1
|
Polan C, Brenner C, Herten M, Hilken G, Grabellus F, Meyer HL, Burggraf M, Dudda M, Jahnen-Dechent W, Wedemeyer C, Kauther MD. Increased UHMWPE Particle-Induced Osteolysis in Fetuin-A-Deficient Mice. J Funct Biomater 2023; 14:jfb14010030. [PMID: 36662077 PMCID: PMC9865936 DOI: 10.3390/jfb14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Particle-induced osteolysis is a major cause of aseptic prosthetic loosening. Implant wear particles stimulate tissue macrophages inducing an aseptic inflammatory reaction, which ultimately results in bone loss. Fetuin-A is a key regulator of calcified matrix metabolism and an acute phase protein. We studied the influence of fetuin-A on particle-induced osteolysis in an established mouse model using fetuin-A-deficient mice. Ten fetuin-A-deficient (Ahsg−/−) mice and ten wild-type animals (Ahsg+/+) were assigned to test group receiving ultra-high molecular weight polyethylene (UHMWPE) particle implantation or to control group (sham surgery). After 14 days, bone metabolism parameters RANKL, osteoprotegerin (OPG), osteocalcin (OC), alkaline phosphatase (ALP), calcium, phosphate, and desoxypyridinoline (DPD) were examined. Bone volume was determined by microcomputed tomography (μCT); osteolytic regions and osteoclasts were histomorphometrically analyzed. After particle treatment, bone resorption was significantly increased in Ahsg−/− mice compared with corresponding Ahsg+/+ wild-type mice (p = 0.007). Eroded surface areas in Ahsg−/− mice were significantly increased (p = 0.002) compared with Ahsg+/+ mice, as well as the number of osteoclasts compared with control (p = 0.039). Fetuin-A deficiency revealed increased OPG (p = 0.002), and decreased levels of DPD (p = 0.038), OC (p = 0.036), ALP (p < 0.001), and Ca (p = 0.001) compared with wild-type animals. Under osteolytic conditions in Ahsg−/− mice, OPG was increased (p = 0.013), ALP (p = 0.015) and DPD (p = 0.012) were decreased compared with the Ahsg+/+ group. Osteolytic conditions lead to greater bone loss in fetuin-A-deficient mice compared with wild-type mice. Reduced fetuin-A serum levels may be a risk factor for particle-induced osteolysis while the protective effect of fetuin-A might be a future pathway for prophylaxis and treatment.
Collapse
Affiliation(s)
- Christina Polan
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-1301
| | - Christina Brenner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Florian Grabellus
- Institute of Pathology and Neuropathology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Heinz-Lothar Meyer
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manuel Burggraf
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Christian Wedemeyer
- Department of Orthopaedic Surgery, St. Barbara Hospital Gladbeck, 45964 Gladbeck, Germany
| | - Max Daniel Kauther
- Department of Trauma Surgery and Orthopedics, Pediatric Orthopedics, Agaplesion Diakonieklinikum Rotenburg (Wümme), 27356 Rotenburg, Germany
| |
Collapse
|
2
|
Schündeln MM, Höppner J, Meyer FL, Schmuck W, Kauther MD, Hilken G, Levkau B, Rauner M, Grasemann C. Prednisone prevents particle induced bone loss in the calvaria mouse model. Heliyon 2021; 7:e07828. [PMID: 34471710 PMCID: PMC8387912 DOI: 10.1016/j.heliyon.2021.e07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/03/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Glucocorticoids are essential in the treatment of many chronic inflammatory and malignant diseases but are known to have detrimental effects on bone. This study aimed to investigate the effects of prednisone on osteoclast functioning in vivo in the calvaria particle-induced bone loss mouse model. METHODS 12-week-old male C57BL6/J mice received subcutaneously implanted prednisone (2.5 mg/d, 60 day release (n = 14)) or placebo pellets (n = 10). Osteolysis of the calvaria bone was induced two weeks later by application of ultra-high-molecular-weight polyethylene- (UHMWPE) particles to the dome (vs sham operation). The extent of osteolysis was determined histologically and by micro-computer tomography. RESULTS Prednisone significantly inhibited particle-induced osteolysis in the skull. No significant difference in osteoclast numbers was seen in mice with prednisone vs placebo treatment. Prednisone treatment alone without particle application did not reduce bone mineral density or deterioration in bone microarchitecture parameters. CONCLUSIONS The calvaria particle-induced bone loss mouse model can be adapted to investigate osteoclast activity in vivo and the effect of prednisone on osteoclasts. In this preventive experimental design, the application of short-term low-dose prednisone has osteoprotective effects without measurable systemic side effects on bone parameters.
