1
|
Vareli A, Narayanan HV, Clark H, Jayawant E, Zhou H, Liu Y, Stott L, Simoes F, Hoffmann A, Pepper A, Pepper C, Mitchell S. Systems biology-enabled targeting of NF-κΒ and BCL2 overcomes microenvironment-mediated BH3-mimetic resistance in DLBCL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.30.626166. [PMID: 39677808 PMCID: PMC11642794 DOI: 10.1101/2024.11.30.626166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In Diffuse Large B-cell Lymphoma (DLBCL), elevated anti-apoptotic BCL2-family proteins (e.g., MCL1, BCL2, BCLXL) and NF-κB subunits (RelA, RelB, cRel) confer poor prognosis. Heterogeneous expression, regulatory complexity, and redundancy offsetting the inhibition of individual proteins, complicate the assignment of targeted therapy. We combined flow cytometry "fingerprinting", immunofluorescence imaging, and computational modeling to identify therapeutic vulnerabilities in DLBCL. The combined workflow predicted selective responses to BCL2 inhibition (venetoclax) and non-canonical NF-κB inhibition (Amgen16). Within the U2932 cell line we identified distinct resistance mechanisms to BCL2 inhibition in cellular sub-populations recapitulating intratumoral heterogeneity. Co-cultures with CD40L-expressing stromal cells, mimicking the tumor microenvironment (TME), induced resistance to BCL2 and BCLXL targeting BH3-mimetics via cell-type specific upregulation of BCLXL or MCL1. Computational models, validated experimentally, showed that basal NF-κB activation determined whether CD40 activation drove BH3-mimetic resistance through upregulation of RelB and BCLXL, or cRel and MCL1. High basal NF-κB activity could be overcome by inhibiting BTK to resensitize cells to BH3-mimetics in CD40L co-culture. Importantly, non-canonical NF-κB inhibition overcame heterogeneous compensatory BCL2 upregulation, restoring sensitivity to both BCL2- and BCLXL-targeting BH3-mimetics. Combined molecular fingerprinting and computational modelling provides a strategy for the precision use of BH3-mimetics and NF-κB inhibitors in DLBCL.
Collapse
|
2
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
3
|
Gao L, Li L, Zhang D, Qiu J, Qian J, Liu H. TAPI-1 Exhibits Anti-tumor Efficacy in Human Esophageal Squamous Cell Carcinoma Cells via Suppression of NF-κB Signaling Pathway. Dig Dis Sci 2024; 69:81-94. [PMID: 38007701 PMCID: PMC10787672 DOI: 10.1007/s10620-023-08181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND TNF-α processing inhibitor-1 (TAPI-1) is a known metalloproteinase inhibitor with potential anti-inflammatory effects. However, its anti-cancer effects on esophageal squamous cell carcinoma (ESCC) have not been uncovered. AIM In the present study, the effects of TAPI-1 on ESCC cell viability, migration, invasion, and cisplatin resistance and the underlying molecular mechanisms were investigated in TE-1 and Eca109 cells. METHODS To this end, TE-1 and Eca109 cells were exposed to TAPI-1 for indicated time intervals. Cell viability was assessed using cell counting kit-8 assay and apoptosis was evaluated using flow cytometry assay. Migration and invasion were assessed using Transwell assays. Gene expressions were analyzed using quantitative reverse transcription polymerase chain reaction. The activation of NF-κB signaling pathway was elucidated via Western blot and chromatin immunoprecipitation assay. RESULTS We observed that higher doses (10, 20 μM) of TAPI-1 inhibited ESCC cell viability, while a lower dose (5 μM) of TAPI-1 inhibited ESCC cell migration and invasion and enhanced the chemosensitivity of ESCC cells to cisplatin. Moreover, TAPI-1 suppressed the activation of NF-κB signaling and the target genes expression in the stage of transcription initiation. Furthermore, blocking NF-κB signaling in advance could abolish all the effects of TAPI-1 on ESCC cells. CONCLUSION Overall, these results indicated that TAPI-1 impairs ESCC cell viability, migration, and invasion and facilitates cisplatin-induced apoptosis via suppression of NF-κB signaling pathway. TAPI-1 may serve as a potential adjuvant agent with cisplatin for ESCC therapy.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Li Li
- Department of Pathology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Shengli Road No. 666, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Jianwei Qiu
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Junbo Qian
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Shengli Road No. 666, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Huang SL, Chang TC, Sun NK. Curcumin reduces paclitaxel resistance in ovarian carcinoma cells by upregulating SNIP1 and inhibiting NFκB activity. Biochem Pharmacol 2023; 212:115581. [PMID: 37146834 DOI: 10.1016/j.bcp.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
The therapeutic activity of paclitaxel against ovarian carcinoma is relatively low due to the frequent occurrence of chemoresistance and disease recurrence. We found earlier that a combination of curcumin and paclitaxel reduces cell viability and promotes apoptosis in paclitaxel-resistant (i.e., taxol-resistant, Txr) ovarian cancer cells. In the present study, we first used RNA sequencing (RNAseq) analysis to identify genes that are upregulated in Txr cell lines but downregulated by curcumin in ovarian cancer cells. The nuclear factor kappa B (NFκB) signaling pathway was shown to be upregulated in Txr cells. Furthermore, based on the protein interaction database BioGRID, we found that Smad nuclear interacting protein 1 (SNIP1) may be involved in regulating the activity of NFκB in Txr cells. Accordingly, curcumin upregulated SNIP1 expression, which in turn downregulated the pro-survival genes Bcl-2 and Mcl-1. Using shRNA-guided gene silencing, we found that SNIP1 depletion reversed the inhibitory effect of curcumin on NFκB activity. Moreover, we identified that SNIP1 enhanced NFκB protein degradation, thereby suppressing NFκB/p65 acetylation, which is involved in the inhibitory effect of curcumin on NFκB signaling. The transcription factor early growth response protein 1 (EGR1) was shown to represent an upstream transactivator of SNIP1. Consequently, we show that curcumin inhibits NFκB activity by modulating the EGR1/SNIP1 axis to attenuate p65 acetylation and protein stability in Txr cells. These findings provide a new mechanism to account for the effects of curcumin in inducing apoptosis and reducing paclitaxel resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Shang-Lang Huang
- Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Ting-Chang Chang
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, Republic of China
| | - Nian-Kang Sun
- Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
5
|
Wang J, Zhou Z. Estrogen-dependent activation of NCOA3 couples with p300 and NF-κB to mediate antiapoptotic genes in ER-positive breast cancer cells. Discov Oncol 2023; 14:28. [PMID: 36853387 PMCID: PMC9975134 DOI: 10.1007/s12672-023-00635-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Circumvention of apoptosis by the elevation of antiapoptotic proteins is an important cause of carcinogenesis. The induction of antiapoptotic genes, including B-cell CLL/lymphoma 2 (BCL2), BCL2 related protein A1 (BCL2A1), BCL2 like 1 (BCL2L1), BCL2L2, and myeloid cell leukemia 1 (MCL1), has been observed in multiple cancers, including breast cancer. However, the underlying mechanisms of their overexpression are still being investigated. Here, we revealed that BCL2, BCL2A1, BCL2L2, and MCL1 but not BCL2L1 were overexpressed in estrogen receptor (ER)-positive breast cancer cells and clinical biopsies. Stimulation with estrogen in ER-positive cell lines resulted in a dose-dependent increase in BCL2, BCL2A1, BCL2L2, and MCL1 mRNA levels. Molecular investigation revealed that nuclear factor kappa B (NF-κB) recruited histone acetyltransferase p300 and nuclear receptor coactivator 3 (NCOA3) to form a transcriptional complex. This complex docked the promoters of BCL2, BCL2A1, BCL2L2, and MCL1 and activated their expression. Interestingly, estrogen exposure dose-dependently activated NCOA3. Depletion of the NCOA3-p300-NF-κB components or blockage of NCOA3 function with inhibitors (gossypol and bufalin) in ER-positive cells suppressed BCL2, BCL2A1, BCL2L2, and MCL1 expression, while also decreasing cell viability, colony formation, cell invasion, and tumor growth. Collectively, our results demonstrate an upstream signaling that activates four antiapoptotic genes in ER-positive breast cancer cells. Importantly, our results also imply that targeting NCOA3 or blocking the assembly of the NCOA3-p300-NF-κB complex may be promising therapeutic strategies for treating ER-positive breast cancer.
Collapse
Affiliation(s)
- Jun Wang
- Department of Breast Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Rd, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Li M, Budai MM, Chen M, Wang J. Targeting HIV-1 reservoirs in T cell subsets. Front Immunol 2023; 14:1087923. [PMID: 36742330 PMCID: PMC9895780 DOI: 10.3389/fimmu.2023.1087923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The HIV-1 reservoirs harbor the latent proviruses that are integrated into the host genome. It is a challenging task to eradicate the proviruses in order to achieve an HIV cure. We have described a strategy for the clearance of HIV-1 infection through selective elimination of host cells harboring replication-competent HIV (SECH), by inhibition of autophagy and promotion of apoptosis during viral re-activation. HIV-1 can infect various CD4+ T cell subsets, but it is not known whether the SECH approach is equally effective in targeting HIV-1 reservoirs in these different subsets in vivo. In a humanized mouse model, we found that treatments of HIV-1 infection by suppressive antiretroviral therapy (ART) led to the establishment of latent HIV reservoirs in naïve, central memory and effector memory T cells. Moreover, SECH treatments could clear latent HIV-1 reservoirs in these different T cell subsets of humanized mice. Co-culture studies showed that T cell subsets latently infected by HIV-1, but not uninfected bystander cells, were susceptible to cell death induced by SECH treatments. Our study suggests that the SECH strategy is effective for specific targeting of latent HIV-1 reservoirs in different T cell subsets.
