1
|
GPCR-mediated EGFR transactivation ameliorates skin toxicities induced by afatinib. Acta Pharmacol Sin 2022; 43:1534-1543. [PMID: 34552215 PMCID: PMC9160022 DOI: 10.1038/s41401-021-00774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Many G-protein-coupled receptor (GPCR) agonists have been studied for transactivating epidermal growth factor receptor (EGFR) signaling through extracellular or intracellular pathways. Accumulated evidence has confirmed that GPCR transactivation participates in various diseases. However, the clinical application of GPCR transactivation has not been explored, and more translational studies are needed to develop therapies to target GPCR-mediated EGFR transactivation. In cancer patients treated with EGFR inhibitors (EGFRi), especially afatinib, a unique acneiform rash is frequently developed. In this study, we first established the connection between GPCR transactivation and EGFRi-induced skin disease. We examined the ability of three different GPCR agonists to reverse signaling inhibition and ameliorate rash induced by EGFRi. The activation of different agonists follows unique time and kinase patterns. Rats treated with EGFRi show a similar skin phenotype, with rash occurring in the clinic; correspondingly, treatment with GPCR agonists reduced keratinocyte apoptosis, growth retardation and infiltration of inflammatory cytokines by transactivation. This phenomenon demonstrates that EGFR inhibition in keratinocytes regulates key factors associated with rash. Our findings indicate that maintaining EGFR signaling by GPCR agonists might provide a possible therapy for EGFR inhibitor-induced skin toxicities. Our study provides the first example of the translational application of GPCR transactivation in treating diseases.
Collapse
|
2
|
Su P, Xiao L, Ye L, Wang Z, Xiong W, Wang Q, Ma X, Xian M, Yang M, Zu Y, Pingali SR, Qian J, Yi Q. A novel role of lysophosphatidic acid (LPA) in human myeloma resistance to proteasome inhibitors. J Hematol Oncol 2022; 15:55. [PMID: 35526043 PMCID: PMC9077919 DOI: 10.1186/s13045-022-01269-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migration. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endoplasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitivity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.
Collapse
Affiliation(s)
- Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Zhuo Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Xingzhe Ma
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Sai Ravi Pingali
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
3
|
Vishwakarma S, Joshi D, Pandey R, Das S, Mukhopadhyay S, Rai R, Singhal R, Kapoor N, Kumar A. Downregulation of Lipid Phosphate Phosphatase 3 Correlates With Tumor-Infiltrating Immune Cells in Oral Cancer. Cureus 2022; 14:e23553. [PMID: 35494957 PMCID: PMC9045791 DOI: 10.7759/cureus.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/27/2022] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a potent oncogenic lipid. Intracellular levels of S1P are tightly regulated by eight S1P-metabolizing enzymes. S1P synthesis is catalyzed by two sphingosine kinases, i.e., sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2). Five lipid phosphatases (two S1P phosphatases and lipid phosphate phosphatases (LPPs) 1, 2, and 3) reversibly convert S1P back to sphingosine. Previously, we have determined the mRNA expression profile of eight S1P-metabolizing enzymes in tumor tissues and adjacent normal tissues from oral squamous cell carcinoma (OSCC) patients. Except for SphK1, the role of S1P-metabolizing enzymes in OSCC has been poorly studied. Methods We have determined the protein expression of four S1P-metabolizing enzymes (SphK1, SphK2, sphingosine-1-phosphate phosphatase 1 (SGPP1), and lipid phosphate phosphatase 3 (LPP3)) by immunohistochemistry (IHC) in tumor tissues of 46 OSCC patients. Six subjects with non-dysplastic oral mucosa were also included in the study. The immunoreactivity score (IRS) was calculated for each protein in every subject. Further, we determined the associations of expression of S1P-metabolizing enzymes with clinicopathological features of OSCC patients. Results We demonstrate the low IRS for SphK2 and LPP3 in OSCC tumors. Importantly, expression of SphK2 and LPP3 was downregulated in malignant epithelial cells compared to non-malignant mucosa. Further, LPP3 expression negatively correlated with tumor‑node‑metastasis (TNM) staging of patients (r = −0.307, p = 0.043). Importantly, expression of LPP3 in tumors was found to be an independent predictor of perinodal extension (b = −0.440, p = 0.009), lymphovascular invasion (b = −0.614, p < 0.001), lymph node ratio (b = 0.336, p = 0.039), and TNM staging (b = −0.364, p = 0.030). Conclusion Taken together, our data show that expression of SphK2 and LPP3 is decreased compared to normal mucosa. Thus, the S1P signaling pathway could represent a potential therapeutic target.