Collapse
Affiliation(s)
- Michael M. Schündeln
- Division of Pediatric Hematology and Oncology, Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Jakob Höppner
- Department of Pediatrics and CeSER, Katholisches Klinikum Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Felix L. Meyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Wiebke Schmuck
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Max D. Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Germany
- Department for Orthopedics, Agaplesion Diakonieklinikum, Rotenburg Wümme, Germany
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich-Heine-University Düsseldorf, Germany
| | - Martina Rauner
- Department of Medicine III, Dresden Technical University Medical Center, Dresden, Germany
| | - Corinna Grasemann
- Department of Pediatrics and CeSER, Katholisches Klinikum Bochum, Ruhr-University Bochum, Bochum, Germany
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
3
|
Li H, Qu J, Zhu H, Wang J, He H, Xie X, Wu R, Lu Q. CGRP Regulates the Age-Related Switch Between Osteoblast and Adipocyte Differentiation. Front Cell Dev Biol 2021; 9:675503. [PMID: 34124062 PMCID: PMC8187789 DOI: 10.3389/fcell.2021.675503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoporosis is a chronic age-related disease. During aging, bone marrow-derived mesenchymal stem cells (BMSCs) display increased adipogenic, along with decreased osteogenic, differentiation capacity. The aim of the present study was to investigate the effect of calcitonin gene-related peptide (CGRP) on the osteogenic and adipogenic differentiation potential of BMSC-derived osteoblasts. Here, we found that the level of CGRP was markedly lower in bone marrow supernatant from aged mice compared with that in young mice. In vitro experiments indicated that CGRP promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation. Compared with vehicle-treated controls, aged mice treated with CGRP showed a substantial promotion of bone formation and a reduction in fat accumulation in the bone marrow. Similarly, we found that CGRP could significantly enhance bone formation in ovariectomized (OVX) mice in vivo. Together, our results suggested that CGRP may be a key regulator of the age-related switch between osteogenesis and adipogenesis in BMSCs and may represent a potential therapeutic strategy for the treatment of age-related bone loss.
Collapse
Affiliation(s)
- Hang Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyan Xie
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
4
|
Yu B, Bai J, Shi J, Shen J, Guo X, Liu Y, Ge G, Lin J, Tao Y, Yang H, Xu Y, Qu Q, Geng D. MiR-106b inhibition suppresses inflammatory bone destruction of wear debris-induced periprosthetic osteolysis in rats. J Cell Mol Med 2020; 24:7490-7503. [PMID: 32485091 PMCID: PMC7339204 DOI: 10.1111/jcmm.15376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aseptic loosening caused by periprosthetic osteolysis (PPO) is the main reason for the primary artificial joint replacement. Inhibition of inflammatory osteolysis has become the main target of drug therapy for prosthesis loosening. MiR‐106b is a newly discovered miRNA that plays an important role in tumour biology, inflammation and the regulation of bone mass. In this study, we analysed the in vivo effect of miR‐106b on wear debris‐induced PPO. A rat implant loosening model was established. The rats were then administrated a lentivirus‐mediated miR‐106b inhibitor, miR‐106b mimics or an equivalent volume of PBS by tail vein injection. The expression levels of miR‐106b were analysed by real‐time PCR. Morphological changes in the distal femurs were assessed via micro‐CT and histopathological analysis, and cytokine expression levels were examined via immunohistochemical staining and ELISA. The results showed that treatment with the miR‐106b inhibitor markedly suppressed the expression of miR‐106b in distal femur and alleviated titanium particle‐induced osteolysis and bone loss. Moreover, the miR‐106b inhibitor decreased TRAP‐positive cell numbers and suppressed osteoclast formation, in addition to promoting the activity of osteoblasts and increasing bone formation. MiR‐106b inhibition also significantly regulated macrophage polarization and decreased the inflammatory response as compared to the control group. Furthermore, miR‐106b inhibition blocked the activation of the PTEN/PI3K/AKT and NF‐κB signalling pathways. Our findings indicated that miR‐106b inhibition suppresses wear particles‐induced osteolysis and bone destruction and thus may serve as a potential therapy for PPO and aseptic loosening.
