer which enhances the lipoplex's efficiency. This anionic polymer can be a nucleic acid, a polypeptide or a polysaccharide. We show here how the nature of the added anionic polymer into our siRNA delivery system impacts the toxic effects induced by siRNA lipoplexes. We first observed that: (i) siRNA lipoplexes-induced toxicity was cell line dependent, tumoral cell lines being the more sensitive; and (ii) plasmid DNA-containing siRNA lipoplexes were more toxic than polyglutamate-containing ones or cationic liposomes. We next determined that the toxicity induced by plasmid-containing lipoplexes is a long-lasting effect that decreased cell survival capacity for several generations. We also found that treated cells underwent death following apoptosis pathway. Systemic injection to mice of siRNA lipoplexes, rather than of cationic liposome, triggered a production of several cytokines in mice and replacement of plasmid by polyglutamate reduced the elevation of all assayed cytokines. In order to enhance siRNA lipoplexes efficiency, the addition of polyglutamate as anionic polymer should be preferred to plasmid DNA as far as in vitro as well as in vivo toxicity is concerned.
Collapse
|
17
|
Van DN, Roberts CF, Marion JD, Lépine S, Harikumar KB, Schreiter J, Dumur CI, Fang X, Spiegel S, Bell JK. Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics. FASEB J 2012; 26:3188-98. [PMID: 22532440 DOI: 10.1096/fj.11-202333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ovarian cancer is the most lethal gynecological cancer. Here we show that innate immune agonist, dsRNA, directly induces ovarian cancer cell death and identify biomarkers associated with responsiveness to this targeted treatment. Nuclear staining and MTT assays following dsRNA stimulation revealed two subpopulations, sensitive (OVCAR-3, CAOV-3; patient samples malignant 1 and 2) and resistant (DOV-13, SKOV-3). Microarray analysis identified 75 genes with differential expression that further delineated these two subpopulations. qPCR and immunoblot analyses showed increased dsRNA receptor expression after stimulation as compared to resistant and immortalized ovarian surface epithelial cells (e.g., 70-fold with malignant 2, 43-fold with OVCAR-3). Using agonists, antagonists, and shRNA-mediated knockdown of dsRNA receptors, we show that TLR3, RIG-I, and mda5 coordinated a caspase 8/9- and interferon-dependent cell death. In resistant cells, dsRNA receptor overexpression restored dsRNA sensitivity. When dsRNA was combined with carboplatin or paclitaxel, cell viability significantly decreased over individual treatments (1.5- to 7.5-fold). Isobologram analyses showed synergism in dsRNA combinations (CI=0.4-0.82) vs. an additive effect in carboplatin/paclitaxel treatment (CI=1.5-2). Our data identify a predictive marker, dsRNA receptor expression, to target dsRNA responsive populations and show that, in dsRNA-sensitive cells, dsRNA induces apoptosis and enhances the potency of cytotoxic chemotherapeutics.
Collapse
Affiliation(s)
- Danielle N Van
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 2012; 7:29-54. [PMID: 22399234 DOI: 10.1007/s11523-012-0213-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Pattern recognition receptors (PRRs) are known for many years for their role in the recognition of microbial products and the subsequent activation of the immune system. The 2011 Nobel Prize for medicine indeed rewarded J. Hoffmann/B. Beutler and R. Steinman for their revolutionary findings concerning the activation of the immune system, thus stressing the significance of understanding the mechanisms of activation of the innate immunity. Such immunostimulatory activities are of major interest in the context of cancer to induce long-term antitumoral responses. Ligands for the toll-like receptors (TLRs), a well-known family of PRR, have been shown to have antitumoral activities in several cancers. Those ligands are now undergoing extensive clinical investigations both as immunostimulant molecules and as adjuvant along with vaccines. However, when considering the use of these ligands in tumor therapy, one shall consider the potential effect on the tumor cells themselves as well as on the entire organism. Recent data indeed demonstrate that TLR activation in tumor cells could trigger both pro- or antitumoral effect depending on the context. This review discusses this balance between the intrinsic activation of PRR in tumor cells and the extrinsic microenvironment activation in term of overall effect of PRR ligands on tumor development. We review recent advances in the field and underline appealing prospects for clinical development of PRR agonists in the light of our current knowledge on their expression and activation.
Collapse
Affiliation(s)
- Nadège Goutagny
- Université de Lyon, Université Lyon I, UMR INSERM 1052 CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
| | | | | | | | | |
Collapse
|
19
|
Emeagi PU, Van Lint S, Goyvaerts C, Maenhout S, Cauwels A, McNeish IA, Bos T, Heirman C, Thielemans K, Aerts JL, Breckpot K. Proinflammatory characteristics of SMAC/DIABLO-induced cell death in antitumor therapy. Cancer Res 2012; 72:1342-52. [PMID: 22379024 DOI: 10.1158/0008-5472.can-11-2400] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular mimetics of the caspase activator second mitochondria-derived activator of caspase (SMAC) are being investigated for use in cancer therapy, but an understanding of in vivo effects remains incomplete. In this study, we offer evidence that SMAC mimetics elicit a proinflammatory cell death in cancer cells that engages an adaptive antitumor immune response. Cancer cells of different histologic origin underwent apoptosis when transduced with lentiviral vectors encoding a cytosolic form of the SMAC mimetic LV-tSMAC. Strikingly, treatment of tumor-bearing mice with LV-tSMAC resulted in the induction of apoptosis, activation of antitumor immunity, and enhanced survival. Antitumor immunity was accompanied by an increase of tumor-infiltrating lymphocytes displaying low PD-1 expression, high lytic capacity, and high levels of IFN-γ when stimulated. We also noted in vivo a decrease in regulatory T cells along with in vitro activation of tumor-specific CD8(+) T cells by dendritic cells (DC) isolated from tumor draining lymph nodes. Last, tumor-specific cytotoxic T cells were also found to be activated in vivo. Mechanistic analyses showed that transduction of cancer cells with LV-tSMAC resulted in exposure of calreticulin but not release of HMGB1 or ATP. Nevertheless, DCs were activated upon engulfment of dying cancer cells. Further validation of these findings was obtained by their extension in a model of human melanoma using transcriptionally targeted LV-tSMAC. Together, our findings suggest that SMAC mimetics can elicit a proinflammatory cell death that is sufficient to activate adaptive antitumor immune responses in cancer.
Collapse
Affiliation(s)
- Perpetua U Emeagi
- Department of Immunology-Physiology, Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Jette, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|