Collapse
|
4
|
Li L, Yin Y, Nan F, Ma Z. Circ_LPAR3 promotes the progression of oral squamous cell carcinoma (OSCC). Biochem Biophys Res Commun 2022; 589:215-222. [PMID: 34922206 DOI: 10.1016/j.bbrc.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND circ_LPAR3 is an oncogene in esophageal squamous cell carcinoma. However, its role in oral squamous cell carcinoma (OSCC) is unknown. PURPOSE To reveal the functions of circ_LPAR3 in OSCC. METHODS Online bioinformatic analysis was performed to disclose the differential expression of circ_LPAR3, VEGFC, AKT1 in OSCC and also the target predictions of miR-513b-5p. Transfection was applied in OSCC cells. RT-qPCR was used to detect the RNA expression and western blot to measure the proteins, VEGFC and phosphor-AKT1 (ser473, p-AKT1). CCK8 kit was used for viability detection and Flow cytometry for apoptosis evaluation. RNA pull-down and luciferase reporter methods were used to validate the binding sites to miR-513b-5p on circ_LPAR3, VEGFC and AKT1. OSCC mice models were established to further unveil the functions of circ_LPAR3 in OSCC in vivo. H&E staining and immunohistochemistry (CD34, VEGFC and p-AKT1) were further applied to analyze the pathological changes in association with circ_LPAR3 downregulation. RESULTS circ_LPAR3 was upregulated in OSCC. Its knockdown in cells could decrease cell survival and mobility and in mice model, could inhibit the tumor growth and angiogenesis. Circ_LPAR3 promoted VEGFC and AKT1 activity by sponging miR-513b-5p in OSCC cells. CONCLUSION Knockdown of circ_LPAR3 could inhibit the OSCC progression by sponging miR-513b-5p and activating VEGFC and AKT1.
Collapse
Affiliation(s)
- Li Li
- Department of Stomatology, PLA 983rd Hospital, Tianjin, China.
| | - Ye Yin
- Department of Stomatology, PLA 983rd Hospital, Tianjin, China.
| | - Fanglong Nan
- Department of Stomatology, PLA 983rd Hospital, Tianjin, China.
| | - Zeyu Ma
- Department of Stomatology, PLA 983rd Hospital, Tianjin, China.
| |
Collapse
|
5
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
6
|
Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Riege K, Kretzmer H, Sahm A, McDade SS, Hoffmann S, Fischer M. Dissecting the DNA binding landscape and gene regulatory network of p63 and p53. eLife 2020; 9:e63266. [PMID: 33263276 PMCID: PMC7735755 DOI: 10.7554/elife.63266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor p53 is the best-known tumor suppressor, but its sibling p63 is a master regulator of epidermis development and a key oncogenic driver in squamous cell carcinomas (SCC). Despite multiple gene expression studies becoming available, the limited overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene regulatory network. Particularly, analyses of p63 response elements differed substantially among the studies. To address this intricate data situation, we provide an integrated resource that enables assessing the p63-dependent regulation of any human gene of interest. We use a novel iterative de novo motif search approach in conjunction with extensive ChIP-seq data to achieve a precise global distinction between p53-and p63-binding sites, recognition motifs, and potential co-factors. We integrate these data with enhancer:gene associations to predict p63 target genes and identify those that are commonly de-regulated in SCC representing candidates for prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University BelfastBelfastUnited Kingdom
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| |
Collapse
|
8
|
Abdul Rahman M, Tan ML, Johnson SP, Hollows RJ, Chai WL, Mansell JP, Yap LF, Paterson IC. Deregulation of lysophosphatidic acid metabolism in oral cancer promotes cell migration via the up-regulation of COX-2. PeerJ 2020; 8:e10328. [PMID: 33240646 PMCID: PMC7666559 DOI: 10.7717/peerj.10328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide and accounts for 300,000 new cases yearly. The five-year survival rate is approximately 50% and the major challenges to improving patient prognosis include late presentation, treatment resistance, second primary tumours and the lack of targeted therapies. Therefore, there is a compelling need to develop novel therapeutic strategies. In this study, we have examined the effect of lysophosphatidic acid (LPA) on OSCC cell migration, invasion and response to radiation, and investigated the contribution of cyclooxygenase-2 (COX-2) in mediating the tumour promoting effects of LPA. Using the TCGA data set, we show that the expression of the lipid phosphate phosphatases (LPP), LPP1 and LPP3, was significantly down-regulated in OSCC tissues. There was no significant difference in the expression of the ENPP2 gene, which encodes for the enzyme autotaxin (ATX) that produces LPA, between OSCCs and control tissues but ENPP2 levels were elevated in a subgroup of OSCCs. To explore the phenotypic effects of LPA, we treated OSCC cell lines with LPA and showed that the lipid enhanced migration and invasion as well as suppressed the response of the cells to irradiation. We also show that LPA increased COX-2 mRNA and protein levels in OSCC cell lines and inhibition of COX-2 activity with the COX-2 inhibitor, NS398, attenuated LPA-induced OSCC cell migration. Collectively, our data show for the first time that COX-2 mediates some of the pro-tumorigenic effects of LPA in OSCC and identifies the ATX-LPP-LPA-COX-2 pathway as a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Mariati Abdul Rahman
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Department of Craniofacial Diagnostics and Biosciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - May Leng Tan
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Robert J Hollows
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Wen Lin Chai
- Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Giagulli C, Caccuri F, Zorzan S, Bugatti A, Zani A, Filippini F, Manocha E, D'Ursi P, Orro A, Dolcetti R, Caruso A. B-cell clonogenic activity of HIV-1 p17 variants is driven by PAR1-mediated EGF transactivation. Cancer Gene Ther 2020; 28:649-666. [PMID: 33093643 PMCID: PMC8203498 DOI: 10.1038/s41417-020-00246-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022]
Abstract
Combined antiretroviral therapy (cART) for HIV-1 dramatically slows disease progression among HIV+ individuals. Currently, lymphoma represents the main cause of death among HIV-1-infected patients. Detection of p17 variants (vp17s) endowed with B-cell clonogenic activity in HIV-1-seropositive patients with lymphoma suggests their possible role in lymphomagenesis. Here, we demonstrate that the clonogenic activity of vp17s is mediated by their binding to PAR1 and to PAR1-mediated EGFR transactivation through Gq protein. The entire vp17s-triggered clonogenic process is MMPs dependent. Moreover, phosphoproteomic and bioinformatic analysis highlighted the crucial role of EGFR/PI3K/Akt pathway in modulating several molecules promoting cancer progression, including RAC1, ABL1, p53, CDK1, NPM, Rb, PTP-1B, and STAT1. Finally, we show that a peptide (F1) corresponding to the vp17s functional epitope is sufficient to trigger the PAR1/EGFR/PI3K/Akt pathway and bind PAR1. Our findings suggest novel potential therapeutic targets to counteract vp17-driven lymphomagenesis in HIV+ patients.