Collapse
Affiliation(s)
- Binqing Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Shi
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jining Shen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobin Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiuxia Qu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
6
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
7
|
No Association of CALCA Polymorphisms and Aseptic Loosening after Primary Total Hip Arthroplasty. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3687415. [PMID: 29967770 PMCID: PMC6008809 DOI: 10.1155/2018/3687415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022]
Abstract
Studies of aseptic loosening showed an influence of calcitonin and α-CGRP, both encoded from the calcitonin/α-CGRP (CALCA) gene by alternative splicing. The aim of this study was to detect a possible association of the CALCA polymorphisms P1(rs1553005), P2(rs35815751), P3(rs5240), and P4(rs2956) with the time to aseptic loosening after THA. 320 patients suffering from aseptic loosening after primary total hip arthroplasty were genotyped for CALCA-P1 polymorphism and 161 patients for CALCA-P2 and CALCA-P3 polymorphisms and 160 patients for CALCA-P4 polymorphism. CALCA genotypes were determined by polymerase chain reaction and restriction-fragment length polymorphism. The genotype distribution of CALCA-P1 was CC 10%, CT 43%, and 46% TT. CALCA-P2 showed a distribution of 90.7%II, 8.7% ID, and 0.6% DD. The CALCA-P3 genotype distribution was 97.5% TT and 2.5% TC. The CALCA-P4 genotype distribution was 48.1% AA, 40% AT, and 11.9% TT. Significant differences between the CALCA genotypes were not found concerning age at implantation and replantation, BMI, gender, and cementation technique. No associations of the time for aseptic loosening were found. In conclusion, we did not find a significant association of CALCA polymorphisms and the time to aseptic loosening after primary THA in a Western European group.
Collapse
|
8
|
Hong J, Wang T, Chen Z, Pan H, Pan X. Rabbit model of subchondral bone bruise and the treatment potential of calcitonin. Am J Transl Res 2017; 9:5603-5610. [PMID: 29312512 PMCID: PMC5752910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study characterized a novel rabbit model of subchondral bone bruise and investigated the intervening effect of calcitonin. METHODS Bone bruise was implemented via controlled free-fall counterpoise on the medial tibial subchondral bone of 5-month-old New Zealand rabbits, with 3, 2.5, or 2 Joules of energy. Subsequent subchondral bone bruise was characterized via magnetic resonance imaging, micro computed tomography, and histology. Calcitonin was administered for 3 weeks, and the changes in subchondral bone were characterized. RESULTS The severity of subchondral bone bruise lesions correlated with the energy applied. The lesions involved trabecular separation and reduced trabecular number, with bone marrow edema and trabecular micro-fracture. With calcitonin treatment, subchondral bone marrow edema subsided and trabecular ultrastructure repaired. CONCLUSION Free fall counterpoise is a promising method to establish a subchondral bone bruise model in rabbits. Calcitonin injection is a potential treatment for subchondral bone bruise lesions.
