1
|
Huq AKMM, Stanslas J, Nizhum N, Uddin MN, Maulidiani M, Roney M, Abas F, Jamal JA. Estrogenic post-menopausal anti-osteoporotic mechanism of Achyranthes aspera L.: Phytochemicals and network pharmacology approaches. Heliyon 2024; 10:e38792. [PMID: 39469676 PMCID: PMC11513486 DOI: 10.1016/j.heliyon.2024.e38792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Hormone replacement therapy is used to treat postmenopausal syndrome caused by estrogen deficiency, but it has been linked to an increased risk of breast cancer. In India, Achyranthes aspera L. is traditionally used to treat menstrual problems; however, there is a lack of mechanistic evidence of its phytoestrogenicity. Therefore, this study investigated the estrogenic activity of A. aspera on estrogen-responsive MCF-7 breast cancer cells. In a cell proliferation assay, the MeOH fraction (100 μg/mL) exhibited the highest proliferation effect (PE) of 138 % (p < 0.001) and relative proliferation effect (RPE) of 96.5 %, compared to 17β-estradiol (0.01 μM: 143 % PE, p < 0.001; 100 % RPE). The MeOH fraction was shown to upregulate the oestrogen marker genes trefoil factor 1 and progesterone receptor by 20.14-23.94 folds and 10.83-14.83 folds, respectively. Twelve phenolics were identified by LC-MS/MS in the active MeOH fraction, i.e. quinic acid, kaempferol hexoside, kaempferol 3-O-(2″-O-galloyl)-glucoside)-β-D-glucoside, geniposide, 3-O-(6'-O-(9Z,12Z-octadecadienoyl)-β-D-glucopyranosyl)-stigmast-5,22E-dien-3β-ol, kaempferol-3-O-glucoside (astragalin), 3,30-di-O-methylellagic acid isomer, procyanidin, naringin, propapyriogenin A2, (3β,22E,24R)-23-methylergosta-5,7,22-trien-3-ol and 6-prenylapigenin. Through network pharmacology, the potential effects, and mechanisms of these compounds in osteoporosis were revealed. About 55 target genes were linked to osteoporosis. GO and KEGG enrichment suggest regulation of female reproductive hormone related signaling pathways, which are also associated with estrogen dependent osteoporosis. Molecular docking analysis of the compounds revealed potential interactions with hERα receptor for 3-O-(6'-O-(9Z,12Z-octadecadienoyl)-β-D-glucopyranosyl)-stigmast-5,22E-dien-3β-ol and kaempferol-3-O-glucoside (astragalin) (docking scores of -9.3 and -10.1 kcal/mol, respectively) as compared to 17β-estradiol (-9.3 kcal/mol). These results suggest the estrogenicity of A. aspera via an ERα-associated mechanism and support its traditional usage in the management of menopausal-related problems.
Collapse
Affiliation(s)
- AKM Moyeenul Huq
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nisarat Nizhum
- Pharmaceutical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Pahang, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jamia Azdina Jamal
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Kim HJ, Kim KM, Yun MK, Kim D, Sohn J, Song JW, Lee S. Anti-Menopausal Effect of Heat-Killed Bifidobacterium breve HDB7040 via Estrogen Receptor-Selective Modulation in MCF-7 Cells and Ovariectomized Rats. J Microbiol Biotechnol 2024; 34:1580-1591. [PMID: 39081245 PMCID: PMC11380510 DOI: 10.4014/jmb.2402.02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
Menopause is induced by spontaneous ovarian failure and leads to life quality deterioration with various irritating symptoms. Hormonal treatment can alleviate these symptoms, but long-term treatment is closely associated with breast and uterine cancer, and stroke. Therefore, developing alternative therapies with novel anti-menopausal substances and improved safety is needed. In our study, heat-killed Bifidobacterium breve HDB7040 significantly promoted MCF-7 cell proliferation in a dose-dependent manner under estrogen-free conditions, similar to 17β-estradiol. This strain also triggered ESR2 expression, but not ESR1, in MCF-7 cells. Moreover, administrating HDB7040 to ovariectomized (OVX) Sprague-Dawley (SD) female rats reduced estrogen deficiency-induced weight gain, fat mass, blood triglyceride, and total cholesterol levels. It also recovered collapsed trabecular microstructure by improving trabecular morphometric parameters (bone mineral density, bone volume per tissue volume, trabecular number, and trabecular separation) and decreasing blood alkaline phosphatase levels with no significant changes in uterine size and blood estradiol. HDB7040 also significantly regulated the expression of Tff1, Pgr, and Esr2, but not Esr1 in uteri of OVX rats. Heat-killed B. breve HDB7040 exerts an anti-menopausal effect via the specific regulation of ERβ in vitro and in vivo, suggesting its potential as a novel substance for improving and treating menopausal syndrome.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| | - Kyung Min Kim