Collapse
Affiliation(s)
- Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
7
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
8
|
Kotov JA, Xu Y, Carey ND, Cyster JG. LTβR overexpression promotes plasma cell accumulation. PLoS One 2022; 17:e0270907. [PMID: 35925983 PMCID: PMC9352096 DOI: 10.1371/journal.pone.0270907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), a malignancy of plasma cells (PCs), has diverse genetic underpinnings and in rare cases these include amplification of the lymphotoxin b receptor (Ltbr) locus. LTβR has well defined roles in supporting lymphoid tissue development and function through actions in stromal and myeloid cells, but whether it is functional in PCs is unknown. Here we showed that Ltbr mRNA was upregulated in mouse PCs compared to follicular B cells, but deficiency in the receptor did not cause a reduction in PC responses to a T-dependent or T-independent immunogen. However, LTβR overexpression (OE) enhanced PC formation in vitro after LPS or anti-CD40 stimulation. In vivo, LTβR OE led to increased antigen-specific splenic and bone marrow (BM) plasma cells responses. LTβR OE PCs had increased expression of Nfkb2 and of the NF-kB target genes Bcl2 and Mcl1, factors involved in the formation of long-lived BM PCs. Our findings suggest a pathway by which Ltbr gene amplifications may contribute to MM development through increased NF-kB activity and induction of an anti-apoptotic transcriptional program.
Collapse
Affiliation(s)
- Jessica A. Kotov
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Nicholas D. Carey
- Department of Medicine, University of California, San Francisco, CA, United States of America
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| |
Collapse
|
9
|
Abbad L, Prakoura N, Michon A, Chalghoumi R, Reichelt-Wurm S, Banas MC, Chatziantoniou C. Role of Periostin and Nuclear Factor-κB Interplay in the Development of Diabetic Nephropathy. Cells 2022; 11:cells11142212. [PMID: 35883655 PMCID: PMC9320904 DOI: 10.3390/cells11142212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) remains the most common reason for end-stage renal disease and a leading cause of kidney replacement therapy. Multifactorial pathophysiological mechanisms underlie the development of DN. Among the signalling pathways involved, nuclear factor-κB (NF-κB) plays a key role in pathogenesis triggering inflammation, oxidative stress and fibrosis. Recent evidence shows that periostin, a matricellular protein, is involved in the development of renal glomerular diseases through interaction with NF-κB signalling. The aim of the present study is to investigate the contribution of periostin and its interaction with NF-κB in DN development. To this end, we used the BTBR ob/ob mice model of diabetes type 2, and we applied transcriptomic analysis, immunostaining and methods quantifying protein and mRNA expressions. We found that increased periostin expression was correlated with decreased renal function, advanced stage renal damage and fibrosis, and NF-κB activation. Subsequently, we identified novel pathways and genes regulated by the NF-κB-periostin interaction which are involved in the mechanisms of progression of DN. Some of these genes, such as FGF1 and GDF15, have the potential to be new biomarkers and/or targets for the therapy of DN.
Collapse
Affiliation(s)
- Lilia Abbad
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Niki Prakoura
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Arthur Michon
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Rym Chalghoumi
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Simone Reichelt-Wurm
- Department of Nephrology, University Hospital Regensburg, D-93053 Regensburg, Germany; (S.R.-W.); (M.C.B.)
| | - Miriam C. Banas
- Department of Nephrology, University Hospital Regensburg, D-93053 Regensburg, Germany; (S.R.-W.); (M.C.B.)
| | - Christos Chatziantoniou
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Sorrentino A, Menevse AN, Michels T, Volpin V, Durst FC, Sax J, Xydia M, Hussein A, Stamova S, Spoerl S, Heuschneider N, Muehlbauer J, Jeltsch KM, Rathinasamy A, Werner-Klein M, Breinig M, Mikietyn D, Kohler C, Poschke I, Purr S, Reidell O, Martins Freire C, Offringa R, Gebhard C, Spang R, Rehli M, Boutros M, Schmidl C, Khandelwal N, Beckhove P. Salt-inducible kinase 3 protects tumor cells from cytotoxic T-cell attack by promoting TNF-induced NF-κB activation. J Immunother Cancer 2022; 10:jitc-2021-004258. [PMID: 35606086 PMCID: PMC9174898 DOI: 10.1136/jitc-2021-004258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.
Collapse
Affiliation(s)
- Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tillmann Michels
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Steffen Spoerl
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jasmin Muehlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Anchana Rathinasamy
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Melanie Werner-Klein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Marco Breinig
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-University Group 'Cell Plasticity and Epigenetic Remodeling', German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Damian Mikietyn
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Isabel Poschke
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabrina Purr
- Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivia Reidell
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | | | - Rienk Offringa
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Gebhard
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michael Rehli
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Boutros
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schmidl
- Junior Group 'Epigenetic Immunooncology', Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nisit Khandelwal
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Su C, Lin S, Wang H, Hsu F, Chung JG, Hsu L. The inhibitory effect and mechanism of quetiapine on tumor progression in hepatocellular carcinoma in vivo. ENVIRONMENTAL TOXICOLOGY 2022; 37:92-100. [PMID: 34626444 PMCID: PMC9293313 DOI: 10.1002/tox.23380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the primary tumor of the liver and the fourth leading cause of cancer-related death. Recently, several studies indicated the anti-tumor potential of antipsychotic medicine. Quetiapine, an atypical antipsychotic, is used to treat schizophrenia, bipolar disorder, and major depressive disorder since 1997. However, whether quetiapine may show potential to suppress HCC progression and its underlying mechanism is persisting unclear. Quetiapine has been shown to induce apoptosis and inhibit invasion ability in HCC in vitro. Here, we established two different HCC (Hep3B, SK-Hep1) bearing animals to identify the treatment efficacy of quetiapine. Tumor growth, signaling transduction, and normal tissue pathology after quetiapine treatment were validated by caliper, bioluminescence image, immunohistochemistry (IHC), and hematoxylin and eosin staining, respectively. Quetiapine suppressed HCC progression in a dose-dependent manner. Extracellular signal-regulated kinases (ERKs) and Nuclear factor-κB (NF-κB) mediated downstream proteins, such as myeloid leukemia cell differentiation protein (MCL-1), cellular FLICE-inhibitory protein (C-FLIP), X-linked inhibitor of apoptosis protein (XIAP), Cyclin-D1, matrix metallopeptidase 9 (MMP-9), vascular endothelial growth factor-A (VEGF-A) and indoleamine 2,3-dioxygenase (IDO) which involved in proliferation, survival, angiogenesis, invasion and anti-tumor immunity were all decreased by quetiapine. In addition, extrinsic/intrinsic caspase-dependent and caspase-independent pathways, including cleaved caspase-3, -8, and - 9 were increased by quetiapine. In sum, the tumor inhibition that results from quetiapine may associate with ERK and NF-κB inactivation.
Collapse
Affiliation(s)
- Chun‐Min Su
- Department of SurgeryShow Chwan Memorial HospitalChanghuaTaiwan, ROC
| | - Song‐Shei Lin
- Department of Medical Imaging and Radiological SciencesCentral Taiwan University of Science and TechnologyTaichungTaiwan, ROC
| | - Hsiao‐Chia Wang
- Emergency DepartmentCathay General HospitalTaipeiTaiwan, ROC
- School of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan, ROC
| | - Fei‐Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan, ROC
| | - Jing Gung Chung
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan, ROC
| | - Li‐Cho Hsu
- School of MedicineNational Yang‐Ming Chiao‐Tung University HospitalTaipeiTaiwan, ROC
| |
Collapse
|
12
|
Liu Z, Gu S, Wu K, Li L, Dong C, Wang W, Zhou Y. CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:361. [PMID: 34781999 PMCID: PMC8591801 DOI: 10.1186/s13046-021-02149-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Background Cisplatin-based chemotherapy is a mainstay systematic therapy for advanced esophageal squamous cell carcinoma (ESCC), and cisplatin resistance, which is not uncommon, is the major barrier to improving patient outcomes. Circular RNAs (circRNAs) are novel noncoding RNAs that are implicated in cancer progression, but their involvement in modulating cisplatin responsiveness in ESCC remains unknown. Methods Bioinformatics analysis was used to profile and identify the circRNAs involved in cisplatin responsiveness in ESCC. The chemosensitive role of cDOPEY2 was confirmed both in vitro and in vivo. The molecular mechanism of cDOPEY2 was investigated by mass spectrometry, immunoprecipitation, and ubiquitination analyses. Results We report that a novel circRNA (cDOPYE2, hsa_circ_0008078) was markedly downregulated in cisplatin-resistant ESCC cells (ESCC-CR) compared with parental chemosensitive cells. Re-expression of cDOPEY2 substantially enhanced the cell-killing ability of cisplatin by augmenting the apoptotic process in ESCC-CR cells, which was achieved by decreasing the abundance of the antiapoptotic protein Mcl-1. Mechanistically, we showed that cDOPEY2 acted as a protein scaffold to enhance the interaction between the cytoplasmic polyadenylation element binding protein (CPEB4) and the E3 ligase TRIM25, which in turn facilitated the ubiquitination and degradation of CPEB4. The increased Mcl-1 expression in ESCC-CR cells was dependent on the binding of CPEB4 to its untranslated mRNA, and depletion of CPEB4 mediated by cDOPEY2 reversed this effect. Rescue experiments confirmed that the critical role of cDOPEY2 in maintaining cisplatin sensitivity was dependent on the depletion of CEPB4 and its downstream target Mcl-1. Clinical and in vivo data further corroborated the significant relevance of cDOPEY2 to cisplatin responsiveness in ESCC. Conclusions We provide evidence that cDOPEY2 inhibits CPEB4-mediated Mcl-1 translation by promoting the ubiquitination and degradation of CPEB4 to alleviate cisplatin resistance, indicating that cDOPEY2 may serve as a valuable biomarker and potential therapeutic target in ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02149-5.
