1
|
Ichikawa K, Johnson HM, Curtis MA, Biswas N, Singh S, Khachatryan HN, Gater AE, Lin SX, Sperry J. Targeting glioma with heteroaromatic alkaloids: A review of potential therapeutics. Bioorg Med Chem 2025; 121:118051. [PMID: 39999647 DOI: 10.1016/j.bmc.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Glioblastoma multiforme (GBM), classified as a grade IV astrocytoma, is the most aggressive and deadly form of glioma, characterized by rapid progression, extensive genetic heterogeneity, and resistance to conventional therapies. Despite advancements in surgical techniques, radiation therapy, and the frontline chemotherapeutic agent temozolomide, the prognosis for GBM patients remains poor, with a median survival of 15 months and a 5-year survival rate of approximately 7 %. The absence of effective long-term treatments underscores the urgent, unmet clinical need for novel therapeutic strategies to improve patient outcomes. Natural products, particularly alkaloids, have garnered attention as a rich source of bioactive compounds with diverse pharmacological properties. Alkaloids, a structurally diverse group of natural products, are renowned for their chemotherapeutic properties and ability to cross the blood-brain barrier (BBB), making them promising candidates for glioma therapy. This review systematically examines all reported heteroaromatic alkaloids with documented anti-glioma activities, highlighting their mechanisms of action where available. By providing a comprehensive resource, it aims to facilitate the identification and optimisation of alkaloid-based compounds for glioma-targeted drug discovery. Additionally, this review emphasizes the importance of incorporating natural products into the drug development pipeline to address the pressing challenges associated with glioma, particularly GBM treatment.
Collapse
Affiliation(s)
- Karen Ichikawa
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Hannah M Johnson
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nandita Biswas
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hasmik N Khachatryan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry, National Academy of Science of Armenia, Yerevan 0014, Armenia
| | - Anastasia E Gater
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Simon X Lin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Maleki F, Handali S, Rezaei M. The role of mitochondrial dysfunction in the cytotoxic synergistic effect of gemcitabine and arsenic on breast cancer. PLoS One 2025; 20:e0312424. [PMID: 39774458 PMCID: PMC11706501 DOI: 10.1371/journal.pone.0312424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the most common type of cancer in women worldwide. A common approach to cancer treatment in clinical practice is to use a combination of drugs to enhance the anticancer activity of drugs while reducing their side effects. In this regard, we evaluated the effectiveness of combined treatment with gemcitabine (GCB) and arsenic (ATO) and how they affect the cell death pathway in cancer cells. Cytotoxic activity of drugs individually or combined against MDA-MB-231 and MCF-7 was performed by MTT method and isobolographic analysis was used to determine the interaction between these factors. The combination of ATO and GCB showed synergistic anti-cancer activity (CI < 1) in both cancer cell lines. The combination of ATO and GCB induced sub-G1 phase arrest, apoptosis and death rates in MCF-7 and MDA-MB-231 cells. The apoptotic response induced by the combination of GCB and ATO was dependent on caspase 3/7. Combined treatment with mitochondrial membrane potential (MMP) reduction and increased reactive oxygen species (ROS) production caused mitochondrial dysfunction. Co-treatment significantly reduced catalase (CAT) activity in both cancer cells compared to the control group and cells treated with each monotherapy. A significant decrease in cellular GSH was observed in cancer cells treated with ATO and GCB. In addition, migration and invasion were significantly reduced in breast cancer cells treated with the combination of ATO and GCB compared to cells treated with ATO and GCB. In conclusion, the combined treatment of ATO and GCB synergistically increased the anti-cancer activity, and these findings provide an effective approach for the treatment of breast cancer. To the best of our knowledge, this is the first study showing promising results for combination therapy with ATO and GCB in breast cancer.
Collapse
Affiliation(s)
- Farshid Maleki
- Faculty of Medical Sciences, Department of Toxicology, Tarbiat Modares University, Tehran, Iran
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Faculty of Medical Sciences, Department of Toxicology, Tarbiat Modares University, Tehran, Iran
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Shahcheraghi SH, Alimardani M, Lotfi M, Lotfi M, Uversky VN, Guetchueng ST, Palakurthi SS, Charbe NB, Hromić-Jahjefendić A, Aljabali AAA, Gadewar MM, Malik S, Goyal R, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol Res Pract 2024; 257:155285. [PMID: 38653089 DOI: 10.1016/j.prp.2024.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Stephanie Tamdem Guetchueng
- Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, PO Box 6163, Yaoundé, Cameroon
| | - Sushesh Shrivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School Of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Manoj M Gadewar
- Department of Pharmacology, School of medical and allied sciences, K.R. Mangalam University, Gurgaon, Haryana 122103, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
5
|
Mishra KK, Kaur CD, Singh S, Tiwari A, Tiwari V, Sharma A. Assessing the Efficacy of Berberine Hydrochloride-loaded Transethosomal Gel System in Treating Dermatophytosis Caused by Trichophyton rubrum in ex-vivo, in-vitro and in-vivo Models. Curr Drug Res Rev 2024; 16:412-422. [PMID: 37496248 DOI: 10.2174/2589977515666230726151456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Dermatophytosis is the most common dermatological disorder worldwide. Many drugs are available in the market for the treatment of dermatophytosis, but they have had limited success due to the stratum corneum barrier, antifungal resistance, drug permeation, drug retention in skin layers, etc. Thus, there is a constant need for new topical compounds that are effective against dermatophytosis. Berberine-hydrochloride is an attractive candidate to become an antifungal drug, and by using nanotechnology, it achieves deeper penetration in skin layers with enhanced permeability through the stratum corneum. METHODS In this study, we developed an oleic acid-containing berberine-hydrochloride-loaded transethosomal gel for effective treatment of dermatophytosis by Trichophyton rubrum. Berberine- hydrochloride-loaded transethosomal gels were fabricated using the hot homogenization method, followed by the incorporation of transethosomes into the gel-based system using carbopol 934. Transethosomal gel was characterized by physicochemical properties, in vitro drug release, ex-vivo permeation studies, CLSM visualization, antifungal activity, histopathological evaluation, and dermatokinetic study. RESULTS Berberine-hydrochloride-loaded transethosomes seemed to be spherical and found in a range between 200-300 nm. Berberine-hydrochloride-loaded transethosomal gel formulation also exhibited controlled ex-vivo permeation of berberine-hydrochloride over 24 hr through excised rat skin, and CLSM confirmed deeper penetration into skin layers. The in vivo study revealed that transethosomal gel had a healing effect on the skin of Wistar rats infected with Trichophyton rubrum and was better than luliconazole cream. The histopathological evaluation confirmed its safety, and the dermatokinetic study showed transethosomal gel superiority over marketed cream. CONCLUSION Therefore, the incorporation of berberine hydrochloride-loaded transethosomal nanosystems into the gel has the potential to enhance antifungal activity and permeation through transdermal drug delivery.