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| | - Min-Kyu Yun
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| | - Duseong Kim
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| | - Johann Sohn
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| | - Ji-Won Song
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| | - Seunghun Lee
- Biohealthcare R&D Center, HYUNDAI BIOLAND Co., Ltd., Ansan 15407, Republic of Korea
| |
Collapse
|
3
|
Wang Q, Wang P, Yuan M, Zhang M, Zhang S, Sun X, Shang L, Liu Y, Zhao Y, Jiang N, Gao X. Efficacy and mechanism of Baicao Fuyanqing suppository on mixed vaginitis based on 16S rRNA and metabolomics. Front Cell Infect Microbiol 2023; 13:1166366. [PMID: 37780858 PMCID: PMC10538640 DOI: 10.3389/fcimb.2023.1166366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Background Mixed vaginitis is the infection of the vagina by at least two different pathogens at the same time, both of which contribute to an abnormal vaginal environment leading to signs and symptoms. Baicao Fuyanqing suppository (BCFYQ) is a Miao ethnomedicine, used to treat various vaginitis. The aim of this study was to investigate the efficacy and possible mechanism of BCFYQ in the treatment of mixed vaginitis based on 16S rRNA high-throughput sequencing and metabonomics. Methods Escherichia coli and Candida albicans were used to establish mixed vaginitis model in SD rats. Three groups of low, medium and high doses (0.18/0.36/0.64 g.kg-1) were established, and administered vaginally once a day for 6 consecutive days. After the last administration, vaginal pH and IL-1β, IL-2, IL-13 and IgA levels were measured, and the vaginal tissue was examined pathologically. In addition, the vaginal flora was characterised by 16S rRNA, and endogenous metabolites in the vaginal tissue were detected by UHPLC-Q-Exactive MS. Results Compared with the model group, BCFYQ can reduce the vaginal pH of rats, make it close to the normal group and improve the damaged vaginal epithelial tissue. The results of ELISA showed that BCFYQ decreased the levels of IL-1 β and IL-2 and increased the levels of IL-13 and IgA (P<0.05). In addition, BCFYQ may increase the abundance of vaginal flora, especially Lactobacillus. The differential metabolite enrichment pathway suggests that the therapeutic mechanism of BCFYQ is mainly related to lipid metabolism and amino acid metabolism. Conclusion Our research shows that BCFYQ has a good therapeutic effect on mixed vaginitis. It repairs the damaged vaginal mucosa by regulating the vaginal flora and lipid metabolism disorders to improve the local immune function of the vagina and inhibit the growth and reproduction of pathogens.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
- Experimental Animal Center, Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Leyuan Shang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Yujie Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Yanni Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Nan Jiang
- Research and Development Department, Changsheng Pharmaceutical Co. Ltd., Guizhou, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Jang D, Lee E, Lee S, Kwon Y, Kang KS, Kim CE, Kim D. System-level investigation of anti-obesity effects and the potential pathways of Cordyceps militaris in ovariectomized rats. BMC Complement Med Ther 2022; 22:132. [PMID: 35550138 PMCID: PMC9102749 DOI: 10.1186/s12906-022-03608-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cordyceps species have been used as tonics to enhance energy, stamina, and libido in traditional Asian medicine for more than 1600 years, indicating their potential for improving reproductive hormone disorders and energy metabolic diseases. Among Cordyceps, Cordyceps militaris has been reported to prevent metabolic syndromes including obesity and benefit the reproductive hormone system, suggesting that Cordyceps militaris can also regulate obesity induced by the menopause. We investigated the