Collapse
Affiliation(s)
- Zhenchuan Liu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Lei Li
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China.
| |
Collapse
|
13
|
Zeng H, Yang H, Song Y, Fang D, Chen L, Zhao Z, Wang C, Xie S. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 suppresses tumor growth and metastasis in esophageal squamous cell carcinoma. Cell Death Dis 2021; 12:1048. [PMID: 34741018 PMCID: PMC8571299 DOI: 10.1038/s41419-021-04344-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is one of most lethal causes that confer a poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), whereas there is no available target drug for metastatic ESCC currently. In this study, we aimed to determine whether the transcriptional inhibition by CDK7/9 inhibitor SNS-032 is activity against ESCC. MTT and soft agar assays were performed to examine the influence of SNS-032 on ESCC growth in vitro. Tumor xenograft in nude mice was used to assess the antitumor activity of SNS-032 in vivo. The roles of SNS-032 in ESCC metastasis were conducted by wound healing and transwell assays in vitro, and by a lung and a popliteal lymph node metastasis model in vivo. The results showed that CDK7 and CDK9 were highly expressed in ESCC cells; SNS-032 effectively inhibited cellular viability, abrogated anchorage-independent growth, and potentiated the sensitivity to cisplatin in ESCC cells in vitro and in vivo. In addition, SNS-032 induced a mitochondrial-dependent apoptosis of ESCC cells by reducing Mcl-1 transcription. SNS-032 also potently abrogated the abilities of ESCC cell migration and invasion through transcriptional downregulation of MMP-1. Importantly, SNS-032 remarkably inhibited the growth of ESCC xenograft, increased the overall survival, as well as diminished the lung and lymph node metastasis in nude mice. Taken together, our findings highlight that the CDK7/9 inhibitor SNS-032 is a promising therapeutic agent, and warrants a clinical trial for its efficacy in ESCC patients, even those with metastasis.
Collapse
Affiliation(s)
- Huishan Zeng
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China
| | - Huiru Yang
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China
| | - Yifan Song
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Avenue, 475004, Kaifeng, China
| | - Dong Fang
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China
| | - Liang Chen
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Avenue, 475004, Kaifeng, China.
| | - Zhijun Zhao
- Department of Medicine and Therapeutics, Luohe Medical College, 462000, Luohe, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Avenue, 475004, Kaifeng, China.
| | - Songqiang Xie
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China.
| |
Collapse
|
14
|
Gao L, Liu H, Xu R, Qiu J, Peng X, Yang Y, Zhang D, Qian J. ADAM17 and NF-κB p65 form a positive feedback loop that facilitates human esophageal squamous cell carcinoma cell viability. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:845-854. [PMID: 34367416 PMCID: PMC8339723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
A Disintegrin and metalloproteinase 17 (ADAM17) was proposed to cooperate with NF-κB p65, promoting tumorigenesis and progression of several human cancers. However, the role of ADAM17 remains unknown in human esophageal squamous cell carcinoma (ESCC). In this study, gene expression analyses and cell viability assays suggested that knockdown of ADAM17 suppressed ESCC cell viability. Gene expression analyses and ChIP-qPCR revealed that NF-κB p65 positively regulated ADAM17 expression by binding to the ADAM17 promoter. Rescue experiments showed that overexpression of ADAM17 in NF-κB p65-depleted ESCC cells restored cell viability. In addition, western blot analyses and ChIP-qPCR indicated that ADAM17 was responsible for the persistent activation of NF-κB p65 and contributed to ADAM17 expression in ESCC cells. In conclusion, we propose that ADAM17-activated NF-κB p65 signaling positively regulates ADAM17 expression, and facilitates ESCC cell viability.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Medical Research Center, The First People’s Hospital of NantongNantong 226001, China
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Department of Pathology, The First People’s Hospital of NantongNantong 226001, China
| | - Rong Xu
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Department of Gastroenterology, The First People’s Hospital of NantongNantong 226001, China
| | - Jianwei Qiu
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Department of Gastroenterology, The First People’s Hospital of NantongNantong 226001, China
| | - Xiao Peng
- Medical Research Center, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Medical Research Center, The First People’s Hospital of NantongNantong 226001, China
| | - Yanmei Yang
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Department of Gastroenterology, The First People’s Hospital of NantongNantong 226001, China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Medical Research Center, The First People’s Hospital of NantongNantong 226001, China
| | - Junbo Qian
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong UniversityNantong 226001, China
- Department of Gastroenterology, The First People’s Hospital of NantongNantong 226001, China
| |
Collapse
|
15
|
Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 2021; 12:587. [PMID: 34099633 PMCID: PMC8184765 DOI: 10.1038/s41419-021-03858-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.
Collapse
|
16
|
Herati RS, Silva LV, Vella LA, Muselman A, Alanio C, Bengsch B, Kurupati RK, Kannan S, Manne S, Kossenkov AV, Canaday DH, Doyle SA, Ertl HC, Schmader KE, Wherry EJ. Vaccine-induced ICOS +CD38 + circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways. CELL REPORTS MEDICINE 2021; 2:100262. [PMID: 34095875 PMCID: PMC8149371 DOI: 10.1016/j.xcrm.2021.100262] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Humoral immune responses are dysregulated with aging, but the cellular and molecular pathways involved remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the key cells that provide help to B cells for effective humoral immunity. We performed transcriptional profiling and cellular analysis on circulating Tfh before and after influenza vaccination in young and elderly adults. First, whole-blood transcriptional profiling shows that ICOS+CD38+ cTfh following vaccination preferentially enriches in gene sets associated with youth versus aging compared to other circulating T cell types. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly had increased the expression of genes associated with inflammation, including tumor necrosis factor-nuclear factor κB (TNF-NF-κB) pathway activation. Finally, vaccine-induced ICOS+CD38+ cTfh display strong enrichment for signatures of underlying age-associated biological changes. These data highlight the ability to use vaccine-induced cTfh as cellular “biosensors” of underlying inflammatory and/or overall immune health. Vaccine-induced ICOS+CD38+ cTfh show increased TNF-NF-κB signaling with aging TNF-NF-κB signaling is beneficial for cTfh survival in the elderly Vaccine-induced cTfh are sensors of background changes in immune environment
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Corresponding author
| | - Luisa Victoria Silva
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Cecile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Internal Medicine II, University Medical Center Freiburg, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | | | | | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - David H. Canaday
- Division of Infectious Disease, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education, and Clinical Center, Cleveland VA Medical Center, Cleveland, OH, 44195, USA
| | - Susan A. Doyle
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27710, USA
| | | | - Kenneth E. Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27710, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
17
|
Albendazole-Induced SIRT3 Upregulation Protects Human Leukemia K562 Cells from the Cytotoxicity of MCL1 Suppression. Int J Mol Sci 2020; 21:ijms21113907. [PMID: 32486166 PMCID: PMC7312678 DOI: 10.3390/ijms21113907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that MCL1 stabilization confers cancer cells resistance to microtubule targeting agents (MTAs) and functionally extends the lifespan of MTA-triggered mitotically arrested cells. Albendazole (ABZ), a benzimidazole anthelmintic, shows microtubule-destabilizing activity and has been repositioned for cancer therapies. To clarify the role of MCL1 in ABZ-induced apoptosis, we investigated the cytotoxicity of ABZ on human leukemia K562 cells. Treatment with ABZ for 24 h did not appreciably induce apoptosis or mitochondrial depolarization in K562 cells, though it caused the mitotic arrest of K562 cells. ABZ-evoked p38 MAPK activation concurrently suppressed Sp1-mediated MCL1 expression and increased SIRT3 mRNA stability and protein expression. ABZ and A-1210477 (an MCL1 inhibitor) enhanced the cytotoxicity of ABT-263 (a BCL2/BCL2L1 inhibitor) to their effect on MCL1 suppression. Unlike ABZ, A-1210477 did not affect SIRT3 expression and reduced the survival of K562 cells. Overexpression of SIRT3 attenuated the A-1210477 cytotoxicity on K562 cells. ABZ treatment elicited marked apoptosis and ΔΨm loss in ABT-263-resistant K562 (K562/R) cells, but did not alter SIRT3 expression. Ectopic expression of SIRT3 alleviated the cytotoxicity of ABZ on K562/R cells. Collectively, our data demonstrate that ABZ-induced SIRT3 upregulation delays the apoptosis-inducing effect of MCL1 suppression on apoptosis induction in K562 cells.
Collapse
|
18
|
Huang CH, Lee YC, Chiou JT, Shi YJ, Wang LJ, Chang LS. Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1-positive leukemia cells. Toxicol Appl Pharmacol 2020; 397:115013. [PMID: 32305283 DOI: 10.1016/j.taap.2020.115013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/28/2023]
Abstract
In this study, we investigated the mechanisms underlying arsenic trioxide (ATO)-induced death of human BCR-ABL1-positive K562 and MEG-01 cells. ATO-induced apoptotic death in K562 cells was characterized by ROS-mediated mitochondrial depolarization, MCL1 downregulation, p38 MAPK activation, and Akt inactivation. ATO-induced BCR-ABL1 downregulation caused Akt inactivation but not p38 MAPK activation. Akt inactivation increased GSK3β-mediated MCL1 degradation, while p38 MAPK-mediated NFκB activation coordinated with HDAC1 suppressed MCL1 transcription. Inhibition of p38 MAPK activation or overexpression of constitutively active Akt increased MCL1 expression and promoted the survival of ATO-treated cells. Overexpression of MCL1 alleviated mitochondrial depolarization and cell death induced by ATO. The same pathway was found to be involved in ATO-induced death in MEG-01 cells. Remarkably, YM155 synergistically enhanced the cytotoxicity of ATO on K562 and MEG-01 cells through suppression of MCL1 and survivin. Collectively, our data indicate that ATO-induced p38 MAPK- and Akt-mediated MCL1 downregulation triggers apoptosis in K562 and MEG-01 cells, and that p38 MAPK activation is independent of ATO-induced BCR-ABL1 suppression.