Collapse
Affiliation(s)
| | - Chanchal Deep Kaur
- Department of Pharmacy, Rungta College of Pharmaceutical Sciences and Research, Near Nandanvan, Raipur, Chhattisgarh, India
| | - Sunil Singh
- Department of Pharmacy, Shri Sai College of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad-244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad-244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
6
|
Jin Y, Zhang J, Pan Y, Shen W. Berberine Suppressed the Progression of Human Glioma Cells by Inhibiting the TGF-β1/SMAD2/3 Signaling Pathway. Integr Cancer Ther 2022; 21:15347354221130303. [PMID: 36255058 PMCID: PMC9583234 DOI: 10.1177/15347354221130303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Previous studies have shown that berberine can inhibit glioma progression,
although the underlying molecular mechanisms needed to be explored further.
The aim of this study was to evaluate the suppressive effects of berberine
on human glioma cells, and identify the underlying signaling pathways. Material and Methods: The cytotoxic effect of different concentrations of berberine against normal
human glial cells (HEB) and 4 glioma cell lines was evaluated by the CCK-8
assay. Apoptosis was assayed by flow cytometry. In vitro migration and
invasion were analyzed by the wound healing and transwell assays. The
expression levels of specific proteins were measured by western blotting and
ELISA. Results: Berberine significantly inhibited the proliferation of human glioma U-87
cells, and induced apoptosis in the U-87 and LN229 cells by downregulating
Bcl-2, and upregulating Bax and caspase-3. In addition, berberine also
inhibited migration and invasion of the glioma cells. Furthermore, berberine
exerted its effects on the proliferation, migration, invasion, and apoptosis
of glioma cells by inhibiting the TGF-β1/SMAD2/3 signaling pathway, and
exogenous TGF-β abrogated the pro-apoptotic and anti-oncogenic effects of
berberine. Conclusions: Berberine inhibits glioma progression by targeting the TGF-β1/SMAD2/3
signaling pathway.
Collapse
Affiliation(s)
- Yun Jin
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China
| | - Jiawei Zhang
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China
| | - Yunfeng Pan
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China
| | - Wangzhen Shen
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China,Wangzhen Shen, Department of Neurosurgery,
Tongxiang First People’s Hospital, No. 1918, Jiaochang East Road, Zhendong New
District, Tongxiang City, Zhejiang 314500, China.
| |
Collapse
|
7
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Živančević K, Baralić K, Bozic D, Miljaković EA, Djordjević AB, Ćurčić M, Bulat Z, Antonijević B, Bulat P, Đukić-Ćosić D. Involvement of environmentally relevant toxic metal mixture in Alzheimer's disease pathway alteration and protective role of berberine: Bioinformatics analysis and toxicogenomic screening. Food Chem Toxicol 2022; 161:112839. [DOI: 10.1016/j.fct.2022.112839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 01/22/2022] [Indexed: 02/07/2023]
|
9
|
Asemi Z, Behnam M, Pourattar MA, Mirzaei H, Razavi ZS, Tamtaji OR. Therapeutic Potential of Berberine in the Treatment of Glioma: Insights into Its Regulatory Mechanisms. Cell Mol Neurobiol 2021; 41:1195-1201. [PMID: 32557203 PMCID: PMC11448641 DOI: 10.1007/s10571-020-00903-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/10/2020] [Indexed: 01/07/2023]
Abstract
Glioma is known as one of the most common primary intracranial tumors accounting for four-fifths of malignant brain tumors. There are several biological pathways that play a synergistic, pathophysiological role in glioma, including apoptosis, autophagy, oxidative stress, and cell cycle arrest. According to previous rese arches, the drugs used in the treatment of glioma have been associated with significant limitations. Therefore, improved and/or new therapeutic platforms are required. In this regard, multiple flavonoids and alkaloids have been extensively studied in the treatment of glioma. Berberine is a protoberberine alkaloid with wide range of pharmacological activities, applicable to various pathological conditions. Few studies have reported beneficial roles of berberine in glioma. Berberine exerts its pharmacological functions in glioma by controlling different molecular and cellular pathways. We reviewed the existing knowledge supporting the use of berberine in the treatment of glioma and its effects on molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | | | - Mohammad Ali Pourattar
- Department of Radiobiology, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Zhao Y, Yang X, Zhao J, Gao M, Zhang M, Shi T, Zhang F, Zheng X, Pan Y, Shao D, Li J, He K, Chen L. Berberine inhibits chemotherapy-exacerbated ovarian cancer stem cell-like characteristics and metastasis through GLI1. Eur J Pharmacol 2021; 895:173887. [PMID: 33482182 DOI: 10.1016/j.ejphar.2021.173887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Despite the remarkable clinical response in ovarian cancer therapy, the distinctively high metastasis rate is still a barrier to achieve satisfying prognosis. Our study aimed to decipher the role of berberine in inhibiting chemotherapy-exacerbated ovarian cancer metastasis. We found that chemotherapy exacerbated the migration and cancer stem cell (CSC)-like characteristics through transcriptional factor GLI1, which regulated the pluripotency-associated gene BMI1 and the epithelial-mesenchymal transition (EMT) markers Vimentin and Snail. Berberine could not only down-regulate CSC-like characteristics but also reverse EMT and migration through inhibiting chemotherapy-activated GLI1/BMI1 signaling pathway. Together, our study revealed the pivotal role of berberine in overcoming chemotherapy-exacerbated ovarian cancer metastasis, thereby provided a potential adjuvant therapeutic agent in combination with chemotherapeutics to prevent metastasis during ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Jingtong Zhao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Mohan Gao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Min Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Tongfei Shi
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Yue Pan
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jing Li
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Kan He
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China.
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China; School of Nursing, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
11
|
Floriano BF, Carvalho T, Lopes TZ, Takahashi LAU, Rahal P, Tedesco AC, Calmon MF. Effect of berberine nanoemulsion Photodynamic therapy on cervical carcinoma cell line. Photodiagnosis Photodyn Ther 2021; 33:102174. [PMID: 33401021 DOI: 10.1016/j.pdpdt.2020.102174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Cervical carcinoma is the most common gynecological cancer among young and adult women. There has been increasing interest in natural sources for cervical carcinoma treatment, especially for active compounds from plant extracts as antineoplastic agents. Berberine is an example of one these promising natural products. It is a natural isoquinoline alkaloid and comes from plants, such as Berbis, Coptis, and Hydrastis. It is widely used in Chinese medicine and has demonstrated activity against various cancer cell lines. This work aims to analyze the efficiency of berberine-containing nanoemulsions as photosensitizing agents in photodynamic therapy and their interaction with cervical carcinoma cells and immortalized human keratinocyte cell line. Among all groups tested, berberine nanoemulsions combined with photodynamic therapy induced the most statistically significant phototoxicity in the evaluated cell lines. Fluorescence microscopy demonstrated that the compound was present for up to 48 h when berberine nanoemulsions were used. The reactive oxygen species assay showed an increase in reactive oxygen species in the two studied cell lines after treatment of berberine-containing nanoemulsion combined with photodynamic therapy. The autophagy trial showed significant increases in cell death when berberine-containing nanoemulsion treatment was combined with photodynamic therapy when compared to trichostatin A treatment as a positive control. However, caspase-3 activity did not significantly increase in cervical carcinoma cells and immortalized human keratinocyte cell line. The results suggest that nanoemulsions with berberine have potential for use as photosensitizing agents in photodynamic therapy to treat cervical carcinoma.