Collapse
Affiliation(s)
- Jinsong Hong
- Department of Orthopedic and Traumatology, Guangzhou Orthopedic HospitalGuangzhou, China
| | - Ting Wang
- Center for Human Tissue and Organ Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, China Academy of ScienceShenzhen, China
| | - Zhibin Chen
- Department of Orthopedics and Traumatology, Bao’an Hospital Affiliated to Southern Medical University and Shenzhen Eighth People’s HospitalShenzhen 518100, China
| | - Haobo Pan
- Center for Human Tissue and Organ Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, China Academy of ScienceShenzhen, China
| | - Xiaohua Pan
- Department of Orthopedics and Traumatology, Bao’an Hospital Affiliated to Southern Medical University and Shenzhen Eighth People’s HospitalShenzhen 518100, China
| |
Collapse
|
9
|
Hu X, Ping Z, Gan M, Tao Y, Wang L, Shi J, Wu X, Zhang W, Yang H, Xu Y, Wang Z, Geng D. Theaflavin-3,3'-digallate represses osteoclastogenesis and prevents wear debris-induced osteolysis via suppression of ERK pathway. Acta Biomater 2017; 48:479-488. [PMID: 27838465 DOI: 10.1016/j.actbio.2016.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/10/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Abstract
Peri-implant osteolysis (PIO) and the following aseptic loosening is the leading cause of implant failure. Emerging evidence suggests that receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast formation and osteoclastic bone resorption are responsible for particle-stimulated PIO. Here, we explored the effect of theaflavin-3,3'-digallate (TF3) on titanium particle-induced osteolysis in vivo and in vitro. Twenty-eight male C57BL/6 mice were randomly separated into four groups: sham control (sham), titanium particles only (titanium), titanium particles with low TF3 concentration (low-TF3, 1mg/kg TF3), and titanium particles with high TF3 concentration (high-TF3, 10mg/kg TF3). Two weeks later, micro-computed tomography and histological analysis were performed. Bone-marrow-derived macrophages and RAW264.7 murine macrophages were applied to examine osteoclast formation and differentiation. TF3 significantly inhibited titanium particle-induced osteolysis and prevented bone destruction compared with titanium group. Interestingly, the number of mature osteoclasts reduced after treatment with TF3 in vivo, suggesting osteoclast formation might be inhibited by TF3. In vitro, TF3 suppressed osteoclast formation, polarization and osteoclastic bone resorption by specifically targeting the RANKL-induced ERK signal pathway. Collectively, these results suggest that TF3, a natural active compound derived from black tea, is a promising candidate for the treatment of osteoclast-related osteolytic diseases, such as wear debris-induced PIO. STATEMENT OF SIGNIFICANCE Total joint arthroplasty is widely accepted for the treatment of end-stage joint diseases. However, it is reported that aseptic loosening, initiated by peri-implant osteolysis, is the major reason for prosthesis failure. Although the pathophysiology of PIO remains unclear, increasing evidence indicates that osteoclasts are excessively activated at the implant site by wear debris from materials. Here, we demonstrated that theaflavin-3,3'-digallate, a natural active compound derived from black tea, inhibited osteoclast formation and osteoclastic bone resorption mainly via suppressing the ERK pathway. Moreover, the findings of this study have confirmed for the first time that theaflavin-3,3'-digallate has a protective effect on particle-induced osteolysis in a mouse calvarial model, thus preventing bone loss. These results indicate that theaflavin-3,3'-digallate may be a suitable therapeutic agent to treat wear debris-induced peri-implant osteolysis.