Collapse
Affiliation(s)
- Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
19
|
Zhou M, Zhao J, Zhang Q, Jin X, Liao M, Zhang L, Wang J, Yang M. Nicotine Upregulates the Level of Mcl-1 through STAT3 in H1299 Cells. J Cancer 2020; 11:1270-1276. [PMID: 31956373 PMCID: PMC6959082 DOI: 10.7150/jca.35453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Nicotine contributes to development of human lung cancer and chemoresistance through activation of myeloid cell leukemia-1 (Mcl-1). Signal transducer and activator of transcription 3 (STAT3) generally participates in development and progression of human cancers. Therefore, we examined the STAT3 cascade in nicotine regulation of Mcl-1 transcription in human lung cancer cells. Methods: The effects of nicotine on the expression of STAT3 and Mcl-1 were determined using western blot. The sub-cellular localization was tested using immunofluorescence. The activity of STAT3 promoter was checked using dual luciferase reporter assay. Results: STAT3 was constitutively activated (i.e., tyrosine-phosphorylated, serine-phosphorylated and nuclear translocation), meanwhile the expression and transcriptional activity of Mcl-1 were up-regulated in lung cancer cells following treatment with nicotine. Transfection with siRNA targeting STAT3 or treatment with STAT3 inhibitor JSI-124 diminished Mcl-1 protein levels. Deleted mutagenesis of a putative STAT3 consensus binding sequence decreased Mcl-1 promoter activity and eliminated the increase of Mcl-1 promoter activity induced by nicotine. Abnormally, JAK (Jannus kinase) inhibitor AG490 can't induce the downregulation of Mcl-1 or inhibit the tyrosine-phosphorylation of STAT3. In addition, deactivated mutagenesis of STAT3 the tyrosine 705 site had no effect on the aggregation of STAT3 into nucleus induced by nicotine. Conclusions: We have demonstrated that nicotine induces up-regulation of Mcl-1 through STAT3, which process may be independent on JAKs and not only dependent on the phosphorylation of Y705. Downregulation of Mcl-1 transcription by inhibiting STAT3 cascade may be a potential strategy for the treatment of this cancer.
Collapse
Affiliation(s)
- Maojun Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Qi Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Jin
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Lihua Zhang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Jiwei Wang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Manyi Yang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
20
|
Estrela JM, Salvador R, Marchio P, Valles SL, López-Blanch R, Rivera P, Benlloch M, Alcácer J, Pérez CL, Pellicer JA, Obrador E. Glucocorticoid receptor antagonism overcomes resistance to BRAF inhibition in BRAF V600E-mutated metastatic melanoma. Am J Cancer Res 2019; 9:2580-2598. [PMID: 31911848 PMCID: PMC6943348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Clinical applications of glucocorticoids (GC) in Oncology are dependent on their pro-apoptotic action to treat lymphoproliferative cancers, and to alleviate side effects induced by chemotherapy and/or radiotherapy. However, the mechanism(s) by which GC may also promote tumor progression remains unclear. GC receptor (GR) knockdown decreases the antioxidant protection of highly metastatic B16-F10 melanoma cells. We hypothesize that a GR antagonist (RU486, mifepristone) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated metastatic melanoma. In vivo formed spontaneous skin tumors were reinoculated into nude mice to expand the metastases of different human BRAFV600E melanoma cells. The GR content of melanoma cell lines was measured by [3H]-labeled ligand binding assay. Nuclear Nrf2 and its transcription activity was investigated by RT-PCR, western blotting, and by measuring Nrf2- and redox state-related enzyme activities and metabolites. GR knockdown was achieved using lentivirus, and GR overexpression by transfection with the NR3C1 plasmid. shRNA-induced selective Bcl-xL, Mcl-1, AKT1 or NF-κB/p65 depletion was used to test the efficacy of vemurafenib (VMF) and RU486 against BRAFV600E-mutated metastatic melanoma. During early progression of skin melanoma metastases, RU486 and VMF induced a drastic metastases regression. However, treatment at an advanced stage of growth demonstrated the development of resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of specific proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in our experimental models). We found that melanoma resistance is decreased if AKT and NF-κB signaling pathways are blocked. Our results highlight mechanisms by which metastatic melanoma cells adapt to survive.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of ValenciaValencia 46010, Spain
| | - Rosario Salvador
- Department of Physiology, University of ValenciaValencia 46010, Spain
| | - Patricia Marchio
- Department of Physiology, University of ValenciaValencia 46010, Spain
| | - Soraya L Valles
- Department of Physiology, University of ValenciaValencia 46010, Spain
| | | | - Pilar Rivera
- Department of Physiology, University of ValenciaValencia 46010, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic UniversityValencia 46001, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón HospitalValencia 46010, Spain
| | - Carlos L Pérez
- Department of Biochemistry, Institute of Basic and Preclinical Sciences Victoria de GirónLa Habana 3102146, Cuba
| | - José A Pellicer
- Department of Physiology, University of ValenciaValencia 46010, Spain
| | - Elena Obrador
- Department of Physiology, University of ValenciaValencia 46010, Spain
| |
Collapse
|
21
|
Tang Y, Yang P, Zhu Y, Su Y. LncRNA TUG1 contributes to ESCC progression via regulating miR-148a-3p/MCL-1/Wnt/β-catenin axis in vitro. Thorac Cancer 2019; 11:82-94. [PMID: 31742924 PMCID: PMC6938768 DOI: 10.1111/1759-7714.13236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies. Latest studies report that long noncoding RNAs (LncRNAs) play an essential role in diversified pathological processes of ESCC, although the mechanism by which they do so remains unknown. This study aimed to explore the parts of lncRNA taurine upregulated gene 1 (TUG1) in ESCC tissues and cells, its biofunctional effect and its underlying regulatory mechanism in ESCC. Methods The levels of TUG1 and miR‐148a‐3p were detected by quantitative real‐time polymerase chain reaction (qRT‐PCR) in ESCC cells and tissues. The biofunctional effects were examined by MTT, flow cytometry, and transwell assay. The protein expression levels of epithelial‐mesenchymal transition (EMT)‐related proteins and MCL‐1 were determined by western blot analysis. The binding sites between miR‐148a‐3p and TUG1 or MCL‐1 were predicted by online software starBase and confirmed by dual luciferase reporter assay. Results The mRNA expression of TUG1 was significantly upregulated in ESCC tissues or cells, and was negatively correlated to miR‐148a‐3p expression in tissues. Knockdown of TUG1 inhibited the proliferation, migration, and invasion, promoted apoptosis, and relieved the EMT progression in EC9706 and OE19 cells. Besides, knockdown of miR‐148a‐3p inverted positive effects from TUG1 deletion on ESCC cells. Besides, MCL‐1 reversed the inhibitive effects from TUG1 deletion on expression of EMT‐associated proteins (Wnt1, C‐myc, CyclinD1, and β‐catenin) above subsequently. Conclusion TUG1 regulated the biofunction and EMT progression of ESCC by mediating miR‐148a‐3p/MCL‐1/Wnt/β‐catenin axis in vitro.
Collapse
Affiliation(s)
- Yin Tang
- Department of Laboratory, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| | - Ping Yang
- Department of Laboratory, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| | - Yunfeng Zhu
- Department of Laboratory, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| | - Yong Su
- Department of Stomatology, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
22
|
Tong Z, Mejia A, Veeranki O, Verma A, Correa AM, Dokey R, Patel V, Solis LM, Mino B, Kathkuda R, Rodriguez-Canales J, Lin SH, Krishnan S, Kopetz S, Blum M, Ajani JA, Hofstetter WL, Maru DM. Targeting CDK9 and MCL-1 by a new CDK9/p-TEFb inhibitor with and without 5-fluorouracil in esophageal adenocarcinoma. Ther Adv Med Oncol 2019; 11:1758835919864850. [PMID: 31384313 PMCID: PMC6659187 DOI: 10.1177/1758835919864850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/16/2019] [Indexed: 01/03/2023] Open
Abstract
Background: CDK9 inhibitors are antitumorigenic against solid tumors, including
esophageal adenocarcinoma (EAC). However, efficacy of a CDK9 inhibitor
combined with 5-fluorouracil (5-FU) and target proteins that are targeted by
these agents in EAC are unknown. Methods: The anti-EAC efficacy of a new CDK9 inhibitor, BAY1143572, with and without
5-FU was assessed in vitro and in xenograft models in
athymic nu/nu mice. Synergy between BAY1143572 and 5-FU in inhibiting cell
proliferation was analyzed by calculating the combination index using
CompuSyn software. Potential targets of BAY1143572 and 5-FU were identified
by reverse-phase protein array. The effects of BAY1143572 and 5-FU on MCL-1
in vitro were analyzed by Western blotting,
quantitative real-time polymerase chain reaction, and chromatin
immunoprecipitation assay. MCL-1 protein expression in tumors from patients
with locoregional EAC treated with chemoradiation and surgery was assessed
by immunohistochemistry. Results: BAY1143572 had dose-dependent antiproliferative and proapoptotic effects and
demonstrated synergy with 5-FU against EAC in vitro. The
median volumes of FLO-1 and ESO-26 xenografts treated with 5-FU plus
BAY114352 were significantly smaller than those of xenografts treated with
either agent alone (p < 0.05). BAY1143572 downregulated
MCL-1 by inhibiting HIF-1α binding to the MCL-1 promoter. 5-FU enhanced
BAY1143572-induced MCL-1 downregulation and stable MCL-1 overexpression
reduced the apoptosis induced by BAY1143572 and 5-FU in
vitro. High patients’ tumor MCL-1 expression was correlated
with shorter overall and recurrence-free survival. Conclusions: BAY1143572 and 5-FU have synergistic antitumorigenic effects against EAC.