effectiveness of Cordyceps militaris extraction (CME) on menopausal obesity and its mechanisms. METHODS We applied an approach combining in vivo, in vitro, and in silico methods. Ovariectomized rats were administrated CME, and their body weight, area of adipocytes, liver and uterus weight, and lipid levels were measured. Next, after the exposure of MCF-7 human breast cancer cells to CME, cell proliferation and the phosphorylation of estrogen receptor and mitogen-activated protein kinases (MAPK) were measured. Finally, network pharmacological methods were applied to predict the anti-obesity mechanisms of CME. RESULTS CME prevented overweight, fat accumulation, liver hypertrophy, and lowered triglyceride levels, some of which were improved in a dose-dependent manner. In MCF-7 cell lines, CME showed not only estrogen receptor agonistic activity through an increase in cell proliferation and the phosphorylation of estrogen receptors, but also phosphorylation of extracellular-signal-regulated kinase and p38. In the network pharmacological analysis, bioactive compounds of CME such as cordycepin, adenine, and guanosine were predicted to interact with non-overlapping genes. The targeted genes were related to the insulin signaling pathway, insulin resistance, the MARK signaling pathway, the PI3K-Akt signaling pathway, and the estrogen signaling pathway. CONCLUSIONS These results suggest that CME has anti-obesity effects in menopause and estrogenic agonistic activity. Compounds in CME have the potential to regulate obesity-related and menopause-related pathways. This study will contribute to developing the understanding of anti-obesity effects and mechanisms of Cordyceps militaris.
Collapse
Affiliation(s)
- Dongyeop Jang
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Eunjoo Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120 Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120 Korea
| | - Yongsam Kwon
- Dong-A Pharmaceutical Co., LTD, Yongin, 17073 Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Daeyoung Kim
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120 Korea
| |
Collapse
|
5
|
Agrimonia pilosa: A Phytochemical and Pharmacological Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3742208. [PMID: 35529922 PMCID: PMC9076299 DOI: 10.1155/2022/3742208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
Agrimonia pilosa Ledeb., which belongs to Agrimonia and Rosaceae, is used in traditional Chinese medicine. It exhibits excellent medicinal properties and has been used to treat various diseases, such as tumors, trichomoniasis, vaginitis, diarrhea, and dysentery. Phytochemical studies have revealed that Agrimonia has over 100 secondary metabolites that can be categorized into six classes, i.e., flavonoids, isocoumarins, triterpenes, phloroglucinol derivatives, tannins, and organic acids. This review summarizes recently published literature on the chemical structures of 90 bioactive compounds that have been identified in A. pilosa and examines their pharmacological properties, including their antitumor, anti-inflammatory, antioxidant, antibacterial, and antidiabetic properties, as well as the potential development of parasitic resistance to these chemicals. This review highlights existing knowledge gap and serves as a basis for developing novel preparations of A. pilosa with medicinal value.
Collapse
|
6
|
Paluch Z, Biriczová L, Pallag G, Carvalheiro Marques E, Vargová N, Kmoníčková E. The therapeutic effects of Agrimonia eupatoria L. Physiol Res 2020; 69:S555-S571. [PMID: 33646008 DOI: 10.33549/physiolres.934641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Agrimonia eupatoria L. is an herb of the Rosaceae family, widely used in traditional (folk) medicine for its beneficial effects. Its water extracts (infusions and decoctions) are used in the treatment of airway and urinary system diseases, digestive tract diseases, and chronic wounds. Phytochemical analyses of Agrimonia eupatoria L. identified a variety of bioactive compounds including tannins, flavonoids, phenolic acids, triterpenoids and volatile oils possessing antioxidant, immunomodulatory and antimicrobial activities. The authors review the available literature sources examining and discussing the therapeutic and pharmacological effects of Agrimonia eupatoria L. at the molecular level in vitro and in vivo.