Collapse
Affiliation(s)
- Barbara Freitas Floriano
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Tamara Carvalho
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Tairine Zara Lopes
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Luandra Aparecida Unten Takahashi
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Paula Rahal
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marília Freitas Calmon
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 2020; 25:44. [PMID: 32983240 PMCID: PMC7517624 DOI: 10.1186/s11658-020-00236-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Arsenic trioxide has shown a strong anti-tumor effect with little toxicity when used in the treatment of acute promyelocytic leukemia (APL). An effect on glioma has also been shown. Its mechanisms include regulation of apoptosis and autophagy; promotion of the intracellular production of reactive oxygen species, causing oxidative damage; and inhibition of tumor stem cells. However, glioma cells and tissues from other sources show different responses to arsenic trioxide. Researchers are working to enhance its efficacy in anti-glioma treatments and reducing any adverse reactions. Here, we review recent research on the efficacy and mechanisms of action of arsenic trioxide in the treatment of gliomas to provide guidance for future studies.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| |
Collapse
|
13
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
14
|
Dundar B, Markwell SM, Sharma NV, Olson CL, Mukherjee S, Brat DJ. Methods for in vitro modeling of glioma invasion: Choosing tools to meet the need. Glia 2020; 68:2173-2191. [PMID: 32134155 DOI: 10.1002/glia.23813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Widespread tumor cell invasion is a fundamental property of diffuse gliomas and is ultimately responsible for their poor prognosis. A greater understanding of basic mechanisms underlying glioma invasion is needed to provide insights into therapies that could potentially counteract them. While none of the currently available in vitro models can fully recapitulate the complex interactions of glioma cells within the brain tumor microenvironment, if chosen and developed appropriately, these models can provide controlled experimental settings to study molecular and cellular phenomena that are challenging or impossible to model in vivo. Therefore, selecting the most appropriate in vitro model, together with its inherent advantages and limitations, for specific hypotheses and experimental questions achieves primary significance. In this review, we describe and discuss commonly used methods for modeling and studying glioma invasion in vitro, including platforms, matrices, cell culture, and visualization techniques, so that choices for experimental approach are informed and optimal.
Collapse
Affiliation(s)
- Bilge Dundar
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Steven M Markwell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nitya V Sharma
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
15
|
Wen C, Huang C, Yang M, Fan C, Li Q, Zhao J, Gan D, Li A, Zhu L, Lu D. The Secretion from Bone Marrow Mesenchymal Stem Cells Pretreated with Berberine Rescues Neurons with Oxidative Damage Through Activation of the Keap1-Nrf2-HO-1 Signaling Pathway. Neurotox Res 2020; 38:59-73. [PMID: 32108297 DOI: 10.1007/s12640-020-00178-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a potential pathological mechanism of Alzheimer's disease (AD). Berberine (BBR) can improve antioxidative capacity and inhibit Aβ protein aggregation and tau protein hyperphosphorylation in AD, and stem cell therapy is also increasingly recognized as a therapy for AD. Bone marrow mesenchymal stem cells (BMSCs) have many advantages, as they exhibit antioxidant and anti-inflammatory activity and secrete a variety of neurotrophic factors, and play important roles in neurodegenerative disease treatment. In this study, we investigated the antioxidant effects of secretions from BMSCs pretreated with BBR on tert-butyl hydroperoxide (t-BHP)-damaged neurons. We demonstrated that BBR can enhance BMSC viability and the secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both of which are vital neurotrophic factors that maintain neuronal growth. Moreover, conditioned medium from BBR-treated BMSCs (BBR-BMSC-CM) reduced reactive oxygen species (ROS) production, attenuated a decrease in the mitochondrial membrane potential, and ameliorated neuronal apoptosis by decreasing levels of the apoptotic proteins Bax/Bcl-2, cytochrome c, and cleaved caspase-3/caspase-3. In addition, increased synaptophysin (SYP) and postsynaptic density protein 95 (PSD95) levels indicated that neuronal synaptic function was restored. Further study revealed that BBR-BMSC-CM activated the antioxidant proteins Keap1, Nrf2, and HO-1. In conclusion, our results showed that BBR-BMSC-CM attenuated apoptosis and oxidative damage in neurons by activating the Keap1-Nrf2-HO-1 signaling pathway. Taken together, these results also suggest BBR as a drug to stimulate the secretion of nutritional cytokines with the potential to treat AD.
Collapse
Affiliation(s)
- Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
16
|
Fei X, Wang J, Chen C, Ding B, Fu X, Chen W, Wang C, Xu R. Eupatilin inhibits glioma proliferation, migration, and invasion by arresting cell cycle at G1/S phase and disrupting the cytoskeletal structure. Cancer Manag Res 2019; 11:4781-4796. [PMID: 31213900 PMCID: PMC6539175 DOI: 10.2147/cmar.s207257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Eupatilin is a pharmacologically active flavonoid extracted from Asteraceae argyi that has been identified as having antitumor effects. Gliomas are the most common intracranial malignant tumors and are associated with high mortality and a poor postoperative prognosis. There are few studies on the therapeutic effects of eupatilin on glioma. Therefore, we explored the efficacy and the underlying molecular mechanism of eupatilin on glioma. Methods: The effect of eupatilin on cell proliferation and viability was detected using Cell Counting Kit-8 assays. Cell migration was analyzed with a scratch wound healing assay and invasion was analyzed using transwell assays. Results: We found that eupatilin significantly inhibits the viability and proliferation of glioma cells by arresting the cell cycle at the G1/S phase. In addition, eupatilin disrupts the structure of the cytoskeleton and affects F-actin depolymerization via the “P-LIMK”/cofilin pathway, thereby inhibiting the migration of glioma. We also found that eupatilin inhibits the invasion of gliomas. The underlying mechanism may be related to the destruction of epithelial–mesenchymal transition, with eupatilin also affecting the RECK/matrix metalloproteinase pathway. However, we did not observe the proapoptotic effect of eupatilin on glioma, which is inconsistent with other studies. Finally, we observed a significant inhibitory effect of eupatilin on U87MG glioma in xenograft nude mice. Conclusion: Eupatilin inhibits the viability and proliferation of glioma cells, attenuates the migration and invasion, and inhibits tumor growth in vivo, but does not promote apoptosis. Therefore, due to the poor clinical efficacy of drug treatment of glioma and high drug resistance, the emergence of eupatilin brings a new dawn for glioma patients.