Collapse
Affiliation(s)
- Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Simone Zorzan
- Plantech, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science & Technology (LIST), L-4422, Belvaux, Luxembourg
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Pasqualina D'Ursi
- Department of Biomedical Sciences, Institute for Biomedical Technologies e National Research Council (ITB-CNR), 20090, Segrate (MI), Italy
| | - Alessandro Orro
- Department of Biomedical Sciences, Institute for Biomedical Technologies e National Research Council (ITB-CNR), 20090, Segrate (MI), Italy
| | - Riccardo Dolcetti
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico - IRCCS, Aviano, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
| |
Collapse
|
10
|
Wang F, Xie X, Song M, Ji L, Liu M, Li P, Guan Y, Lin X, Qin Y, Xie Z, Zhang J, Ouyang M, Gu Y, Deng H, Xia X, Xin Y, Zhou C. Tumor immune microenvironment and mutational analysis of tracheal adenoid cystic carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:750. [PMID: 32647675 PMCID: PMC7333116 DOI: 10.21037/atm-20-3433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Tracheal adenoid cystic carcinoma (TACC) is the second most common type of cancer in bronchial tumors with poor prognosis. Studies on the genomic profiles and tumor immune microenvironment (TIME) of TACC are still relatively rare. Methods Here, we performed whole-exome sequencing (WES), T cell repertoire (TCR) sequencing, and immunohistochemistry (IHC) on the resected tumors and matched peripheral blood leukocytes (PBLs) samples from 25 TACCs collected from April-2010 to Mar-2019. Results WES results revealed that LPAR3 and ALPI were recurrently mutated genes, with no classical lung cancer drivers in TACCs (n=8). The median tumor mutation burden (TMB) was 3.67, lower than other solid tumors. Unexpectedly, one patient showed high microsatellite instability (MSI). Recurrent copy number variations (CNVs) affected genes commonly involved in p53, cell cycle, and PI3K-Akt signaling pathways. For TCR estimators of 13 PBLs, the median clonality and Shannon index was 0.15 and 7.02, respectively. Shannon index showed marginally negative association with age (Pearson r =−0.53, P=0.062). Clonotype number and Shannon index of 7 TACC tissues were significantly lower than those of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) (Mann-Whitney test, both P<0.001, both P<0.001). Furthermore, programmed cell death 1 ligand 1 (PD-L1), a vital player in TIME, was negative (tumor proportion score, TPS <1%) in all samples (n=14). Patients with less clonotypes had longer progression-free survival (PFS) than those with more PFS (15.0 vs. 9.5 months, P<0.001, HR 12.5, 95% CI: 0.2–675.7). In particular, the clinical and molecular characteristics of one TACC patient receiving immunotherapy have been explained in detail. Conclusions In summary, despite the existence of one patient with MSI-H and chromosome instability, TACC was characterized by a lack of common drivers of lung cancer, negative PD-L1 expression, and low CD3+ and CD8+ T cell infiltration.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Liyan Ji
- Geneplus-Beijing, Beijing, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiexia Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Yi Xin
- Geneplus-Beijing, Beijing, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of the Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Abdul Rahman M, Mohamad Haron DE, Hollows RJ, Abdul Ghani ZDF, Ali Mohd M, Chai WL, Ng CC, Lye MS, Karsani SA, Yap LF, Paterson IC. Profiling lysophosphatidic acid levels in plasma from head and neck cancer patients. PeerJ 2020; 8:e9304. [PMID: 32547888 PMCID: PMC7278886 DOI: 10.7717/peerj.9304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a significant world health problem, with approximately 600,000 new cases being diagnosed annually. The prognosis for patients with HNSCC is poor and, therefore, the identification of biomarkers for screening, diagnosis and prognostication would be clinically beneficial. A limited number of studies have used lipidomics to profile lipid species in the plasma of cancer patients. However, the profile and levels of lysophosphatidic acid (LPA) species have not been examined in HNSCC. In this study, a targeted lipidomics approach using liquid chromatography triple quadrupole mass spectrometry (LCMS/MS) was used to analyse the concentration of LPA (16:0 LPA, 18:0 LPA, 18:1 LPA, 18:2 LPA and 20:4 LPA) in the plasma of patients with oral squamous cell carcinoma (OSCC) and nasopharyngeal carcinoma (NPC), together with healthy controls. The levels of three LPA species (18:1 LPA, 18:2 LPA and 20:4 LPA) were significantly lower in the plasma of OSCC patients, whilst the concentrations of all five LPA species tested were significantly lower in plasma from NPC patients. Furthermore, the order of abundance of LPA species in plasma was different between the control and cancer groups, with 16:0 LPA, 18:0 LPA levels being more abundant in OSCC and NPC patients. Medium to strong correlations were observed using all pairs of LPA species and a clear separation of the normal and tumour groups was observed using PCA analysis. In summary, the results of this study showed that the levels of several LPA species in the plasma of patients with OSCC and NPC were lower than those from healthy individuals. Understanding these variations may provide novel insights into the role of LPA in these cancers.