MCL-1 is a downstream target of CDK9 inhibitors and a predictor of response
to neoadjuvant chemoradiation in EAC.
Collapse
Affiliation(s)
- Zhimin Tong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alicia Mejia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omkara Veeranki
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuj Verma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arlene M Correa
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Dokey
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Viren Patel
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Maren Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riham Kathkuda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariela Blum
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M Maru
- Division of Pathology and Laboratory Medicine, Unit 085, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
23
|
Shaji SK, Sunilkumar D, Mahalakshmi NV, Kumar GB, Nair BG. Analysis of microarray data for identification of key microRNA signatures in glioblastoma multiforme. Oncol Lett 2019; 18:1938-1948. [PMID: 31423264 PMCID: PMC6614686 DOI: 10.3892/ol.2019.10521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant types of glioma known for its reduced survival rate and rapid relapse. Previous studies have shown that the expression patterns of different microRNAs (miRNA/miR) play a crucial role in the development and progression of GBM. In order to identify potential miRNA signatures of GBM for prognostic and therapeutic purposes, we downloaded and analyzed two expression data sets from Gene Expression Omnibus profiling miRNA patterns of GBM compared with normal brain tissues. Validated targets of the deregulated miRNAs were identified using MirTarBase, and were mapped to Search Tool for the Retrieval of Interacting Genes/Proteins, Database for Annotation, Visualization and Integrated Discovery and Kyoto Encyclopedia of Genes and Genomes databases in order to construct interaction networks and identify enriched pathways of target genes. A total of 6 miRNAs were found to be deregulated in both expression datasets studied. Pathway analysis demonstrated that most of the target genes were enriched in signaling cascades connected to cancer development, such as ‘Pathways in cancer’, ‘Focal adhesion’ and ‘PI3K-Akt signaling pathway’. Of the five target genes that were enriched in the glioblastoma pathway, in the WikiPathway database, both HRas proto-oncogene, GTPase and MET proto-oncogene, receptor tyrosine kinase target genes of hsa-miR-139-5p, were found to be significantly associated with patient survival. The present study may thus form the basis for further exploration of hsa-miR-139-5p, not only as a therapeutic agent, but also as a diagnostic biomarker for GBM as well as a predictive marker for patient survival.
Collapse
Affiliation(s)
- Sanu K Shaji
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - N V Mahalakshmi
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Geetha B Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| |
Collapse
|
24
|
Nicol AF, de Andrade CV, Gomes SC, Brusadelli MG, Lodin HM, Wells SI, Nuovo GJ. The distribution of novel biomarkers in carcinoma-in-situ, microinvasive, and squamous cell carcinoma of the uterine cervix. Ann Diagn Pathol 2019; 38:115-122. [PMID: 30579259 DOI: 10.1016/j.anndiagpath.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Importin-β, exportin-5, p16, Ki-67, Mcl1, PDL1, and cFLIP are each over-expressed in the majority of CIN 1 lesions. These biomarkers, plus HPV E6/E7 RNA, were analyzed in carcinoma-in-situ (CIS), microinvasive, and squamous cell carcinoma (SCC) of the uterine cervix and cervical carcinoma cell lines. Only p16 and Ki-67 continued to be over-expressed in CIS, with a concomitant marked increase in E6/E7 RNA. There was a highly significant increase in PDL1 expression and decrease in Ki-67 (each p < 0.001) in microinvasive cancer compared to CIS whereas p16 and E6/E7 remained stable. As the lesion progressed to SCC, p16 and E6/E7 RNA remained strongly overexpressed with a concomitant over expression of importin-β and Ki67. HPV positive Caski cells showed significant elevations of p16, importin-β, exportin-5 and PDL1 compared to the HPV negative cervical cancer cell line C33A, consistent with viral induction of these biomarkers. The data suggest that PDL1 may be a useful biomarker to differentiate CIS from microinvasive cancer and, thus, anti-PDL1 therapy may inhibit the progression of CIS to the invasive stage.
Collapse
Affiliation(s)
- Alcina F Nicol
- National Institute of Infectious Diseases Evandro Chagas - INI-Fiocruz, Rio de Janeiro, Brazil
| | - Cecilia Vianna de Andrade
- National Institute of Health of Women, Children, and Adolescents, Fernandes Figueira - IFF-FIOCRUZ, Rio de Janeiro, Brazil
| | - Saint Clair Gomes
- National Institute of Health of Women, Children, and Adolescents, Fernandes Figueira - IFF-FIOCRUZ, Rio de Janeiro, Brazil
| | - Marion G Brusadelli
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah M Lodin
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gerard J Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Phylogeny Inc, Powell, OH, USA.
| |
Collapse
|
25
|
De Blasio A, Vento R, Di Fiore R. Mcl-1 targeting could be an intriguing perspective to cure cancer. J Cell Physiol 2018; 233:8482-8498. [PMID: 29797573 DOI: 10.1002/jcp.26786] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022]
Abstract
The Bcl-2 family, which plays important roles in controlling cancer development, is divided into antiapoptotic and proapoptotic members. The change in the balance between these members governs the life and death of the cells. Mcl-1 is an antiapoptotic member of this family and its distribution in normal and cancerous tissues strongly differs from that of Bcl-2. In human cancers, where upregulation of antiapoptotic proteins is common, Mcl-1 expression is regulated independent of Bcl-2 and its inhibition promotes senescence, a major barrier to tumorigenesis. Cancer chemotherapy determines various kinds of responses, such as senescence and autophagy; however, the ideal response to chemotherapy is apoptosis. Mcl-1 is a potent oncogene that is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Mcl-1 is a short-lived protein that, in the NH2 terminal region, contains sites for posttranslational regulation that can lead to proteasomal degradation. The USP9X Mcl-1 deubiquitinase regulates Mcl-1 and the levels of these two proteins are strongly correlated. Mcl-1 has three splicing variants (the antiapoptotic protein Mcl-1L and the proapoptotic proteins Mcl-1S and Mcl-1ES), each contributing toward apoptosis regulation. In cancers responsible for the most deaths in the world, the presence of Mcl-1 is associated with malignant cell growth and evasion of apoptosis. Mcl-1 is also one of the key regulators of cancer stem cells' self-renewal that contributes to tumor survival. A great number of indirect and selective Mcl-1 inhibitors have been produced and some of these have shown efficacy in several clinical trials. Thus, therapeutic manipulation of Mcl-1 can be a useful strategy to combat cancer.
Collapse
Affiliation(s)
- Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| | - Renza Vento
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Riccardo Di Fiore
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Camorani S, Cerchia L, Fedele M, Erba E, D'Incalci M, Crescenzi E. Trabectedin modulates the senescence-associated secretory phenotype and promotes cell death in senescent tumor cells by targeting NF-κB. Oncotarget 2018; 9:19929-19944. [PMID: 29731994 PMCID: PMC5929437 DOI: 10.18632/oncotarget.24961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Therapy-induced senescence is a major cellular response to chemotherapy in solid tumors. Senescent tumor cells acquire a secretory phenotype, or SASP, and produce pro-inflammatory factors, whose expression is largely under NF-κB transcriptional control. Secreted factors play a positive role in driving antitumor immunity, but also exert negative influences on the microenvironment, and promote tumor growth and metastasis. Moreover, subsets of cancer cells can escape the senescence arrest, driving tumor recurrence after treatments. Hence, removal the senescent tumor cells, or reprogramming of the senescent secretome, have become attractive therapeutic options. The marine drug trabectedin was shown to inhibit the production of pro-inflammatory mediators by tumor-infiltrating immune cells and by myxoid liposarcoma cells. Here, we demonstrate that trabectedin inhibits the SASP, thus limiting the pro-tumoral activities of senescent tumor cells in vitro. We show that trabectedin modulates NF-κB transcriptional activity in senescent tumor cells. This results in disruption of the balance between antiapoptotic and proapoptotic signals, and sensitization of cells to Fas-mediated apoptosis. Further, we found that trabectedin inhibits escape from therapy-induced senescence, at concentrations that do not affect the viability of bulk tumor population. Overall, our data demonstrate that trabectedin has the potential to inhibit multiple detrimental effects of therapy-induced senescence.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Eugenio Erba
- Dipartimento di Oncologia, IRCCS Istituto Di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Maurizio D'Incalci
- Dipartimento di Oncologia, IRCCS Istituto Di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| |
Collapse
|
27
|
Rashidi M, Bandala-Sanchez E, Lawlor KE, Zhang Y, Neale AM, Vijayaraj SL, O'Donoghue R, Wentworth JM, Adams TE, Vince JE, Harrison LC. CD52 inhibits Toll-like receptor activation of NF-κB and triggers apoptosis to suppress inflammation. Cell Death Differ 2017; 25:392-405. [PMID: 29244050 DOI: 10.1038/cdd.2017.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Soluble CD52 is a small glycoprotein that suppresses T-cell activation, but its effect on innate immune cell function is unknown. Here we demonstrate that soluble CD52 inhibits Toll-like receptor and tumor necrosis factor receptor signaling to limit activation of NF-κB and thereby suppress the production of inflammatory cytokines by macrophages, monocytes and dendritic cells. At higher concentrations, soluble CD52 depletes the short-lived pro-survival protein MCL-1, contributing to activation of the BH3-only proteins BAX and BAK to cause intrinsic apoptotic cell death. In vivo, administration of soluble CD52 suppresses lipopolysaccharide (LPS)-induced cytokine secretion and other features of endotoxic shock, whereas genetic deletion of CD52 exacerbates LPS responses. Thus, soluble CD52 exhibits broad immune suppressive effects that signify its potential as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Maryam Rashidi
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Esther Bandala-Sanchez
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kate E Lawlor
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuxia Zhang
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alana M Neale
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Swarna L Vijayaraj
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert O'Donoghue
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John M Wentworth
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy E Adams
- CSIRO Manufacturing and Node of the National Biologics Facility, Parkville, Victoria 3052, Australia
| | - James E Vince
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Leonard C Harrison
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
De Wolf E, De Wolf C, Richardson A. ABT-737 and pictilisib synergistically enhance pitavastatin-induced apoptosis in ovarian cancer cells. Oncol Lett 2017; 15:1979-1984. [PMID: 29434898 DOI: 10.3892/ol.2017.7516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
There is considerable interest in redeploying drugs for use in combination with other oncology therapeutics. The single-agent activity of statins in ovarian cancer has been widely reported, however the drug concentration required to cause cell death is considerably higher than that achieved in patients receiving statin treatment for hypercholesterolemia. Unfortunately, statins can cause myopathy when administered in high doses. One solution to this is to identify drugs that could be used in combination with statins to reduce the dose required and those that may potentially reduce the incidence of adverse side effects. When the BH3 mimetic ABT-737, or the phosphatidylinositol 3-kinase inhibitor pictilisib, were combined with pitavastatin in cell growth assays using Ovcar-3 and Igrov-1 cells, the drug combinations were more effective than pitavastatin alone. In support of this, ABT-737 or pictilisib markedly increased cell death induced by pitavastatin in several ovarian cancer cell lines. The drugs were also synergistic in apoptosis assays. These observations suggested that either BH3 mimetics or pictilisib in combination with pitavastatin could be used in a subset of ovarian tumours, particularly those sensitive to BH3 mimetics, and phosphatase and tensin homolog inhibition, in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth De Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent ST4 7QB, UK
| | - Christopher De Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent ST4 7QB, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent ST4 7QB, UK.,School of Pharmacy, Keele University, Stoke-on-Trent ST5 5BG, UK
| |
Collapse
|
29
|
Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway. Oncotarget 2017; 7:11625-36. [PMID: 26872379 PMCID: PMC4905498 DOI: 10.18632/oncotarget.7299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the “silencing” the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property.