Collapse
Affiliation(s)
- Xiaowei Fei
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China.,Department of Physiology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Ji Wang
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Chen Chen
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Boyun Ding
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Xiaojun Fu
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Wenjing Chen
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Chongwu Wang
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Ruxiang Xu
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| |
Collapse
|
17
|
Tong L, Xie C, Wei Y, Qu Y, Liang H, Zhang Y, Xu T, Qian X, Qiu H, Deng H. Antitumor Effects of Berberine on Gliomas via Inactivation of Caspase-1-Mediated IL-1β and IL-18 Release. Front Oncol 2019; 9:364. [PMID: 31139563 PMCID: PMC6527738 DOI: 10.3389/fonc.2019.00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Gliomas arise in the glial cells of the brain or spine and are the most prevalent and devastating type of brain tumors. Studies of tumor immunology have established the importance of the tumor micro-environment as a driver of oncogenesis. Inflammatory mediators such as IL-1β and IL-18 released by monocytes regulate transcriptional networks that are required for malignant cell growth. Berberine is a natural botanical alkaloid that is widely found in the Berberis species. Although it has been widely used as an anti-diarrheal treatment in North America for several decades, our study is the first to investigate berberine as an anti-tumor agent in glioma cells. In this study, we demonstrate that berberine significantly inhibits inflammatory cytokine Caspase-1 activation via ERK1/2 signaling and subsequent production of IL-1β and IL-18 by glioma cells. Moreover, we found that berberine treatment led to decreased motility and subsequently cell death in U251 and U87 cells. In addition, our study is the first to indicate that berberine can reverse the process of epithelial-mesenchymal transition, a marker of tumor invasion. Taken together, our work supports berberine as a putative anti-tumor agent targeting glioma cells.
Collapse
Affiliation(s)
- Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafen Wei
- Department of Neurology, The Provincal Hospital of Heilongjiang Province, Harbin, China
| | - Yunyue Qu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianye Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Qian
- Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huijia Qiu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyu Deng
- Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
19
|
Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Sci Rep 2018; 8:10599. [PMID: 30006630 PMCID: PMC6045596 DOI: 10.1038/s41598-018-28952-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/14/2018] [Indexed: 01/19/2023] Open
Abstract
The natural alkaloid berberine has several pharmacological properties and recently received attention as a potential anticancer agent. In this work, we investigated the molecular mechanisms underlying the anti-tumor effect of berberine on glioblastoma U343 and pancreatic carcinoma MIA PaCa-2 cells. Human dermal fibroblasts (HDF) were used as non-cancer cells. We show that berberine differentially affects cell viability, displaying a higher cytotoxicity on the two cancer cell lines than on HDF. Berberine also affects cell cycle progression, senescence, caspase-3 activity, autophagy and migration in a cell-specific manner. In particular, in HDF it induces cell cycle arrest in G2 and senescence, but not autophagy; in the U343 cells, berberine leads to cell cycle arrest in G2 and induces both senescence and autophagy; in MIA PaCa-2 cells, the alkaloid induces arrest in G1, senescence, autophagy, it increases caspase-3 activity and impairs migration/invasion. As demonstrated by decreased citrate synthase activity, the three cell lines show mitochondrial dysfunction following berberine exposure. Finally, we observed that berberine modulates the expression profile of genes involved in different pathways of tumorigenesis in a cell line-specific manner. These findings have valuable implications for understanding the complex functional interactions between berberine and specific cell types.
Collapse
|
20
|
Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol 2018; 820:274-285. [DOI: 10.1016/j.ejphar.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
21
|
Park JY, Kim H, Lim DW, Kim JE, Park WH, Park SD. Ethanol Extract of Lycopodium serratum Thunb. Attenuates Lipopolysaccharide-Induced C6 Glioma Cells Migration via Matrix Metalloproteinase-9 Expression. Chin J Integr Med 2018; 24:860-866. [PMID: 29335864 DOI: 10.1007/s11655-017-2923-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To elucidate how ethanol extract of L. serratum (ELS) could exert anti-migratory effects on glioma with the suppression of nuclear factor kappa B (NF-κB) downstream pathway. METHODS Cell viability of ELS on C6 glioma was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) assay and 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay were applied to measure NO production and reactive oxygen species (ROS) generation on lipopolysaccharide (LPS)-induced C6 glioma cells. NF-κB, mitogen-activated protein kinase (MAPK), inducible nictric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein were determined by Western blot. Wound healing assay was used to investigate the inhibitory effect of ELS on fetal bovine serum (FBS)-induced migration and matrix metalloproteinase (MMP)-9 and -2 activity was examined by zymography. RESULTS ELS suppressed LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 through inhibiting the expression of chemokine CCL2 (or monocyte chemoattractant protein-1, MCP-1). In addition, ELS inhibited the expression of iNOS, COX-2, and the production of NO by LPS in C6 glioma cells. ELS also significantly decreased serum-induced migration of C6 glioma cells in scratch wound healing in a dose-dependent manner (P<0.01). The activity of MMP-9 and -2 were also significantly attenuated by ELS with LPS treatment (P<0.01). CONCLUSIONS Our results suggest that downregulation of MMP-9 gene expression might be involved in the anti-migration effect of ELS against LPS-induced C6 glioma cells.
Collapse
Affiliation(s)
- Ju-Yeon Park
- Institute of Korean Medicine, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang, 10326, Republic of Korea
| | - Hyuck Kim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang, 10326, Republic of Korea
| | - Dong-Woo Lim
- Department of Pathology, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang, 10326, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang, 10326, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang, 10326, Republic of Korea
| | - Sun-Dong Park
- Department of Prescription, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang, 10326, Republic of Korea.
| |
Collapse
|
22
|
Bharti AC, Rajan P, Jadli M, Pande D, Singh T, Bhat A. Berberine as an Adjuvant and Sensitizer to Current Chemotherapy. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:221-240. [DOI: 10.1016/b978-0-12-812373-7.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Qi XT, Zhan JS, Xiao LM, Li L, Xu HX, Fu ZB, Zhang YH, Zhang J, Jia XH, Ge G, Chai RC, Gao K, Yu ACH. The Unwanted Cell Migration in the Brain: Glioma Metastasis. Neurochem Res 2017; 42:1847-1863. [PMID: 28478595 DOI: 10.1007/s11064-017-2272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Collapse
Affiliation(s)
- Xue Tao Qi
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Li Ming Xiao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| | - Han Xiao Xu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Zi Bing Fu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hao Zhang
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
24
|
Hu XQ, Sun Y, Lau E, Zhao M, Su SB. Advances in Synergistic Combinations of Chinese Herbal Medicine for the Treatment of Cancer. Curr Cancer Drug Targets 2016; 16:346-56. [PMID: 26638885 PMCID: PMC5425653 DOI: 10.2174/1568009616666151207105851] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022]
Abstract
The complex pathology of cancer development requires correspondingly complex treatments. The traditional application of individual single-target drugs fails to sufficiently treat cancer with durable therapeutic effects and tolerable adverse events. Therefore, synergistic combinations of drugs represent a promising way to enhance efficacy, overcome toxicity and optimize safety. Chinese Herbal Medicines (CHMs) have long been used as such synergistic combinations. Therefore, we summarized the synergistic combinations of CHMs used in the treatment of cancer and their roles in chemotherapy in terms of enhancing efficacy, reducing side effects, immune modulation, as well as abrogating drug resistance. Our conclusions support the development of further science-based holistic modalities for cancer care.