Collapse
Affiliation(s)
- Mariati Abdul Rahman
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Department of Craniofacial Diagnostics and Biosciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Robert J Hollows
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Mustafa Ali Mohd
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching Ching Ng
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Munn Sann Lye
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Xia W, Jie W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway. Cancer Cell Int 2020; 20:94. [PMID: 32231464 PMCID: PMC7103072 DOI: 10.1186/s12935-020-1098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid cancer (TC) is a member of common malignant tumors in endocrine system. To develop effective treatment, further comprehension of understanding molecular mechanism in TC is necessary. In this research, we attempted to search the underlying molecular mechanism in TC. Methods ZEB1-AS1 expression was analyzed via qRT-PCR analysis. CCK-8, colony formation, flow cytometry and TUNEL assays were used to evaluate TC cell growth. The interaction between miR-133a-3p and LPAR3, EGFR and ZEB1-AS1 was testified through using RNA pull down and luciferase reporter assays. Results LPAR3 and EGFR were expressed at high levels in TC tissues and cell lines. Besides, both LPAR3 and EGFR could promote TC cell growth. Later, miR-133a-3p was searched as an upstream gene of LPAR3 and EGFR, and LPAR3 could partially rescue the suppressive effect of miR-133a-3p overexpression on TC progression, whereas the co-transfection of LPAR3 and EGFR completely restored the inhibition. Next, ZEB1-AS1 was confirmed as a sponge of miR-133a-3p. ZEB1-AS1 has a negative correlation with miR-133a-3p and a positive association with LPAR3 and EGFR through ceRNA analysis. Importantly, ZEB1-AS1 boosted the proliferation and suppressed the apoptosis in TC cells. Through restoration assays, we discovered that ZEB1-AS1 regulated LPAR3 and EGFR expression to mediate TC cell proliferation and apoptosis by sponging miR-133a-3p. Further investigation also indicated the oncogenic role of ZEB1-AS1 by mediating PI3K/AKT/mTOR pathway. Conclusions ZEB1-AS1 could be an underlying biomarker in TC.
Collapse
Affiliation(s)
- Wu Xia
- 1The Department of Endocrinology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'An Branch), 259 Xikang Road, Jing'an District, Shanghai, 200040 China
| | - Wen Jie
- 2Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
13
|
Diverse Effects of Lysophosphatidic Acid Receptors on Ovarian Cancer Signaling Pathways. JOURNAL OF ONCOLOGY 2019; 2019:7547469. [PMID: 31636669 PMCID: PMC6766155 DOI: 10.1155/2019/7547469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid with mitogenic and growth factor-like activities affecting cell invasion, cancer progression, and resistance. It is produced mainly by autotaxin and acts on six G-protein-coupled receptors, LPAR1-6. LPA has recently been implicated as a growth factor present in ascites of ovarian cancer patients. However, mitogenic pathways stimulated by LPA via its receptors may involve any novel, thus far uncharacterized, signaling pathway(s). Here we show that three LPA receptors are involved in tumor progression by activation of both the AKT and ERK signaling pathways. CRISPR-edited LPAR2 and LPAR3 knockouts have opposing effects on ERK activation, whereas LPAR6 is involved in the activation of AKT, affecting cell migration and invasion. Our study identifies specific molecular machinery triggered by LPA and its receptors that modulates tumor cells and can serve as therapeutic target in this malignancy.