Collapse
|
30
|
Nishikawa M, Miyake H, Gleave M, Fujisawa M. Effect of Targeting Clusterin Using OGX-011 on Antitumor Activity of Temsirolimus in a Human Renal Cell Carcinoma Model. Target Oncol 2017; 12:69-79. [PMID: 27526062 DOI: 10.1007/s11523-016-0448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND It has not been well documented that the modulation of stress response mediates the efficacy of the mammalian target of rapamycin (mTOR) inhibitor in renal cell carcinoma (RCC). OBJECTIVE The objective of this study was to investigate whether the activity of the mTOR inhibitor temsirolimus against RCC could be enhanced by OGX-011, an antisense oligodeoxynucleotide (ODN) targeting the stress-activated chaperone clusterin. METHODS We investigated the efficacy of combined treatment with temsirolimus plus OGX-011 in a human RCC Caki-1 model focusing on the effects on apoptotic and autophagic pathways. RESULTS Although clusterin expression was increased by temsirolims, additional treatment of Caki-1 with OGX-011 significantly inhibited clusterin upregulation (p < 0.05). Combined treatment of temsirolimus and OGX-011 synergistically enhanced the sensitivity of Caki-1 to temsirolimus (p < 0.01), reducing the IC50 by approximately 50 %. Apoptotic changes were marked in Caki-1 following combined treatment with a sublethal dose of temsirolimus and OGX-011, accompanying the significant downregulation of Mcl-1 (p < 0.05), but not with either agent alone. Furthermore, this combined treatment markedly blocked the temsirolimus-induced activation of autophagy in Caki-1 (p < 0.01). In-vivo systemic administration of temsirolimus plus OGX-011 significantly inhibited the growth of Caki-1 tumors compared with that of temsirolimus plus control ODN (p < 0.05). CONCLUSIONS Silencing of clusterin using OGX-011 resulted in the further enhancement of proapoptotic activity as well as the marked attenuation of the autophagic pathway induced by temsirolimus in a human RCC model. Thus, the combined use of OGX-011 could be a promising strategy through the enhanced cytotoxic activity of temsirolimus against RCC.
Collapse
Affiliation(s)
- Masatomo Nishikawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - Martin Gleave
- Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
31
|
Yu X, Li W, Xia Z, Xie L, Ma X, Liang Q, Liu L, Wang J, Zhou X, Yang Y, Liu H. Targeting MCL-1 sensitizes human esophageal squamous cell carcinoma cells to cisplatin-induced apoptosis. BMC Cancer 2017; 17:449. [PMID: 28659182 PMCID: PMC5490225 DOI: 10.1186/s12885-017-3442-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in China and is an exceptionally drug-resistant tumor with a 5-year survival rate less than 15%. Cisplatin is the most commonly used conventional chemotherapeutic drug for the treatment of ESCC, but some patients have a poor response to cisplatin-based chemotherapy. New strategies that could enhance chemosensitivity to cisplatin are needed. Methods We used reverse transcription-RCR (RT-PCR), immunoblot, immunohistochemical (IHC) staining, anchorage-dependent and -independent growth assays, co-immunoprecipitation (Co-IP) assay, RNA interference and in vivo tumor growth assay to study the expression of MCL-1 in ESCCs and the response of ESCC cells to cisplatin. Results The present study showed that MCL-1 expression was significantly increased in ESCC tissues compared to normal adjacent tissues and was associated with depth of invasion and lymph node metastasis. Knockdown of MCL-1 produced significant chemosensitization to cisplatin in association with caspase-3 activation and PARP cleavage in KYSE150 and KYSE510 cells. The selective MCL-1 inhibitor UMI-77 caused dissociation of MCL-1 from the proapoptotic protein BAX and BAK, and enhanced KYSE150 and KYSE510 cells to cisplatin-induced apoptosis accompanied by caspase-3 activation and PARP cleavage. Conclusions The current study suggests that MCL-1 contributes to the development of ESCC and is a promising therapeutic target for chemosensitization of ESCC cells to cisplatin. This might provide a scientific basis for developing effective approaches to treat the subset of ESCCs patients with MCL-1 overexpression.
Collapse
Affiliation(s)
- Xinfang Yu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Lijun Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Jian Wang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Yifeng Yang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China. .,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
32
|
Lin J, Fu D, Dai Y, Lin J, Xu T. Mcl-1 inhibitor suppresses tumor growth of esophageal squamous cell carcinoma in a mouse model. Oncotarget 2017; 8:114457-114462. [PMID: 29383093 PMCID: PMC5777705 DOI: 10.18632/oncotarget.18772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a high morbidity in China, accounting for 90% of all esophageal carcinoma cases. Hence, identifying drug targets for prevention and treatment of ESCC is essential. Due to its critical role in the regulation of cell apoptosis, Mcl-1 holds great potential as a target for treatment against ESCC. In current study, we used a 4-nitroquinoline-1-oxide (4-NQO)-induced ESCC mouse model of test whether A-1210477, a Mcl-1 small molecular inhibitor, could repress ESCC development. We showed that A-1210477 treatment decreased ESCC formation and animal weight loss in a dose dependent manner. We detected decreased cellular proliferation in A-1210477-treated ESCC tissue by Ki67 expression. Moreover, A-1210477 treatment increased the number of apoptotic cells in ESCC tissues. Our study clearly demonstrates the contribution of Mcl-1 to ESCC development through promoting cell proliferation and inhibition of apoptosis, and provides a strong evidence for further evaluation of A-1210477 for treating ESCC.
Collapse
Affiliation(s)
- Jianqing Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Deqiang Fu
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yijun Dai
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jianguang Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
33
|
Jayappa KD, Portell CA, Gordon VL, Capaldo BJ, Bekiranov S, Axelrod MJ, Brett LK, Wulfkuhle JD, Gallagher RI, Petricoin EF, Bender TP, Williams ME, Weber MJ. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv 2017; 1:933-946. [PMID: 29034364 PMCID: PMC5637393 DOI: 10.1182/bloodadvances.2016004176] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
De novo resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination. However, analysis of primary samples from patients with MCL as well as chronic lymphocytic leukemia (CLL) revealed unexpected heterogeneous de novo resistance even to the IBR+VEN combination. In the current study, we demonstrate that resistance to the combination can be generated by microenvironmental agonists: IL-10, CD40L and, most potently, CpG-oligodeoxynucleotides (CpG-ODN), which is a surrogate for unmethylated DNA and a specific agonist for TLR9 signaling. Incubation with these agonists caused robust activation of NF-κB signaling, especially alternative NF-κB, which led to enhanced expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, and survivin, thus decreasing dependence on Bcl-2. Inhibitors of NF-κB signaling blocked overexpression of these anti-apoptotic proteins and overcame resistance. Inhibitors of Mcl-1, Bcl-xL, or survivin also overcame this resistance, and showed synergistic benefit with the IBR+VEN combination. We conclude that microenvironmental factors, particularly the TLR9 agonist, can generate de novo resistance to the IBR+VEN combination in CLL and MCL cells. This signaling pathway presents targets for overcoming drug resistance induced by extrinsic microenvironmental factors in diverse B-cell malignancies.