Collapse
Affiliation(s)
| | | | | | | | - Shi-Bing Su
- Department of Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
25
|
Thang ND, Minh NV, Huong PT. Translocation of BBAP from the cytoplasm to the nucleus reduces the metastatic ability of vemurafenib-resistant SKMEL28 cells. Mol Med Rep 2016; 15:317-322. [PMID: 27922665 DOI: 10.3892/mmr.2016.5976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
To the best of our knowledge, the present study is the first to demonstrate that treatment of vemurafenib-resistant SKMEL28 (SKMEL28-R) cells with paclitaxel leads to a shift in localization of the E3-ligase BBAP from the cytoplasm to the nucleus, consequently decreasing the metastatic ability of this cell line. The present study revealed that the movement of BBAP from the cytoplasm to nucleus initiated a change in cell morphology. In addition, the translocation of BBAP led to a decrease of metastatic characteristics in SKMEL28‑R cells, including migration and invasion via downregulation of the phosphorylated form of focal adhesion kinase and N‑cadherin, as well as an upregulation of p21 and E-cadherin. The results of the present study suggested that BBAP may not only be a novel biomarker for melanoma, but also a novel therapeutic target for treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Nguyen Dinh Thang
- Department of Biochemistry and Plant Physiology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 120564, Vietnam
| | - Nguyen Van Minh
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi 120564, Vietnam
| | - Pham Thu Huong
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi 120564, Vietnam
| |
Collapse
|
26
|
Wen C, Wu L, Fu L, Zhang X, Zhou H. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells. Mol Med Rep 2016; 14:2250-6. [PMID: 27432642 DOI: 10.3892/mmr.2016.5490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 06/14/2016] [Indexed: 12/27/2022] Open
Abstract
Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research.
Collapse
Affiliation(s)
- Chunjie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lijuan Fu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honghao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
27
|
Zhu T, Li LL, Xiao GF, Luo QZ, Liu QZ, Yao KT, Xiao GH. Berberine Increases Doxorubicin Sensitivity by Suppressing STAT3 in Lung Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1487-502. [PMID: 26503561 DOI: 10.1142/s0192415x15500846] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Berberine (BBR), an alkaloid component isolated from Chinese medicinal herb Huang Lian, has aroused broad interests for its antitumor effect in recent years. The signal transducer and activator of transcription 3 (STAT3), plays critical roles in malignant transformation and progression and was found to be constitutively activated in a variety of human cancers. In this study, we show that BBR inhibited cell proliferation, induced apoptosis, and suppressed tumor spheroid formation of lung cancer cell lines. These effects were correlated with BBR-mediated suppression of both phosphorylated and total levels of STAT3 protein. Furthermore, BBR promoted STAT3 degradation by enhancing ubiquitination. Importantly, we demonstrated that BBR was able to inhibit doxorubicin (DOX)-mediated STAT3 activation and sensitize lung cancer cells to the cytotoxic effect of DOX treatment. Given that BBR is widely used in clinic with low toxicity, our results are potentially important for the development of a novel combinatorial therapy with BBR and DOX in the treatment of lung cancer.
Collapse
Affiliation(s)
- Ting Zhu
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Lin-Lin Li
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Fa Xiao
- † Department of Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qi-Zhi Luo
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Qiu-Zheng Liu
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Kai-Tai Yao
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Hui Xiao
- * Cancer Institute, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
28
|
Therapeutic potential of berberine against neurodegenerative diseases. SCIENCE CHINA-LIFE SCIENCES 2015; 58:564-9. [PMID: 25749423 PMCID: PMC5823536 DOI: 10.1007/s11427-015-4829-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR’s effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer’s disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson’s disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.
Collapse
|
29
|
HUANG ZHENGHUA, ZHENG HONGFANG, WANG WEILU, WANG YONG, ZHONG LONGFEI, WU JIULONG, LI QIAOXING. Berberine targets epidermal growth factor receptor signaling to suppress prostate cancer proliferation in vitro. Mol Med Rep 2014; 11:2125-8. [DOI: 10.3892/mmr.2014.2929] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
|
30
|
Ma W, Zhao L, Yin K, Feng D, Yang F, Liang J, Chen H, Bi C, Li X, Wang Y, Cai B. Effects of arsenic trioxide on proliferation, paracrine and migration of cardiac progenitor cells. Int J Cardiol 2014; 179:393-6. [PMID: 25464494 DOI: 10.1016/j.ijcard.2014.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Wenya Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Liang Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kun Yin
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Dan Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Fan Yang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jing Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Hongyang Chen
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Chongwei Bi
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xingda Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Benzhi Cai
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
31
|
Finley J. Alteration of splice site selection in the LMNA gene and inhibition of progerin production via AMPK activation. Med Hypotheses 2014; 83:580-7. [PMID: 25216752 DOI: 10.1016/j.mehy.2014.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 08/11/2014] [Indexed: 02/06/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by an accelerated aging phenotype and an average life span of 13years. Patients typically exhibit extensive pathophysiological vascular alterations, eventually resulting in death from stroke or myocardial infarction. A silent point mutation at position 1824 (C1824T) of the LMNA gene, generating a truncated form of lamin A (progerin), has been shown to be the cause of most cases of HGPS. Interestingly, this mutation induces the use of an internal 5' cryptic splice site within exon 11 of the LMNA pre-mRNA, leading to the generation of progerin via aberrant alternative splicing. The serine-arginine rich splicing factor 1 (SRSF1 or ASF/SF2) has been shown to function as an oncoprotein and is upregulated in many cancers and other age-related disorders. Indeed, SRSF1 inhibition results in a splicing ratio in the LMNA pre-mRNA favoring lamin A production over that of progerin. It is our hypothesis that activation of AMP-activated protein kinase (AMPK), a master regulator of cellular metabolism, may lead to a reduction in SRSF1 and thus a decrease in the use of the LMNA 5' cryptic splice site in exon 11 through upregulation of p32, a splicing factor-associated protein and putative mitochondrial chaperone that has been shown to inhibit SRSF1 and enhance mitochondrial DNA (mtDNA) replication and oxidative phosphorylation. AMPK activation by currently available compounds such as metformin, resveratrol, and berberine may thus have wide-ranging implications for disorders associated with increased production and accumulation of progerin.