Collapse
Affiliation(s)
- Z Paluch
- Department of Pharmacology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
The Aqueous Extract of Dacryodes edulis (Burseraceae) Leaves Inhibits Cell Proliferation Induced by Estradiol on the Uterus and Vagina of Ovariectomized Female Wistar Rats. Adv Pharmacol Pharm Sci 2020; 2020:8869281. [PMID: 33274337 PMCID: PMC7700024 DOI: 10.1155/2020/8869281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Proliferation is a cellular process strongly linked to the genesis of cancer. Natural substances with antiproliferative activities are currently potential alternatives in the treatment of cancers. Dacryodes edulis, for instance, is a medicinal plant traditionally used in the treatment of cancer. Scientific studies have reported the antioxidant activity of this plant. In addition, the presence of prostate cancer chemopreventive polyphenols was reported in D. edulis extracts. Therefore, this study was aimed to evaluate the effects of the aqueous extract of D. edulis leaves on cell proliferation induced by estradiol in ovariectomized female Wistar rats. In this regard, ovariectomized (OVX) rats were cotreated with estradiol valerate (E2V) (0.75 mg/kg) and the aqueous extract of D. edulis leaves. Control groups received either the vehicle (sham-operated animals and the OVX control), E2V (0.75 mg/kg) only, or E2V (0.75 mg/kg) and tamoxifen (10 mg/kg). Treatments were administered orally for 3 consecutive days, and animals were sacrificed thereafter. Epithelial heights of the uterus and vagina were assessed. Uterine levels of total cholesterol and estradiol were determined as well. Results showed that the aqueous extract of D. edulis leaves reversed the effects of estradiol as it reduced uterine weight (p < 0.05), uterine (p < 0.05), and vaginal (p < 0.001) epithelium heights. This antiproliferative effect of D. edulis was associated with reduced tissue (uterine) levels of estradiol (p < 0.001). These results suggest that the aqueous extract of D. edulis leaves could be a potential alternative treatment for proliferation-related diseases.
Collapse
|
8
|
Jang HH, Bae JH, Kim MJ, Park MY, Kim HR, Lee YM. Agrimonia pilosa Ledeb. Ameliorates Hyperglycemia and Hepatic Steatosis in Ovariectomized Rats Fed a High-Fat Diet. Nutrients 2020; 12:nu12061631. [PMID: 32492866 PMCID: PMC7352636 DOI: 10.3390/nu12061631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen deficiency is associated with obesity, dyslipidemia, and increased insulin resistance in postmenopausal women. An efficient therapeutic agent prevents or improves postmenopausal conditions induced by estrogen deficiency. Here, we investigated the effects of aqueous Agrimonia pilosa Ledeb. extract on glucose and lipid metabolism in ovariectomized rats fed a high-fat diet (HFD). Female Sprague-Dawley rats were sham-operated or ovariectomized, and 3 weeks later were assigned to the following groups: sham-operated + HFD (S); ovariectomized + HFD (OVX); and ovariectomized + HFD with 0.5% A. pilosa aqueous extract (OVX + 0.5A) groups. Ovariectomy significantly increased body weight and dietary intake relative to the S group. However, A. pilosa treatment did not significantly affect weight gain or dietary intake. Blood triacylglycerol, total cholesterol, and low-density lipoprotein cholesterol levels tended to decrease in the A. pilosa-supplemented group. Blood glucose levels were significantly lower in the OVX + 0.5A group than those in the OVX group. Blood adiponectin and insulin concentrations increased significantly after A. pilosa treatment in the ovariectomized group. A. pilosa supplementation tended to decrease liver weights and prevented lipid accumulation. These effects correlated with reduced hepatic expression of lipogenesis-related genes (fatty acid synthase, acetyl-coenzyme A carboxylase alpha, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase). Therefore, A. pilosa may improve metabolic disorders in ovariectomized rats.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Ji Hyun Bae
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Mi-Ju Kim
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Mi Young Park
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Haeng Ran Kim
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Young-Min Lee
- Division of Applied Food System, Major of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
- Correspondence: ; Tel.: +82-2-970-5642
| |
Collapse
|
9
|
Blackcurrant ( Ribes nigrum) Extract Prevents Dyslipidemia and Hepatic Steatosis in Ovariectomized Rats. Nutrients 2020; 12:nu12051541. [PMID: 32466275 PMCID: PMC7284623 DOI: 10.3390/nu12051541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen is involved in lipid metabolism. Menopausal women with low estrogen secretion usually gain weight and develop steatosis associated with abnormal lipid metabolism. A previous study showed that blackcurrant (Ribes nigrum L.) extract (BCE) had phytoestrogen activity. In this study, we examined whether BCE improved lipid metabolism abnormalities and reduced liver steatosis in ovariectomized rats, as a menopausal animal model. Twelve-week-old ovariectomized (OVX) rats were fed a regular diet (Ctrl) or a 3% BCE supplemented diet while sham rats were fed a regular diet for three months. Body weight, visceral fat weight, levels of serum triglycerides, total cholesterol, and LDL cholesterol decreased in the BCE-treated OVX and sham rats, but not in OVX Ctrl rats. The results of hematoxylin and eosin staining revealed that BCE decreased the diameters of adipocytes and the nonalcoholic fatty liver disease activity score. Furthermore, quantitative RTPCR indicated a decreased expression of hepatitis-related genes, such as tumor necrosis factor-α, IL-6, and IL-1β in OVX rats after BCE treatment. This is the first study that reported improvement of lipid metabolism abnormalities in OVX rats by BCE administration. These results suggest that the intake of BCE alleviated dyslipidemia and prevented nonalcoholic steatohepatitis during menopause in this animal model.