Collapse
Affiliation(s)
- Kallesh D Jayappa
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Craig A Portell
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Vicki L Gordon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brian J Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Mark J Axelrod
- Gilead Sciences, 199 E. Blaine St., Seattle, WA, United States
| | - L Kyle Brett
- Utica Park Clinic, Medical Oncology, 1245 S Utica Ave Suite #100, Tulsa, OK, United States
| | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Timothy P Bender
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, United States
| | - Michael E Williams
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Michael J Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
34
|
Yang QS, Jiang LP, He CY, Tong YN, Liu YY. Up-Regulation of MicroRNA-133a Inhibits the MEK/ERK Signaling Pathway to Promote Cell Apoptosis and Enhance Radio-Sensitivity by Targeting EGFR in Esophageal Cancer In Vivo and In Vitro. J Cell Biochem 2017; 118:2625-2634. [PMID: 27933650 DOI: 10.1002/jcb.25829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Qing-Shan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Yu-Na Tong
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Yuan-Yuan Liu
- Department of Internal Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| |
Collapse
|
35
|
Haimovici A, Humbert M, Federzoni EA, Shan-Krauer D, Brunner T, Frese S, Kaufmann T, Torbett BE, Tschan MP. PU.1 supports TRAIL-induced cell death by inhibiting NF-κB-mediated cell survival and inducing DR5 expression. Cell Death Differ 2017; 24:866-877. [PMID: 28362429 PMCID: PMC5423115 DOI: 10.1038/cdd.2017.40] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
The hematopoietic Ets-domain transcription factor PU.1/SPI1 orchestrates myeloid, B- and T-cell development, and also supports hematopoietic stem cell maintenance. Although PU.1 is a renowned tumor suppressor in acute myeloid leukemia (AML), a disease characterized by an accumulation of immature blast cells, comprehensive studies analyzing the role of PU.1 during cell death responses in AML treatment are missing. Modulating PU.1 expression in AML cells, we found that PU.1 supports tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via two mechanisms: (a) by repressing NF-κB activity via a novel direct PU.1-RelA/p65 protein-protein interaction, and (b) by directly inducing TRAIL receptor DR5 expression. Thus, expression of NF-κB-regulated antiapoptotic genes was sustained in PU.1-depleted AML cells upon TRAIL treatment and DR5 levels were decreased. Last, PU.1 deficiency significantly increased AML cell resistance to anthracycline treatment. Altogether, these results reveal a new facet of PU.1's tumor suppressor function during antileukemic therapies.
Collapse
Affiliation(s)
- Aladin Haimovici
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, Bern, Switzerland
| | - Magali Humbert
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Elena A Federzoni
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Deborah Shan-Krauer
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Steffen Frese
- Department of Thoracic Surgery, ELK Berlin Chest Hospital, Berlin, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, Bern, Switzerland
| |
Collapse
|
36
|
Zhang Z, Cheng X, Gui T, Tao J, Huang M, Zhu L, Luo M, Cao P, Wan G. Wenshen Xiaozheng Tang induces apoptosis and inhibits migration of ectopic endometriotic stromal cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:386-394. [PMID: 27401290 DOI: 10.1016/j.jep.2016.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/31/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine prescription, exerted a good therapeutic effect on endometriosis. However, the underlying mechanism is unclear. In the present study, we sought to evaluate the effect of WXT on the proliferation and migration of ectopic endometriotic stromal cells and explore the potential molecular mechanism. MATERIALS AND METHODS Primary stromal cells derived from ectopic endometriotic lesions of patients with endometriosis were isolated and cultured. The inhibition effect of WXT on cell proliferation was determined by MTT. Apoptosis of ectopic endometriotic cells treated with WXT was analyzed with Annexin V-FITC/7-AAD staining. The activation of caspases was detected by western blot analysis. The influence of WXT on migration of ectopic endometriotic cells was measured by scratch wound healing assay and Transwell assay. The DNA binding activity of NF-κB and the expression of nuclear p65 protein were determined by electrophoretic mobility shift assay and western blot analysis, respectively. The impact of WXT on the expression of NF-κB regulated gene products involved in apoptosis and migration was determined by western blot analysis. RESULTS WXT inhibited the proliferation of ectopic endometriotic cells in a time- and dose-dependent manner. In addition, WXT treatment resulted in significant induction of apoptosis through the activation of caspases and inhibition of migration in ectopic endometriotic cells. WXT notably suppressed constitutive NF-κB-DNA-binding activity as well as TNF-α induced nuclear translocation of NF-κB p65 subunit in ectopic endometriotic cells. Moreover, WXT diminished the expression of NF-κB regulated gene products involved in apoptosis and migration, including c-IAP1, c-IAP2, XIAP, survivin, Mcl-1, COX-2 and MMP-9. CONCLUSIONS Our results indicate that WXT induces apoptosis and inhibits migration of ectopic endometriotic stromal cells.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Tao Gui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Jia Tao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Meihua Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Li Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Mei Luo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Guiping Wan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| |
Collapse
|
37
|
Tsai JJ, Pan PJ, Hsu FT. Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-κB activation in hepatocellular carcinoma cells. Oncol Rep 2016; 37:1036-1044. [PMID: 28000898 DOI: 10.3892/or.2016.5328] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of NF-κB inactivation in regorafenib-induced apoptosis in human hepatocellular carcinoma SK-HEP-1 cells. SK-HEP-1 cells were treated with different concentrations of the NF-κB inhibitor 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (QNZ) or regorafenib for different periods. The effects of QNZ and regorafenib on cell viability, expression of NF-κB-modulated anti-apoptotic proteins and apoptotic pathways were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, DNA gel electrophoresis, flow cytometry and NF-κB reporter gene assay. Inhibitors of various kinases including AKT, c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK) were used to evaluate the mechanism of regorafenib-induced NF-κB inactivation. The results demonstrated that both QNZ and regorafenib significantly inhibited the expression of anti-apoptotic proteins and triggered extrinsic and intrinsic apoptosis. We also demonstrated that regorafenib inhibited NF-κB activation through ERK dephosphorylation. Taken all together, our findings indicate that regorafenib triggers extrinsic and intrinsic apoptosis through suppression of ERK/NF-κB activation in SK-HEP-1 cells.
Collapse
Affiliation(s)
- Jai-Jen Tsai
- Division of Gastroenterology, Department of Medicine, National Yang-Ming University Hospital, Yilan 260, Taiwan, R.O.C
| | - Po-Jung Pan
- Cancer Medical Care Center, National Yang‑Ming University Hospital, Yilan 260, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C
| |
Collapse
|
38
|
Jurcic Smith KL, Lee S. Inhibition of apoptosis by Rv2456c through Nuclear factor-κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol 2016; 5:426-436. [PMID: 27931684 PMCID: PMC5975360 DOI: 10.1016/j.ijmyco.2016.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. tuberculosis and host cell apoptosis, we screened M. tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID). One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.
Collapse
Affiliation(s)
- Kristen L Jurcic Smith
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sunhee Lee
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
39
|
Abdulghani J, Gokare P, Gallant JN, Dicker D, Whitcomb T, Cooper T, Liao J, Derr J, Liu J, Goldenberg D, Finnberg NK, El-Deiry WS. Sorafenib and Quinacrine Target Anti-Apoptotic Protein MCL1: A Poor Prognostic Marker in Anaplastic Thyroid Cancer (ATC). Clin Cancer Res 2016; 22:6192-6203. [PMID: 27307592 DOI: 10.1158/1078-0432.ccr-15-2792] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 04/21/2016] [Accepted: 05/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE AND EXPERIMENTAL DESIGN Anaplastic thyroid cancer (ATC) comprises approximately 2% of all thyroid cancers, and its median survival rate remains poor. It is responsible for more than one third of thyroid cancer-related deaths. ATC is frequently resistant to conventional therapy, and NFκB signaling has been proposed to be a feature of the disease. We aimed to assess the activity of the antimalaria drug quinacrine known to target NFκB signaling in combination with the clinically relevant kinase inhibitor sorafenib in ATC cells. The presence of NFκB-p65/RELA and its target MCL1 was demonstrated in ATC by meta-data gene set enrichment analysis and IHC. We assessed the responses of a panel of human ATC cell lines to quinacrine and sorafenib in vitro and in vivo RESULTS: We detected increased expression of NFκB-p65/RELA and MCL1 in the nucleus of a subset of ATC compared with non-neoplastic thyroid. ATC cells were found to respond with additive/synergistic tumor cell killing to the combination of sorafenib plus quinacrine in vitro, and the drug combination improves survival of immunodeficient mice injected orthotopically with ATC cells as compared with mice administered either compound alone or doxorubicin. We also demonstrate that the combination of sorafenib and quinacrine is well tolerated in mice. At the molecular level, quinacrine and sorafenib inhibited expression of prosurvival MCL1, pSTAT3, and dampened NFκB signaling. CONCLUSIONS The combination of quinacrine and sorafenib targets emerging molecular hallmarks of ATC and shows promising results in clinically relevant models for the disease. Further testing of sorafenib plus quinacrine can be conducted in ATC patients. Clin Cancer Res; 22(24); 6192-203. ©2016 AACR.
Collapse
Affiliation(s)
- Junaid Abdulghani
- Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Prashanth Gokare
- Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jean-Nicolas Gallant
- Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - David Dicker
- Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tiffany Whitcomb
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Jiangang Liao
- Department of Public Health Sciences, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Jonathan Derr
- Department of Surgery; Division of Otolaryngology-Head and Neck Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Jing Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| | - David Goldenberg
- Department of Surgery; Division of Otolaryngology-Head and Neck Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Niklas K Finnberg
- Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania. .,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wafik S El-Deiry
- Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania. .,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Teng L, Bennett E, Cai C. Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. J Biol Chem 2016; 291:9733-47. [PMID: 26940876 DOI: 10.1074/jbc.m115.687806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac stem cell therapy has shown very promising potential to repair the infarcted heart but is severely limited by the poor survival of donor cells. Nitric oxide (NO) has demonstrated cytoprotective properties in various cells, but its benefits are unknown specifically for human cardiac stem cells (hCSCs). Therefore, we investigated whether pretreatment of hCSCs with a widely used NO donor, diethylenetriamine nitric oxide adduct (DETA-NO), promotes cell survival. Results from lactate dehydrogenase release assays showed a dose- and time-dependent attenuation of cell death induced by oxidative stress after DETA-NO preconditioning; this cytoprotective effect was abolished by the NO scavenger. Concomitant up-regulation of several cell signaling molecules after DETA-NO preconditioning was observed by Western blotting, including elevated phosphorylation of NRF2, NFκB, STAT3, ERK, and AKT, as well as increased protein expression of HO-1 and COX2. Furthermore, pharmaceutical inhibition of ERK, STAT3, and NFκB activities significantly diminished NO-induced cytoprotection against oxidative stress, whereas inhibition of AKT or knockdown of NRF2 only produced a minor effect. Blocking PI3K activity or knocking down COX2 expression did not alter the protective effect of DETA-NO on cell survival. The crucial roles of STAT3 and NFκB in NO-mediated signaling pathways were further confirmed by stable expression of gene-specific shRNAs in hCSCs. Thus, preconditioning hCSCs with DETA-NO promotes cell survival and resistance to oxidative stress by activating multiple cell survival signaling pathways. These results will potentially provide a simple and effective strategy to enhance survival of hCSCs after transplantation and increase their efficacy in repairing infarcted myocardium.