Collapse
|
14
|
Kamato D, Ta H, Afroz R, Xu S, Osman N, Little PJ. Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. J Cell Commun Signal 2019; 13:539-548. [PMID: 31290007 DOI: 10.1007/s12079-019-00527-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Protease activated receptors (PARs) transactivate both epidermal growth factor receptors (EGFR) and transforming growth factor (TGF)-β receptors (TGFBR1) in vascular smooth muscle leading to the increased expression of genes (CHST11 and CHSY1) which are rate limiting for the enzymes that mediate hyperelongation of glycosaminoglycan (GAG) chains on the lipid-binding proteoglycan, biglycan. This is an excellent model to investigate mechanisms of transactivation as the processes are biochemically distinct. EGFR transactivation is dependent on the classical matrix metalloprotease (MMP) based triple membrane bypass mechanism and TGFBR1 transactivation is dependent on Rho/ROCK signalling and integrins. We have shown that all kinase receptor signalling is targeted towards phosphorylation of the linker region of the transcription factor, Smad2. We investigated the mechanisms of thrombin mediated kinase receptor transactivation signalling using anti-phospho antibodies and Western blotting and gene expression by RT-PCR. Thrombin stimulation of phospho-Smad2 (Ser 245/250/255) and of phospho-Smad2(Thr220) via EGFR transactivation commences quickly and extends out to at least 4 h whereas transactivation via TGFBR1 is delayed for 120 min but also persists for at least 4 h. Signalling of thrombin stimulated Smad linker region phosphorylation is approximately equally inhibited by the MMP inhibitor, GM6001 and the ROCK inhibitor, Y27632, and similarly expression of CHST11 and CHSY1 is approximately equally inhibited by GM6001 and Y27632. The data establishes Smad linker region phosphorylation as a central target of all transactivation signalling of GAG gene expression and thus an upstream kinase may be a target to prevent all transactivation signalling and its pathophysiological consequences.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia. .,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| | - Hang Ta
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Rizwana Afroz
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, 3004, Australia
| | - Peter J Little
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China
| |
Collapse
|
15
|
Zhong W, Bian K, Hu Y, Ji Z, Xu X, Li J, Wu P, Wang X, Zhang Y, Zhang P, Zhang H, Shen Y. Lysophosphatidic acid guides the homing of transplanted olfactory ensheathing cells to the lesion site after spinal cord injury in rats. Exp Cell Res 2019; 379:65-72. [DOI: 10.1016/j.yexcr.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/21/2019] [Accepted: 03/14/2019] [Indexed: 01/19/2023]
|
16
|
Abstract
Stem cells are a rare subpopulation defined by the potential to self-renew and differentiate into specific cell types. A population of stem-like cells has been reported to possess the ability of self-renewal, invasion, metastasis, and engraftment of distant tissues. This unique cell subpopulation has been designated as cancer stem cells (CSC). CSC were first identified in leukemia, and the contributions of CSC to cancer progression have been reported in many different types of cancers. The cancer stem cell hypothesis attempts to explain tumor cell heterogeneity based on the existence of stem cell-like cells within solid tumors. The elimination of CSC is challenging for most human cancer types due to their heightened genetic instability and increased drug resistance. To combat these inherent abilities of CSC, multi-pronged strategies aimed at multiple aspects of CSC biology are increasingly being recognized as essential for a cure. One of the most challenging aspects of cancer biology is overcoming the chemotherapeutic resistance in CSC. Here, we provide an overview of autotaxin (ATX), lysophosphatidic acid (LPA), and their signaling pathways in CSC. Increasing evidence supports the role of ATX and LPA in cancer progression, metastasis, and therapeutic resistance. Several studies have demonstrated the ATX-LPA axis signaling in different cancers. This lipid mediator regulatory system is a novel potential therapeutic target in CSC. In this review, we summarize the evidence linking ATX-LPA signaling to CSC and its impact on cancer progression and metastasis. We also provide evidence for the efficacy of cancer therapy involving the pharmacological inhibition of this signaling pathway.
Collapse
|
17
|
Xu M, Yin H, Cai Y, Huang W, Ji Q, Liu F, Shi S, Deng X. Lysophosphatidic acid induces integrin β6 expression in human oral squamous cell carcinomas cells via LPAR1 coupling to Gα i and downstream SMAD3 and ETS-1 activation. Cell Signal 2019; 60:81-90. [PMID: 30998970 DOI: 10.1016/j.cellsig.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022]
Abstract
Integrin β6 (ITGB6), an epithelial-specific integrin, is upregulated in oral squamous cell carcinomas (OSCC) and is associated with progression and metastasis of OSCC. Lysophosphatidic acid (LPA), an important bioactive phospholipid present in saliva, has also been related to OSCC cell migration and invasiveness. LPA exerts its biological effects through signal transduction pathways that ultimately regulate gene expression. However, it is unclear whether LPA signaling is involved in ITGB6 upregulation in OSCC. Therefore, the aim of the current study was to investigate the role of LPA in the regulation of ITGB6 expression in OSCC cells, and to delineate the molecular signaling pathways involved. Using SAS and HSC-3 OSCC cell lines, we found that LPA increases ITGB6 mRNA expression without affecting mRNA stability, suggesting that LPA acts by regulating ITGB6 gene transcription. In addition, we show that LPA stimulation increases phosphorylation and binding of the transcription factors SMAD3 and ETS-1 to the ITGB6 promoter resulting in ITGB6 active transcription. Finally, we demonstrate that LPA-induced ITGB6 expression is mediated via the LPA receptors 1 (LPAR1) coupling to Gαi. Our findings provide insights into the molecular mechanism underlying ITGB6 overexpression in OSCC and may have important implications for therapeutic purposes.