Collapse
|
32
|
Ortiz LMG, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules 2014; 19:12349-67. [PMID: 25153862 PMCID: PMC6271598 DOI: 10.3390/molecules190812349] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022] Open
Abstract
Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many derivatives have been synthesized to improve berberine efficiency and selectivity; the results so far obtained on human cancer cell lines support the idea that they could be promising agents for cancer treatment. The main properties of berberine and derivatives will be illustrated.
Collapse
Affiliation(s)
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese 20026, Italy.
| | - Micol Tillhon
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, Pavia 27100, Italy.
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, Pavia 27100, Italy.
| |
Collapse
|
33
|
Chang YW, Chen MW, Chiu CF, Hong CC, Cheng CC, Hsiao M, Chen CA, Wei LH, Su JL. Arsenic trioxide inhibits CXCR4-mediated metastasis by interfering miR-520h/PP2A/NF-κB signaling in cervical cancer. Ann Surg Oncol 2014; 21 Suppl 4:S687-95. [PMID: 25047463 DOI: 10.1245/s10434-014-3812-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Arsenic apparently affects numerous intracellular signal transduction pathways and causes many alterations leading to apoptosis and differentiation in malignant cells. We and others have demonstrated that arsenic inhibits the metastatic capacity of cancer cells. Here we present additional mechanistic studies to elucidate the potential of arsenic as a promising therapeutic inhibitor of metastasis. METHODS The effects of arsenic trioxide (ATO) on human cervical cancer cell lines migration and invasion were observed by transwell assays. In experimental metastasis assays, cancer cells were injected into tail veins of severe combined immunodeficient mice for modeling metastasis. The mechanisms involved in ATO regulation of CXCR4 were analyzed by immunoblot, real-time polymerase chain reaction, and luciferase reporter assays. Immunohistochemistry was utilized to identify PP2A/C and CXCR4 protein expressions in human cervical cancer tissues. RESULTS ATO inhibited CXCR4-mediated cervical cancer cell invasion in vitro and distant metastasis in vivo. We determined that ATO modulates the pivotal nuclear factor-kappa B (NF-κB)/CXCR4 signaling pathway that contributes to cancer metastasis. Substantiating our findings, we demonstrated that ATO activates PP2A/C activity by downregulating miR-520h, which results in IKK inactivation, IκB-dephosphorylation, NF-κB inactivation, and, subsequently, a reduction in CXCR4 expression. Furthermore, PP2A/C was reduced during cervical carcinogenesis, and the loss of PP2A/C expression was closely associated with the nodal status of cervical cancer patients. CONCLUSIONS Our results indicate a functional link between ATO-mediated PP2A/C regulation, CXCR4 expression, and tumor-suppressing ability. This information will be critical in realizing the potential for synergy between ATO and other anti-cancer agents, thus providing enhanced benefit in cancer therapy.
Collapse
Affiliation(s)
- Yi-Wen Chang
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thang ND, Yajima I, Kumasaka MY, Kato M. Bidirectional functions of arsenic as a carcinogen and an anti-cancer agent in human squamous cell carcinoma. PLoS One 2014; 9:e96945. [PMID: 24816914 PMCID: PMC4016145 DOI: 10.1371/journal.pone.0096945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/13/2014] [Indexed: 11/18/2022] Open
Abstract
Bidirectional cancer-promoting and anti-cancer effects of arsenic for cancer cells have been revealed in previous studies. However, each of these effects (cancer-promoting or anti-cancer) was found in different cells at different treated-concentration of arsenic. In this study, we for the first time indicated that arsenic at concentration of 3 µM, equal to average concentration in drinking water in cancer-prone areas in Bangladesh, simultaneously expressed its bidirectional effects on human squamous cell carcinoma HSC5 cells with distinct pathways. Treatment with 3 µM of arsenic promoted cell invasion via upregulation of expression of MT1-MMP and downregulation of expression of p14ARF and simultaneously induced cell apoptosis through inhibition of expression of N-cadherin and increase of expression of p21(WAF1/CIP1) at both transcript and protein levels in HSC5 cells. We also showed that inhibition of MT1-MMP expression by NSC405020 resulted in decrease of arsenic-mediated invasion of HSC5 cells involving decrease in phosphorylated extracellular signal-regulated kinases (pERK). Taken together, our biological and biochemical findings suggested that arsenic expressed bidirectional effects as a carcinogen and an anti-cancer agent in human squamous cell carcinoma HSC5 cells with distinct pathways. Our results might play an important scientific evident for further studies to find out a better way in treatment of arsenic-induced cancers, especially in squamous cell carcinoma.
Collapse
Affiliation(s)
- Nguyen Dinh Thang
- Department of Biochemistry and Plant Physiology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- * E-mail:
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Prefecture, Japan
| | - Mayuko Y. Kumasaka
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Prefecture, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
35
|
Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: effects of genistein, quercetin and buthionine-sulfoximine. Food Chem Toxicol 2014; 67:212-21. [PMID: 24632069 DOI: 10.1016/j.fct.2014.02.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
Arsenic trioxide (ATO) induces clinical remission in acute promyelocytic leukemia and growth inhibition in various cancer cell lines in vitro. Recently, genistein and quercetin were reported to potentiate ATO-provoked apoptosis in leukemia and hepatocellular carcinoma cells. Genistein acted via enhanced ROS generation and quercetin via glutathione depletion. Searching for potential strategies for the treatment of malignant gliomas in this study the capacity of these flavonoids to sensitize rat C6 astroglioma cells for the cytotoxic action of ATO was investigated. ATO inhibited cell growth in a concentration- and time-dependent manner. This effect was accompanied neither by enhanced radical generation nor lipid peroxidation and was not attributed to apoptosis. ATO treatment concentration-dependently increased glutathione levels. Genistein enhanced radical generation. Combined with ATO it inhibited cell growth additively. Additivity was also obtained after cotreatment with ATO and H2O2. Quercetin acted antagonistically on ATO-induced growth inhibition. Quercetin increased glutathione levels. In contrast, buthionine-sulfoximine (BSO) depleted cellular glutathione and acted synergistically with ATO. In conclusion, in C6 cells neither genistein nor quercetin are suited as sensitizing agent, in contrast to BSO. Depletion of cellular glutathione content rather than an increase of ROS generation plays a central role in the enhancement of ATO-toxicity in C6 cells.
Collapse
|
36
|
Liang HY, Chen T, Yan HT, Huang Z, Tang LJ. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway. Mol Med Rep 2014; 9:1827-33. [PMID: 24584406 DOI: 10.3892/mmr.2014.1996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/21/2014] [Indexed: 11/05/2022] Open
Abstract
Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.