Collapse
Affiliation(s)
- Lei Teng
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, New York 12208
| | - Chuanxi Cai
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| |
Collapse
|
41
|
Mitra P, Yang RM, Sutton J, Ramsay RG, Gonda TJ. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget 2016; 7:9069-83. [PMID: 26812885 PMCID: PMC4891027 DOI: 10.18632/oncotarget.6997] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MYB is required for proliferation of, and confers protection against apoptosis on, estrogen receptor-positive (ER(+ve)) breast cancer cells, which are almost invariably also MYB(+ve). We have also shown that MYB expression in ER(+ve) breast cancer cells is regulated at the level of transcriptional elongation and as such, is suppressed by CDK9i. Here we examined the effects of CDK9i on breast cancer cells and the involvement of MYB in these effects. ER(+ve) breast cancer cell lines including MCF-7 were much more sensitive (> 10 times) to killing by CDK9i than ER(-ve)/MYB(-ve) cells. Moreover, surviving cells showed a block at the G2/M phase of the cell cycle. Importantly, ectopic MYB expression conferred resistance to apoptosis induction, cell killing and G2/M accumulation. Expression of relevant MYB target genes including BCL2 and CCNB1 was suppressed by CDK9 inhibition, and this too was reversed by ectopic MYB expression. Nevertheless, inhibition of BCL2 alone either by MYB knockdown or by ABT-199 treatment was insufficient for significant induction of apoptosis. Further studies implied that suppression of MCL-1, a well-documented target of CDK9 inhibition, was additionally required for apoptosis induction, while maximal levels of apoptosis induced by CDK9i are likely to also involve inhibition of BCL2L1 expression. Taken together these data suggest that MYB regulation of BCL2 underlies the heightened sensitivity of ER(+ve) compared to ER(-ve) breast cancer cells to CDK9 inhibition, and that these compounds represent a potential therapeutic for ER(+ve) breast cancers and possibly other MYB-dependent cancers.
Collapse
Affiliation(s)
- Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - James Sutton
- Novartis Institute for Biomedical Research, Emeryville, CA, USA
| | - Robert G. Ramsay
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas J. Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Ruggeri P, Cappabianca L, Farina AR, Gneo L, Mackay AR. NGF sensitizes TrkA SH-SY5Y neuroblastoma cells to TRAIL-induced apoptosis. Cell Death Discov 2016; 2:16004. [PMID: 27551499 PMCID: PMC4979468 DOI: 10.1038/cddiscovery.2016.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
We report a novel pro-apoptotic function for nerve growth factor (NGF) and its tropomyosin-related kinase A (TrkA) receptor in sensitizing TRAIL (TNF-related apoptotis-inducing ligand)-resistant SH-SY5Y neuroblastoma (NB) cells to TRAIL-induced apoptosis, resulting in the abrogation of anchorage-independent tumourigenic growth in vitro. We show that the TRAIL-resistant SH-SY5Y phenotype is cFLIP (cellular FLICE-like inhibitory protein) dependent and not due to low-level functional TRAIL receptor or caspase expression or an inhibitory equilibrium between functional and decoy TRAIL receptors or B-cell lymphoma 2 (Bcl-2) and BH3-only (Bcl-2 homology domain 3-only) family proteins. NGF sensitization of SH-SY5Y cells to TRAIL-induced apoptosis was dependent upon TrkA expression, activation and subsequent sequestration of cFLIP. This reduces cFLIP recruitment to TRAIL-activated death receptors and increases the recruitment of caspase-8, leading to TRAIL-induced, caspase-dependent, type II apoptosis via the intrinsic mitochondrial pathway. This effect was temporary, inhibited within 6 h by nuclear factor-κ binding (NF-κB)-mediated increase in myeloid cell leukaemia-1 (Mcl-1) expression, abrogated by transient cFLIP or B-cell lymphoma-extra large (Bcl-xL) overexpression and optimized by NF-κB and Mcl-1 inhibitors. This novel mechanism adds an important pro-apoptotic immunological dimension to NGF/TrkA interaction that may not only help to explain the association between TrkA expression, better prognosis and spontaneous remission in NB, but also provides a novel potential pro-apoptotic therapeutic use for NGF, TRAIL and inhibitors of NF-κB and/or Mcl-1 in favourable and unfavourable NBs that express TrkA and exhibit cFLIP-mediated TRAIL resistance.
Collapse
Affiliation(s)
- P Ruggeri
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - L Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - A R Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - L Gneo
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - A R Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| |
Collapse
|
43
|
Shukla S, Shankar E, Fu P, MacLennan GT, Gupta S. Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice. PLoS One 2015; 10:e0138710. [PMID: 26379052 PMCID: PMC4574560 DOI: 10.1371/journal.pone.0138710] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/02/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it's phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Pingfu Fu
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Gregory T. MacLennan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
44
|
Jeon YJ, Middleton J, Kim T, Laganà A, Piovan C, Secchiero P, Nuovo GJ, Cui R, Joshi P, Romano G, Di Leva G, Lee BK, Sun HL, Kim Y, Fadda P, Alder H, Garofalo M, Croce CM. A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in lung cancer. Proc Natl Acad Sci U S A 2015; 112:E3355-64. [PMID: 26080425 PMCID: PMC4491797 DOI: 10.1073/pnas.1504630112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Justin Middleton
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Taewan Kim
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alessandro Laganà
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Claudia Piovan
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210; Department of Experimental Oncology and Molecular Medicine, Start Up Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale per lo Studio e la Cura dei Tumori, 20133 Milan, Italy
| | - Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, 44100 Ferrara, Italy
| | - Gerard J Nuovo
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Ri Cui
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Pooja Joshi
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Giulia Romano
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Hui-Lung Sun
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Yonghwan Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Paolo Fadda
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research United Kingdom Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
45
|
Cytotoxic Effect of Coscinium fenestratum on Human Head and Neck Cancer Cell Line (HN31). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:701939. [PMID: 26074999 PMCID: PMC4449908 DOI: 10.1155/2015/701939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 01/29/2023]
Abstract
Coscinium fenestratum is widely used as a medicinal plant in many Asian countries. This study aimed to investigate the cytotoxic effect of a crude water extract of C. fenestratum (CF extract) compared to 5-fluorouracil (5-FU) on human HN31 cell line, a metastatic squamous cell carcinoma of the pharynx. The results revealed that cell morphology visualized under inverted light microscopy was changed from flat with a polygonal appearance to round appearance after CF extract application. The cell viability assay (MTT test) showed that the concentration producing 50% growth inhibition (IC50) at 48-hour incubation of CF extract on HN31 was 0.12 mg/mL, while the IC50 of 5-FU was 6.6 mg/mL, indicating that CF extract has a higher potency. However, combining various concentrations of 5-FU and CF extract at IC50 did not show synergistic effect. The CF extract dose dependently increased cell apoptosis determined by Annexin-V and propidium iodide staining. It decreased the phosphorylation of p38 MAPK and pAkt, while it increased the tumor suppressor protein p53. In conclusion, the cytotoxicity of CF extract was associated with the modulation of p38 MAPK, pAkt, and p53 signal molecules, leading to inhibiting cell survival and increasing apoptosis. No synergistic effects of CF extract and 5-FU were observed.
Collapse
|
46
|
The roles of endoplasmic reticulum overload response induced by HCV and NS4B protein in human hepatocyte viability and virus replication. PLoS One 2015; 10:e0123190. [PMID: 25875501 PMCID: PMC4395406 DOI: 10.1371/journal.pone.0123190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/01/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) replication is associated with endoplasmic reticulum (ER) and its infection triggers ER stress. In response to ER stress, ER overload response (EOR) can be activated, which involves the release of Ca2+ from ER, production of reactive oxygen species (ROS) and activation of nuclear factor κB (NF-κB). We have previously reported that HCV NS4B expression activates NF-κB via EOR-Ca2+-ROS pathway. Here, we showed that NS4B expression and HCV infection activated cancer-related NF-κB signaling pathway and induced the expression of cancer-related NF-κB target genes via EOR-Ca2+-ROS pathway. Moreover, we found that HCV-activated EOR-Ca2+-ROS pathway had profound effects on host cell viability and HCV replication. HCV infection induced human hepatocyte death by EOR-Ca2+-ROS pathway, whereas activation of EOR-Ca2+-ROS-NF-κB pathway increased the cell viability. Meanwhile, EOR-Ca2+-ROS-NF-κB pathway inhibited acute HCV replication, which could alleviate the detrimental effect of HCV on cell viability and enhance chronic HCV infection. Together, our findings provide new insights into the functions of EOR-Ca2+-ROS-NF-κB pathway in natural HCV replication and pathogenesis.
Collapse
|