Collapse
|
10
|
Nanashima N, Horie K. Blackcurrant Extract with Phytoestrogen Activity Alleviates Hair Loss in Ovariectomized Rats. Molecules 2019; 24:molecules24071272. [PMID: 30939852 PMCID: PMC6479596 DOI: 10.3390/molecules24071272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Ancocyanin-rich blackcurrant extract (BCE) has phytoestrogen activity; however, its effect on hair follicles is unknown. Additionally, hair loss is known to occur during menopause in women owing to decreased estrogen secretion. This study examined whether BCE alleviated female pattern hair loss using a rat model. RNA was extracted and analyzed using a microarray and ingenuity pathway analysis. A quantitative polymerase chain reaction revealed that 1 μg/mL BCE altered many genes downstream of beta-estradiol in human hair dermal papilla cells. Additionally, the expression of the hair follicle stem cell marker keratin 19 was greatly enhanced. In a menopause model, ovariectomized rats were fed a diet containing 3% BCE for three months. An analysis of the number of hair shafts revealed that BCE increased the number of hairs by 0.5 hairs/follicular unit. Moreover, immunostaining revealed that the expression of Ki67 also increased by 19%. Furthermore, fluorescent immunostaining showed that the expression of other stem cell markers, including keratin 15, CD34, and keratin 19, was induced in rat hair follicular cells. In conclusion, these findings suggest that BCE has phytoestrogen activity in hair follicles and contributes to the alleviation of hair loss in a menopausal model in rats.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| |
Collapse
|
11
|
Wielogorska E, Blaszczyk K, Chevallier O, Connolly L. The origin of in-vitro estrogen-like activity in oregano herb extracts. Toxicol In Vitro 2019; 56:101-109. [PMID: 30641124 DOI: 10.1016/j.tiv.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Global market of herbs has been struggling with food adulteration issues. A number of assays have been developed to aid the detection of the tampered samples and ensure high quality of the marketed products. However, herbs are marketed not only for their culinary applications but also as remedies due to high levels of biologically active constituents. Nevertheless, there is no information in the literature about the influence of herbs adulteration on the biological activity of the final product. Current study aims at assessing the influence of oregano adulteration on its in-vitro estrogen-like activity. High responses in a mammalian reporter gene assay have been detected in pure and adulterated samples, translating to 21-7409 ng of 17β-estradiol equivalents per gram of oregano. The origin of those responses was assessed by combining fractionation and UHPLC-HRMS. Three flavones were proposed as the most active extract constituents i.e. luteolin-glucoside, luteolin- and apigenin-glucuronides all of which have been previously identified in other herbal extracts with estrogenic activity. This study underlines challenges of biological activity assessment in complex herbal extracts as well as the need for further assessment of such supplement administrations in the case of postmenopausal women and breast cancer patients undergoing hormone therapy.