Collapse
Affiliation(s)
- Xuanyang Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Zichuan Ping
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Liangliang Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Jiawei Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Xiexing Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Wen Zhang
- Orthopedic Institute, Soochow University, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China.
| | - Zhirong Wang
- Department of Orthopedics, Zhangjiagang Hospital of Traditional Chinese Medicine, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, China.
| |
Collapse
|
10
|
Iwazaki K, Tanaka T, Hozumi Y, Okada M, Tsuchiya R, Iseki K, Topham MK, Kawamae K, Takagi M, Goto K. DGKζ Downregulation Enhances Osteoclast Differentiation and Bone Resorption Activity Under Inflammatory Conditions. J Cell Physiol 2016; 232:617-624. [DOI: 10.1002/jcp.25461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Kiyoshi Iwazaki
- Department of Anatomy and Cell Biology; Yamagata University School of Medicine; Yamagata Japan
- Department of Orthopaedic; Yamagata University School of Medicine; Yamagata Japan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell Biology; Yamagata University School of Medicine; Yamagata Japan
| | - Yasukazu Hozumi
- Department of Anatomy and Cell Biology; Yamagata University School of Medicine; Yamagata Japan
| | - Masashi Okada
- Department of Anatomy and Cell Biology; Yamagata University School of Medicine; Yamagata Japan
| | - Rieko Tsuchiya
- Department of Anatomy and Cell Biology; Yamagata University School of Medicine; Yamagata Japan
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine; Yamagata University School of Medicine; Yamagata Japan
| | - Matthew K. Topham
- Department of Oncological Sciences, Huntsman Cancer Institute; University of Utah; Salt Lake City Utah
| | - Kaneyuki Kawamae
- Department of Anesthesiology; Yamagata University School of Medicine; Yamagata Japan
| | - Michiaki Takagi
- Department of Orthopaedic; Yamagata University School of Medicine; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; Yamagata University School of Medicine; Yamagata Japan
| |
Collapse
|
11
|
Pereira M, Jeyabalan J, Jørgensen CS, Hopkinson M, Al-Jazzar A, Roux JP, Chavassieux P, Orriss IR, Cleasby ME, Chenu C. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 2015; 81:459-467. [PMID: 26314515 DOI: 10.1016/j.bone.2015.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/29/2023]
Abstract
Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue.
Collapse
Affiliation(s)
- M Pereira
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | - J Jeyabalan
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - C S Jørgensen
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - M Hopkinson
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - A Al-Jazzar
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - J P Roux
- INSERM UMR1033 and Université de Lyon, Lyon, France
| | | | - I R Orriss
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - M E Cleasby
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - C Chenu
- Department of Comparative and Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
12
|
The role of calcitonin receptor signalling in polyethylene particle-induced osteolysis. Acta Biomater 2015; 14:125-32. [PMID: 25486133 DOI: 10.1016/j.actbio.2014.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 11/14/2014] [Accepted: 11/28/2014] [Indexed: 12/28/2022]
Abstract
The detection of peptides from the calcitonin (CT) family in the periarticular tissue of loosened implants has raised hopes of opening new regenerative therapies in the process of aseptic loosening, which remains the major cause of early implant failure in endoprosthetic surgery. We have previously shown the roles of α-calcitonin gene-related peptide (α-CGRP) and the CALCA gene which encodes α-CGRP/CT in this process. To uncover the role of direct calcitonin receptor (CTR) mediated signalling, we studied particle-induced osteolysis (PIO) in a murine calvaria model with a global deletion of the CTR (CTR-KO) using μCT analysis and histomorphometry. As expected, CTR-KO mice revealed reduced bone volume compared to wild-type (WT) controls (p<0.05). In CTR-KO mice we found significantly higher RANKL (receptor activator of NF-κB ligand) expression in the particle group than in the control group. The increase in osteoclast numbers by the particles was twice as high as the increase of osteoclasts in the WT mice (400 vs. 200%). Changes in the eroded surface and actual osteolysis due to ultrahigh-molecular-weight polyethylene particles were similar in WTs and CTR-KOs. Taken together, our findings strengthen the relevance of the OPG/RANK/RANKL system in the PIO process. CTR seems to have an effect on osteoclast differentiation in this context. As there were no obvious changes of the amount of PIO in CTR deficiency, regenerative strategies in aseptic loosening of endoprosthetic implants based on peptides arising from the CT family should rather focus on the impact of α-CGRP.