Collapse
Affiliation(s)
- Mingyan Xu
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Department of Stomatology and Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Hao Yin
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yihuang Cai
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Department of Stomatology and Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Wenxia Huang
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Department of Stomatology and Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Qing Ji
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Department of Stomatology and Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Fan Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Songlin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoling Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
18
|
Dietze R, Starzinski-Powitz A, Scheiner-Bobis G, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Lysophosphatidic acid triggers cathepsin B-mediated invasiveness of human endometriotic cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1369-1377. [PMID: 30591146 DOI: 10.1016/j.bbalip.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 08/19/2018] [Indexed: 02/06/2023]
Abstract
Extracellular lysophosphatidic acid (LPA) and the G-protein-coupled LPA receptors (LPAR) are involved in cell migration and invasion and found in the human endometrium. However, underlying mechanisms resulting in cellular invasion have been rarely investigated. We used stromal endometrial T-HESC, epithelial endometriotic 12Z, 49Z and Ishikawa cells. Interestingly, proliferation of T-HESC cells was strongly increased after LPA treatment, whereas the epithelial cell lines only showed a moderate increase. LPA increased invasion of 12Z and 49Z strongly and significantly. The LPAR inhibitor Ki16425 (LPAR1/3) attenuated significantly LPA-induced invasiveness of 12Z, which was confirmed by LPAR1 and LPAR3 siRNAs, showing that both LPA receptors contribute to invasiveness of 12Z cells. Investigation of cell invasion with an antibody-based protease array revealed mainly differences in cathepsins and especially cathepsin B between 12Z compared to the less invasive Ishikawa. Stimulation with LPA showed a time- and dose-dependent increased secretion of cathepsin B which was inhibited by the Gq inhibitor YM-254890 and Gi/o inhibitor pertussis toxin in the 12Z cells, again highlighting the importance of LPAR1/3. The activity of intracellular and secreted cathepsin B was significantly upregulated in LPA-treated samples. Inhibition of cathepsin B with the specific inhibitor CA074 significantly reduced LPA-increased invasion of 12Z. Our results reveal a novel role of LPA-mediated secretion of cathepsin B which stimulated invasion of endometriotic epithelial cells mainly via LPAR1 and LPAR3. These findings may deepen our understanding how endometriotic cells invade into ectopic sites, and provide new insights into the role of LPA and cathepsin B in cellular invasion.
Collapse
Affiliation(s)
- Raimund Dietze
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Anna Starzinski-Powitz
- Institute for Cell Biology and Neuroscience, Molecular Cell Biology and Human Genetics, Johann-Wolfgang-Goethe University of Frankfurt, Germany
| | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Hans-Rudolf Tinneberg
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Lutz Konrad
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany.
| |
Collapse
|
19
|
Kim JY, Cho KH, Lee HY. Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.17135/jdhs.2018.18.3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jin Young Kim
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
20
|
Pramanik KK, Nagini S, Singh AK, Mishra P, Kashyap T, Nath N, Alam M, Rana A, Mishra R. Glycogen synthase kinase-3β mediated regulation of matrix metalloproteinase-9 and its involvement in oral squamous cell carcinoma progression and invasion. Cell Oncol (Dordr) 2017; 41:47-60. [PMID: 29134466 DOI: 10.1007/s13402-017-0358-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC)-related deaths mainly result from invasion of the tumor cells into local cervical lymph nodes. It has been reported that progressive basement membrane loss promotes the metastatic and invasive capacities of OSCCs. Matrix metalloproteinase-9 (MMP-9) is known to play a central role in tumor progression and invasion. However, the role of MMP-9 in OSCC invasion has so far remained paradoxical and little is known about its regulation. Here, we aimed to assess MMP-9 expression regulation and its activation by glycogen synthase kinase-3β during human OSCC progression and invasion. METHODS In the present study, 178 human OSCC samples, including 118 fresh samples (18 adjacent normal, 42 noninvasive and 58 invasive tumor samples) and 60 archival human tissue microarray (TMA) tongue cancer samples, were included. mRNA expression, protein expression, MMP-9/-2 activity, protein-protein interaction and Snail, c-Myc, β-catenin and TIMP1 expression were assessed using RT-PCR, immunohistochemistry, Western blotting, co-immunoprecipitation and gelatin zymography analyses, respectively. Wnt5a and LPA mediated MMP-9 regulation was assessed in OCSCC-derived SCC-9 cells exogenously expressing GSK3β (WT) or non phosphoryable GSK3β (S9A). RESULTS We observed a progressive up-regulation/activation of MMP-9 at various stages of oral tumor progression/invasion. Positive correlations were observed between MMP-9 and c-Myc expression, MMP-9 and MMP-2 activity, MMP-9 and TIMP1 expression and MMP-9 activity and TIMP1-MMP-9 interaction. In contrast, a negative correlation between phosphorylated β-catenin and MMP-9 expression was observed. Conversely, we found that in oral tongue SCC MMP-9 expression was positively correlated with inactivation of GSK3 signaling. Finally, we found that Wnt5a and LPA mediated increased MMP-9 and decreased GSK3β activities in tongue SCC-derived SCC-9 cells. MMP-9 regulation by GSK3β was confirmed by using phosphoryable/regulatory GSK3β (WT construct) and not by non-phosphoryable GSK3β (S9A construct). CONCLUSIONS Collectively, our results show that MMP-9 overexpression and activation are important events occurring during OSCC progression/invasion and that this overexpression/activation is regulated by c-Myc, active MMP-2 and inactive GSK3β mediated pathways.