Collapse
Affiliation(s)
- Hong-Yin Liang
- PLA Center of General Surgery, General Hospital of Chengdu Military Command, Chengdu, Sichuan 610083, P.R. China
| | - Tao Chen
- PLA Center of General Surgery, General Hospital of Chengdu Military Command, Chengdu, Sichuan 610083, P.R. China
| | - Hong-Tao Yan
- PLA Center of General Surgery, General Hospital of Chengdu Military Command, Chengdu, Sichuan 610083, P.R. China
| | - Zhu Huang
- PLA Center of General Surgery, General Hospital of Chengdu Military Command, Chengdu, Sichuan 610083, P.R. China
| | - Li-Jun Tang
- PLA Center of General Surgery, General Hospital of Chengdu Military Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
37
|
Karsy M, Albert L, Murali R, Jhanwar-Uniyal M. The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumour Biol 2014; 35:4567-80. [PMID: 24399651 DOI: 10.1007/s13277-013-1601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and demonstrates a 1-year median survival time. Codon-specific hotspot mutations of p53 result in constitutively active mutant p53, which promotes aberrant proliferation, anti-apoptosis, and cell cycle checkpoint failure in GBM. Recently identified CD133(+) cancer stem cell populations (CSC) within GBM also confer therapeutic resistance. We studied targeted therapy in a codon-specific p53 mutant (R273H) created by site-directed mutagenesis in U87MG. The effects of arsenic trioxide (ATO, 1 μM) and all-trans retinoic acid (ATRA, 10 μM), possible targeted treatments of CSCs, were investigated in U87MG neurospheres. The results showed that U87-p53(R273H) cells generated more rapid neurosphere growth than U87-p53(wt) but inhibition of neurosphere proliferation was seen with both ATO and ATRA. U87-p53(R273H) neurospheres showed resistance to differentiation into glial cells and neuronal cells with ATO and ATRA exposure. ATO was able to generate apoptosis at high doses and proliferation of U87-p53(wt) and U87-p53(R273H) cells was reduced with ATO and ATRA in a dose-dependent manner. Elevated pERK1/2 and p53 expression was seen in U87-p53(R273H) neurospheres, which could be reduced with ATO and ATRA treatment. Additionally, differential responses in pERK1/2 were seen with ATO treatment in neurospheres and non-neurosphere cells. In conclusion, codon-specific mutant p53 conferred a more aggressive phenotype to our CSC model. However, ATO and ATRA could potently suppress CSC properties in vitro and may support further clinical investigation of these agents.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA,
| | | | | | | |
Collapse
|
38
|
Huang S, Guo S, Guo F, Yang Q, Xiao X, Murata M, Ohnishi S, Kawanishi S, Ma N. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure. Eur J Histochem 2013; 57:e1. [PMID: 23549458 PMCID: PMC3683606 DOI: 10.4081/ejh.2013.e1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the human spontaneously immortalized skin keratinocytes (HaCaT) cell line to an environmentally relevant level of arsenic (0.05 ppm) in vitrofor 18 weeks. Following sodium arsenite administration, cell cycle, colony-forming efficiency (CFE), cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages). We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem-like phenotype. Furthermore, arsenictreated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was upregulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01). Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenicinduced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.
Collapse
Affiliation(s)
- S Huang
- Suzuka University of Medical Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen XW, Di YM, Zhang J, Zhou ZW, Li CG, Zhou SF. Interaction of herbal compounds with biological targets: a case study with berberine. ScientificWorldJournal 2012; 2012:708292. [PMID: 23213296 PMCID: PMC3504405 DOI: 10.1100/2012/708292] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/08/2012] [Indexed: 02/06/2023] Open
Abstract
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach.
Collapse
Affiliation(s)
- Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde, Southern Medical University, Shunde, Guangdong 528300, China
| | | | | | | | | | | |
Collapse
|
40
|
Yin SH, Wang CC, Cheng TJ, Chang CY, Lin KC, Kan WC, Wang HY, Kao WMW, Kuo YL, Chen JC, Li SL, Cheng CH, Chuu JJ. Room-temperature super-extraction system (RTSES) optimizes the anxiolytic- and antidepressant-like behavioural effects of traditional Xiao-Yao-San in mice. Chin Med 2012; 7:24. [PMID: 23134744 PMCID: PMC3582554 DOI: 10.1186/1749-8546-7-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/24/2012] [Indexed: 12/31/2022] Open
Abstract
Background Xiao-Yao-San (XYS) is a Chinese medicinal formula for treating anxiety and depression. This study aims to evaluate the use of a room-temperature super-extraction system (RTSES) to extract the major active components of XYS and enhance their psycho-pharmacological effects. Methods The neuroprotective roles of XYS/RTSES against reserpine-derived neurotoxicity were evaluated using a glial cell injury system (in vitro) and a depression-like C57BL/6 J mouse model (in vivo). The anxiolytic-behavioural effects were measured by the elevated plus-maze (EPM) test and the antidepressant effects were evaluated by the forced swimming test (FST) and tail suspension test (TST). Glucose tolerance and insulin resistance were assayed by ELISA. The expression of 5-HT1A receptors in the prefrontal cortex was examined by western blotting. Results XYS/RTSES (300 μg/mL) diminished reserpine-induced glial cell death more effectively than either XYS (300 μg/mL) or fluoxetine (30 μM) at 24 h (P = 0.0481 and P = 0.054, respectively). Oral administration of XYS/RTSES (500 mg/kg/day) for 4 consecutive weeks significantly elevated the ratios of entries (open arms/closed arms; P = 0.0177) and shuttle activity (P = 0.00149) on the EPM test, and reduced the immobility time by 90% on the TST (P = 0.00000538) and FST (P = 0.0000053839). XYS/RTSES also improved the regulation of blood glucose (P = 0.0305) and increased the insulin sensitivity (P = 0.0093). The Western blot results indicated that the activation of cerebral 5-HT1A receptors may be involved in the mechanisms of XYS/RTSES actions. Conclusion The RTSES could provide a novel method for extracting effective anxiolytic- and antidepressant-like substances. XYS/RTSES improved the regulation of blood glucose and increased the insulin sensitivity in reserpine-induced anxiety and depression. Neuroprotection of glial cells and activation of cerebral 5-HT1A receptors were also involved.
Collapse
Affiliation(s)
- Shih-Hsi Yin
- Institute of Biotechnology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Berberine inhibits the migration and invasion of T24 bladder cancer cells via reducing the expression of heparanase. Tumour Biol 2012; 34:215-21. [DOI: 10.1007/s13277-012-0531-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/18/2012] [Indexed: 02/02/2023] Open
|
42
|
Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol 2012; 84:1260-7. [PMID: 22842630 DOI: 10.1016/j.bcp.2012.07.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023]
Abstract
Chemical compounds derived from plants have been used since the origin of human beings to counteract a number of diseases. Among them, the natural isoquinoline alkaloid berberine has been employed in Ayurvedic and Chinese Medicine for hundreds of years with a wide range of pharmacological and biochemical effects. More recently, a growing body of reports supports the evidence that berberine has anticancer effects, being able to block the proliferation of and to kill cancer cells. This review addresses the properties and therapeutic use of berberine and focuses on the recent advances as promising anticancer drug lead.