Collapse
|
13
|
Smith RL, Schwarz EM. Are biologic treatments a potential approach to wear- and corrosion-related problems? Clin Orthop Relat Res 2014; 472:3740-6. [PMID: 24993143 PMCID: PMC4397762 DOI: 10.1007/s11999-014-3765-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
WHERE ARE WE NOW?: Biological treatments, defined as any nonsurgical intervention whose primary mechanism of action is reducing the host response to wear and/or corrosion products, have long been postulated as solutions for osteolysis and aseptic loosening of total joint arthroplasties. Despite extensive research on drugs that target the inflammatory, osteoclastic, and osteogenic responses to wear debris, no biological treatment has emerged as an approved therapy. We review the extensive preclinical research and modest clinical research to date, which has led to the central conclusion that the osteoclast is the primary target. We also allude to the significant changes in health care, unabated safety concerns about chronic immunosuppressive/antiinflammatory therapies, industry's complete lack of interest in developing an intervention for this condition, and the practical issues that have narrowly focused the possibilities for a biologic treatment for wear debris-induced osteolysis. WHERE DO WE NEED TO GO?: Based on the conclusions from research, and the economic, regulatory, and practical issues that limit the future directions toward the development of a biologic treatment, there are a few rational approaches that warrant investigation. These largely focus on FDA-approved osteoporosis therapies that target the osteoclast (bisphosphonates and anti-RANK ligand) and recombinant parathyroid hormone (teriparatide) prophylactic treatment to increase osseous integration of the prosthesis to overcome high-risk susceptibility to aseptic loosening. The other roadblock that must be overcome if there is to be an approved biologic therapy to prevent the progression of periprosthetic osteolysis and aseptic loosening is the development of radiological measures that can quantify a significant drug effect in a randomized, placebo-controlled clinical trial. We review the progress of volumetric quantification of osteolysis in animal studies and clinical pilots. HOW DO WE GET THERE?: Accepting the aforementioned rigid boundaries, we describe the emergence of repurposing FDA-approved drugs for new indications and public (National Institutes of Health, FDA, Centers for Disease Control and Prevention) and private (universities and drug and device manufactures) partnerships as the future roadmap for clinical translation. In the case of biologic treatments for wear debris-induced osteolysis, this will involve combined federal and industry funding of multicenter clinical trials that will be run by thought leaders at large medical centers.
Collapse
Affiliation(s)
- R. Lane Smith
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA USA
| | - Edward M. Schwarz
- Department of Orthopaedics, University of Rochester, Rochester, NY USA ,The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642 USA
| |
Collapse
|
14
|
Orthopaedic implant failure: aseptic implant loosening–the contribution and future challenges of mouse models in translational research. Clin Sci (Lond) 2014; 127:277-93. [DOI: 10.1042/cs20130338] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aseptic loosening as a result of wear debris is considered to be the main cause of long-term implant failure in orthopaedic surgery and improved biomaterials for bearing surfaces decreases significantly the release of micrometric wear particles. Increasingly, in-depth knowledge of osteoimmunology highlights the role of nanoparticles and ions released from some of these new bearing couples, opening up a new era in the comprehension of aseptic loosening. Mouse models have been essential in the progress made in the early comprehension of pathophysiology and in testing new therapeutic agents for particle-induced osteolysis. However, despite this encouraging progress, there is still no valid clinical alternative to revision surgery. The present review provides an update of the most commonly used bearing couples, the current concepts regarding particle–cell interactions and the approaches used to study the biology of periprosthetic osteolysis. It also discusses the contribution and future challenges of mouse models for successful translation of the preclinical progress into clinical applications.