Collapse
Affiliation(s)
- Kamdeo K Pramanik
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, -608 002, India
| | - Abhay K Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India
| | - Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India
| | - Nidhi Nath
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India
| | - Manzar Alam
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago, 840 S. Wood Street, Suite 601 Clinical Sciences Building, MC 958, Chicago, IL, 60612, USA
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, -835205, India.
| |
Collapse
|
21
|
Sadam A, Parida S, Padol AR, Verma AD, Baba NA, Khuman WM, Srivastava V, Panigrahi M, Singh TU, Sarkar SN. Study of lysophosphatidic acid receptors (LPARs) in buffalo uterus demonstrated upregulation of LPAR1 and LPAR6 in early pregnancy. Theriogenology 2017; 99:90-97. [DOI: 10.1016/j.theriogenology.2017.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
22
|
Thorlakson HH, Engen SA, Schreurs O, Schenck K, Blix IJS. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing. Arch Oral Biol 2017; 80:153-159. [DOI: 10.1016/j.archoralbio.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
23
|
Quan M, Cui JJ, Feng X, Huang Q. The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer. Tumour Biol 2017; 39:1010428317694544. [PMID: 28347252 DOI: 10.1177/1010428317694544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Autotaxin, an ecto-lysophospholipase D encoded by the human ENNP2 gene, is expressed in multiple tissues, and participates in numerous critical physiologic and pathologic processes including inflammation, pain, obesity, embryo development, and cancer via the generation of the bioactive lipid lysophosphatidate. Overwhelming evidences indicate that the autotaxin/lysophosphatidate signaling axis serves key roles in the numerous processes central to tumorigenesis and progression, including proliferation, survival, migration, invasion, metastasis, cancer stem cell, tumor microenvironment, and treatment resistance by interacting with a series of at least six G-protein-coupled receptors (LPAR1-6). This review provides an overview of the autotaxin/lysophosphatidate axis and collates current knowledge regarding its specific role in pancreatic cancer. With a deeper understanding of the critical role of the autotaxin/lysophosphatidate axis in pancreatic cancer, targeting autotaxin or lysophosphatidate receptor may be a potential and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ming Quan
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiu-Jie Cui
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
24
|
Xu H, Wu K, Tian Y, Liu Q, Han N, Yuan X, Zhang L, Wu GS, Wu K. CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer. Int J Oncol 2016; 49:1343-50. [PMID: 27499099 PMCID: PMC5021250 DOI: 10.3892/ijo.2016.3639] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
Cluster of differentiation 44 (CD44), a well-known transmembrane glycoprotein, serves as a promoting factor in the carcinogenesis and progression of a variety of neoplasms. Previous studies have demonstrated that aberrant expression of CD44 was associated with the initiation, invasion, metastasis, and therapy-resistance of breast cancer, but whether there was any association between CD44 and pathological characteristics of breast cancer or epidermal growth factor receptor (EGFR) has not been clearly elucidated. In this study, we utilized public microarray data analysis and tissue microarray technologies to display that CD44 level was enhanced in breast cancer and was significantly correlated with histological grade and the status of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 (HER2) and EGFR. Furthermore, mRNA expression of CD44 in breast tumors was positively correlated with basal cytokeratin markers KRT5 and KRT17, but inversely associated with luminal marker FOXA1. Besides, Kaplan-Meier analysis showed that high CD44 mRNA level had adverse impact on the progression-free survival of patients with HER2-expressing or basal-like breast cancer. Functionally, inhibition of EGFR activity by erlotinib impaired the invasion and migration ability of breast cancer cell lines. Western blot assays demonstrated that erlotinib treatment decreased the expression of CD44, accompanied with the reduced protein levels of mesenchymal and cancer stem cell markers. Collectively, this study suggested that the expression of CD44 was upregulated by EGFR pathway and CD44 had a robust impact on the development of breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kongju Wu
- Nursing School of Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Gen Sheng Wu
- Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
25
|
Thorlakson HH, Schreurs O, Schenck K, Blix IJS. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes. Eur J Oral Sci 2016; 124:164-71. [PMID: 26913569 DOI: 10.1111/eos.12255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 12/20/2022]
Abstract
Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation.
Collapse
Affiliation(s)
- Hong H Thorlakson
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Olav Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Inger J S Blix
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Wang Z. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research. Int J Mol Sci 2016; 17:ijms17010095. [PMID: 26771606 PMCID: PMC4730337 DOI: 10.3390/ijms17010095] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.