Collapse
|
43
|
Bridge JA, Liu XQ, Sumegi J, Nelson M, Reyes C, Bruch LA, Rosenblum M, Puccioni MJ, Bowdino BS, McComb RD. Identification of a novel, recurrent SLC44A1-PRKCA fusion in papillary glioneuronal tumor. Brain Pathol 2012; 23:121-8. [PMID: 22725730 DOI: 10.1111/j.1750-3639.2012.00612.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022] Open
Abstract
Mixed neuronal-glial tumors are rare and challenging to subclassify. One recently recognized variant, papillary glioneuronal tumor (PGNT), is characterized by prominent pseudopapillary structures and glioneuronal elements. We identified a novel translocation, t(9;17)(q31;q24), as the sole karyotypic anomaly in two PGNTs. A fluorescence in situ hybridization (FISH)-based positional cloning strategy revealed SLC44A1, a member of the choline transporter-like protein family, and PRKCA, a protein kinase C family member of serine/threonine-specific protein kinases, as the 9q31 and 17q24 breakpoint candidate genes, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis using a forward primer from SLC44A1 exon 5 and a reverse primer from PRKCA exon 10 confirmed the presence of a SLC44A1-PRKCA fusion product in both tumors. Sequencing of each chimeric transcript uncovered an identical fusion cDNA junction occurring between SLC44A1 exon 15 and PRKCA exon 9. A dual-color breakpoint-spanning probe set custom-designed for interphase cell recognition of the translocation event identified the fusion in a third PGNT. These results suggest that the t(9;17)(q31;q24) with the resultant novel fusion oncogene SLC44A1-PRKCA is the defining molecular feature of PGNT that may be responsible for its pathogenesis. The FISH and RT-PCR assays developed in this study can serve as valuable diagnostic adjuncts for this rare disease entity.
Collapse
Affiliation(s)
- Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Arsenic trioxide inhibits Ewing's sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase. Anticancer Drugs 2012; 23:108-18. [PMID: 21946058 DOI: 10.1097/cad.0b013e32834bfd68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ewing's sarcoma is the second most frequent primary malignant bone tumor, mainly affecting children and young adults. The notorious metastatic capability of this tumor aggravates patient mortality and remains a problem to be overcome. We investigated the effect of arsenic trioxide (As₂O₃) on the metastasis capability of Ewing's sarcoma cells. We performed 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide assays to choose appropriate concentrations of As₂O₃ for the experiments. Migration, invasion, and adhesion assays were performed to assess the effect of As₂O₃ on the metastasis of Ewing's sarcoma. Immunofluorescent staining was used to observe cytoskeleton reorganization in Ewing's sarcoma cells treated with As₂O₃. Changes in matrix metalloproteinase-9 expression and the mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Inhibitors of p38(MAPK) (sb202190) and c-Jun NH₂-terminal kinase (JNK, sp600125) were used in invasion assays to determine the effect of p38(MAPK) and JNK. We found that As₂O₃ may markedly inhibit the migration and invasion capacity of Ewing's sarcoma cells with structural rearrangements of the actin cytoskeleton. The expressions of matrix metalloproteinase-9, phosphor-p38(MAPK), and phosphor-JNK were suppressed by As₂O₃ treatment in a dose-dependent manner. The inhibitors of p38(MAPK) (sb202190) and JNK (sp600125) enhanced the inhibition induced by As₂O₃, which was counteracted by anisomycin, an activating agent of p38(MAPK) and JNK. Taken together, our results demonstrate that As₂O₃ can inhibit the metastasis capability of RD-ES and A-673 cells and may have new therapeutic value for Ewing's sarcoma.
Collapse
|
45
|
He C, Rong R, Liu J, Wan J, Zhou K, Kang JX. Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells. Chin Med 2012; 7:11. [PMID: 22546215 PMCID: PMC3488973 DOI: 10.1186/1749-8546-7-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 04/21/2012] [Indexed: 11/26/2022] Open
Abstract
Background Non–small cell lung cancer is associated with high expression of multidrug resistance (MDR) proteins and low production of reactive oxygen species (ROS). Coptis extract (COP), a Chinese medicinal herb, and its major constituent, berberine (BER), have anticancer properties. This study aims to investigate the effects of COP and BER combined with chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX), on cell proliferation, ROS production, and MDR in A549 human non-small cell lung cancer cells. Methods A549 cells were treated with different doses of COP and BER, combined with 5-FU, CPT, and TAX. Cell viability was measured by an XTT (2,3-bis-(2-methoxy-4- nitro-5-sulfophenyl)-2 H-tetrazolium-5-carboxanilide) assay. Intracellular ROS levels were determined by measuring the oxidative conversion of cell permeable 2′,7′-dichlorofluorescein diacetate to fluorescent dichlorofluorescein. MDR of A549 cells was assessed by rhodamine 123 retention assay. Results Both COP and BER significantly inhibited A549 cell growth in a dose-dependent manner. Combinations of COP or BER with chemotherapeutic agents (5-FU, CPT, and TAX) exhibited a stronger inhibitory effect on A549 cell growth. In addition, COP and BER increased ROS production and reduced MDR in A549 cells. Conclusion As potential adjuvants to chemotherapy for non–small cell lung cancer, COP and BER increase ROS production, reduce MDR, and enhance the inhibitory effects of chemotherapeutic agents on A549 cell growth.
Collapse
Affiliation(s)
- Chengwei He
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA, 02129, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Huang WS, Kuo YH, Chin CC, Wang JY, Yu HR, Sheen JM, Tung SY, Shen CH, Chen TC, Sung ML, Liang HF, Kuo HC. Proteomic analysis of the effects of baicalein on colorectal cancer cells. Proteomics 2012; 12:810-9. [DOI: 10.1002/pmic.201100270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Chih-Chien Chin
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Jeng-Yi Wang
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Hong-Ren Yu
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
- Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Jiunn-Ming Sheen
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
- Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterological; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterological; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Te-Chuan Chen
- Division of Nephrology; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Mei-Lan Sung
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
- Chronic Diseases and Health Promotion Research Center; CGUST; Taiwan
| | - Hwey-Fang Liang
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
- Chronic Diseases and Health Promotion Research Center; CGUST; Taiwan
| |
Collapse
|
47
|
Dizaji MZ, Malehmir M, Ghavamzadeh A, Alimoghaddam K, Ghaffari SH. Synergistic Effects of Arsenic Trioxide and Silibinin on Apoptosis and Invasion in Human Glioblastoma U87MG Cell Line. Neurochem Res 2011; 37:370-80. [DOI: 10.1007/s11064-011-0620-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/27/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
|
48
|
Baicalein inhibits the migration and invasive properties of human hepatoma cells. Toxicol Appl Pharmacol 2011; 255:316-26. [PMID: 21803068 DOI: 10.1016/j.taap.2011.07.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
Abstract
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo.
Collapse
|
49
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011. [PMID: 21777476 DOI: 10.1186/1749-8546-6- 27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
50
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6:27. [PMID: 21777476 PMCID: PMC3149025 DOI: 10.1186/1749-8546-6-27] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/22/2011] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|