Collapse
|
15
|
Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater 2013; 9:8046-58. [PMID: 23669623 DOI: 10.1016/j.actbio.2013.05.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 01/31/2023]
Abstract
Aseptic loosening and other wear-related complications are some of the most frequent late reasons for revision of total knee arthroplasty (TKA). Periprosthetic osteolysis (PPOL) pre-dates aseptic loosening in many cases, indicating the clinical significance of this pathogenic mechanism. A variety of implant-, surgery- and host-related factors have been delineated to explain the development of PPOL. These factors influence the development of PPOL because of changes in mechanical stresses within the vicinity of the prosthetic device, excessive wear of the polyethylene liner, and joint fluid pressure and flow acting on the peri-implant bone. The process of aseptic loosening is initially governed by factors such as implant/limb alignment, device fixation quality and muscle coordination/strength. Later, large numbers of wear particles detached from TKA trigger and perpetuate particle disease, as highlighted by progressive growth of inflammatory/granulomatous tissue around the joint cavity. An increased accumulation of osteoclasts at the bone-implant interface, impairment of osteoblast function, mechanical stresses and increased production of joint fluid contribute to bone resorption and subsequent loosening of the implant. In addition, hypersensitivity and adverse reactions to metal debris may contribute to aseptic TKA failure, but should be determined more precisely. Patient activity level appears to be the most important factor when the long-term development of PPOL is considered. Surgical technique, implant design and material factors are the most important preventative factors, because they influence both the generation of wear debris and excessive mechanical stresses. New generations of bearing surfaces and designs for TKA should carefully address these important issues in extensive preclinical studies. Currently, there is little evidence that PPOL can be prevented by pharmacological intervention.
Collapse
Affiliation(s)
- J Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, University Hospital, Palacky University Olomouc, I.P. Pavlova Str. 6, CZ-775 20 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Rao AJ, Zwingenberger S, Valladares R, Li C, Lane Smith R, Goodman SB, Nich C. Direct subcutaneous injection of polyethylene particles over the murine calvaria results in dramatic osteolysis. INTERNATIONAL ORTHOPAEDICS 2013; 37:1393-8. [PMID: 23604215 DOI: 10.1007/s00264-013-1887-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/26/2013] [Indexed: 12/23/2022]
Abstract
PURPOSE The murine calvarial model has been widely employed for the in vivo study of particle-induced osteolysis, the most frequent cause of aseptic loosening of total joint replacements. Classically, this model uses an open surgical technique in which polyethylene (PE) particles are directly spread over the calvarium for the induction of osteolysis. We evaluated a minimally invasive modification of the calvarial model by using a direct subcutaneous injection of PE particles. METHODS Polyethylene (PE) particles were injected subcutaneously over the calvaria of C57BL6J ten-week-old mice ("injection" group) or were implanted after surgical exposure of the calvaria ("open" group) (n = 5/group). For each group, five additional mice received no particles and served as controls. Particle-induced osteolysis was evaluated two weeks after the procedure using high-definition microCT imaging. RESULTS Polyethylene particle injection over the calvaria resulted in a 40% ± 1.8% decrease in the bone volume fraction (BVF), compared to controls. Using the "open surgical technique", the BVF decreased by 16% ± 3.8% as compared to controls (p < 0.0001). CONCLUSIONS Direct subcutaneous injection of PE particles over the murine calvaria produced more profound resorption of bone. Polyethylene particle implantation by injection is less invasive and reliably induces osteolysis to a greater degree than the open technique. This subcutaneous injection method will prove useful for repetitive injections of particles, and the assessment of potential local or systemic therapies.
Collapse
Affiliation(s)
- Allison J Rao
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kauther MD, Neuerburg C, Wefelnberg F, Bachmann HS, Schlepper R, Hilken G, Broecker-Preuss M, Grabellus F, Schilling AF, Jäger M, Wedemeyer C. RANKL-associated suppression of particle-induced osteolysis in an aged model of Calcitonin and α-CGRP deficiency. Biomaterials 2013; 34:2911-9. [DOI: 10.1016/j.biomaterials.2013.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022]
|