Collapse
Affiliation(s)
- Zhixiang Wang
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
27
|
Aasrum M, Tjomsland V, Thoresen GH, De Angelis PM, Christoffersen T, Brusevold IJ. PI3K is required for both basal and LPA-induced DNA synthesis in oral carcinoma cells. J Oral Pathol Med 2015; 45:425-32. [PMID: 26602326 DOI: 10.1111/jop.12384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The glycerophospholipid lysophosphatidic acid (LPA), which is present in most tissues and in high concentrations in saliva, may exert profound effects on oral cancer cells. We have investigated mitogenic signalling induced by LPA in the two oral carcinoma cell lines, D2 and E10, focusing on the role of EGFR transactivation and downstream pathways. METHODS Two oral squamous carcinoma cell lines, D2 and E10, were analysed for effects of LPA on signalling pathways and induction of DNA synthesis. Pathway activation was investigated by examining phosphorylation of signalling proteins and by the use of specific pathway inhibitors. RESULTS The D2 cells had higher levels of activated signalling proteins and higher DNA synthesis activity in the basal condition than E10 cells. EGF did not induce proliferation in D2 cells, whereas LPA induced proliferation in both cell lines, by mechanisms depending on EGFR transactivation. Release of EGFR ligands was involved in basal and LPA-induced proliferation in both D2 and E10 cells. The proliferation in D2 cells was dependent on the PI3K/Akt pathway, but not the MEK/ERK pathway. In E10 cells, the PI3K/Akt, MEK/ERK and p38 pathways were all involved in the proliferation. CONCLUSION Transactivation of EGFR is required for LPA-induced DNA synthesis in D2 and E10 cells. Our results also show that although proliferation of oral carcinoma cells is regulated by several pathways, and differentially in E10 and D2 cells, the PI3K pathway has a crucial role in both cell lines.
Collapse
Affiliation(s)
- Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Vegard Tjomsland
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Paula M De Angelis
- Clinic for Diagnostics and Intervention, Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ingvild J Brusevold
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Oral Biology and Department of Paediatric Dentistry and Behavioural Science, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3. PLoS One 2015; 10:e0140583. [PMID: 26473723 PMCID: PMC4608732 DOI: 10.1371/journal.pone.0140583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/27/2015] [Indexed: 12/31/2022] Open
Abstract
Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.
Collapse
|
29
|
Tveteraas IH, Aasrum M, Brusevold IJ, Ødegård J, Christoffersen T, Sandnes D. Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells. Tumour Biol 2015; 37:2519-26. [DOI: 10.1007/s13277-015-4010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
|
30
|
Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of Invasion in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1334-48. [PMID: 26046491 DOI: 10.5858/arpa.2014-0498-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed. OBJECTIVES To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion. DATA SOURCES A literature review of peer-reviewed articles in PubMed on HNSCC invasion. CONCLUSIONS Histologic features of HNSCC tumors can help predict prognosis and influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for patients by reducing the rate of spread and increasing responsiveness to chemoradiation.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Mss Jimenez and Jayakar, and Drs Ow and Segall) and Anatomy and Structural Biology (Mss Jimenez and Jayakar, and Dr Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
31
|
Prgomet Z, Axelsson L, Lindberg P, Andersson T. Migration and invasion of oral squamous carcinoma cells is promoted by WNT5A, a regulator of cancer progression. J Oral Pathol Med 2014; 44:776-84. [PMID: 25459554 DOI: 10.1111/jop.12292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) constitutes 90% of all cancers in the oral cavity, and the prognosis for patients diagnosed with OSCC is still poor. The identification of novel therapeutic targets and prognostic markers for OSCC is therefore essential. Previous studies of OSCC revealed an increased expression of WNT5A in the tumor tissue. However, no functional studies of WNT5A-induced effects in OSCC have been performed. METHODS Two different OSCC cell lines were used for analysis of WNT5A expression by Western blot, whereas WNT5A-induced responses were analyzed by measuring calcium (Ca²⁺) signaling, PKC activation, migration and invasion. RESULTS Despite the lack of WNT5A expression, both cell lines responded to recombinant WNT5A (rWNT5A) with activation of the non-canonical WNT/Ca²⁺ /PKC pathway. This effect was ascertained to be mediated by WNT5A by use of the WNT5A antagonist, Box5. To investigate how WNT5A affects tumor progression, rWNT5A-induced alterations in BrdU absorbance (reflecting the number of tumor cells) were analyzed. rWNT5A had no effect on BrdU absorbance but instead promoted tumor cell migration and invasion. These results were confirmed by the use of the WNT5A-mimicking peptide Foxy5, while the rWNT5A-induced migration was blocked by secreted Frizzled-related protein 1 (SFRP1), protein kinase C inhibitors or the intracellular Ca²⁺ chelator, MAPT. CONCLUSIONS These novel data clearly show that WNT5A activates the non-canonical WNT/Ca²⁺ /PKC pathway and increases migration and invasion of OSCC cells. This may indicate how an increased WNT5A expression in the tumor tissue is likely to promote progression of OSCC.
Collapse
Affiliation(s)
- Zdenka Prgomet
- Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Lena Axelsson
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Pia Lindberg
- Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|