Collapse
Affiliation(s)
- Ewa Wielogorska
- School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom; Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| | - Katarzyna Blaszczyk
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Olivier Chevallier
- Mass Spectrometry Core Technology Unit, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
12
|
Farid O, Khallouki F, Akdad M, Breuer A, Owen RW, Eddouks M. Phytochemical characterization of polyphenolic compounds with HPLC-DAD-ESI-MS and evaluation of lipid-lowering capacity of aqueous extracts from Saharan plant Anabasis aretioides (Coss & Moq.) in normal and streptozotocin-induced diabetic rats. JOURNAL OF INTEGRATIVE MEDICINE 2018; 16:185-191. [PMID: 29631911 DOI: 10.1016/j.joim.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Anabasis aretioides (Coss & Moq.), a Saharan plant belonging to Chenopodiaceae family, is widely distributed in semi-desert areas from the Tafilalet region of Morocco. This plant is extensively used by local population against diabetes and cardiovascular disorders. The purpose of the study was to investigate the effect of the aqueous A. aretioides extract on lipid metabolism in normal and streptozotocin (STZ)-induced diabetic rats and to identify the polyphenolic compounds present. In addition, the in vitro antioxidant activity of the aqueous A. aretioides extract was also evaluated. METHODS The effect of an aerial part aqueous extract (APAE) of A. aretioides (5 mg/kg of lyophilized A. aretioides APAE) on plasma lipid profile was investigated in normal and STZ-induced diabetic rats (n = 6) after once daily oral administration for 15 days. The aqueous extract was tested for its 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Polyphenolic compounds in the extracts were definitively characterized by high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. RESULTS In diabetic rats, oral administration of A. aretioides APAE provoked a significant decrease in both plasma cholesterol and triglyceride levels from the first to the second week (P < 0.01). A significant decrease on plasma triglyceride levels was also observed in normal rats (P < 0.01), where the reduction was 53%. In addition, the phytochemical analysis revealed the presence of 12 polyphenolic compounds. Moreover, according to the DPPH radical-scavenging activity, the aqueous extract showed an in vitro antioxidant activity. CONCLUSION Aqueous A. aretioides APAE exhibits lipid-lowering and in vitro antioxidant activities. Many polyphenols were present in this extract and these phytoconstituents may be involved in the pharmacological activity of this plant.
Collapse
Affiliation(s)
- Omar Farid
- Team of Physiology & Endocrine Pharmacology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia 52000, Morocco
| | - Farid Khallouki
- Team of Physiology & Endocrine Pharmacology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia 52000, Morocco; Division of Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Morad Akdad
- Team of Physiology & Endocrine Pharmacology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia 52000, Morocco
| | - Andrea Breuer
- Division of Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Robert Wyn Owen
- Division of Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Mohamed Eddouks
- Team of Physiology & Endocrine Pharmacology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, Errachidia 52000, Morocco.
| |
Collapse
|
13
|
Nanashima N, Horie K, Maeda H, Tomisawa T, Kitajima M, Nakamura T. Blackcurrant Anthocyanins Increase the Levels of Collagen, Elastin, and Hyaluronic Acid in Human Skin Fibroblasts and Ovariectomized Rats. Nutrients 2018; 10:nu10040495. [PMID: 29659549 PMCID: PMC5946280 DOI: 10.3390/nu10040495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023] Open
Abstract
Blackcurrants (Ribes nigrum L.) contain high levels of anthocyanin polyphenols, which have beneficial effects on health, owing to their antioxidant and anticarcinogenic properties. Phytoestrogens are plant-derived substances with estrogenic activity, which could have beneficial effects on the skin. Estradiol secretion decreases during menopause, reducing extracellular matrix (ECM) component production by skin fibroblasts. Using a normal human female skin fibroblast cell line (TIG113) and ovariectomized rats, the present study investigated whether an anthocyanin-rich blackcurrant extract (BCE) and four blackcurrant anthocyanins have novel phytoestrogenic activities that could benefit the skin in menopausal women. In TIG113 cells, a microarray and the Ingenuity® Pathway Analysis showed that 1.0 μg/mL of BCE upregulated the expression of many estrogen signaling-related genes. A quantitative RT-PCR analysis confirmed that BCE (1.0 or 10.0 μg/mL) and four types of anthocyanins (10 μM) altered the mRNA expression of ECM proteins and enzymes involved in ECM turnover. Immunofluorescence staining indicated that the anthocyanins stimulated the expression of ECM proteins, such as collagen (types I and III) and elastin. Dietary administration of 3% BCE to ovariectomized rats for 3 months increased skin levels of collagen, elastin, and hyaluronic acid. This is the first study to show that blackcurrant phytoestrogens have beneficial effects on skin experimental models.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| | - Toshiko Tomisawa
- Department of Nursing Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Maiko Kitajima
- Department of Nursing Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| |
Collapse
|
14
|
Chang BY, Kim DS, Kim HS, Kim SY. Evaluation of estrogenic potential by herbal formula, HPC 03 for in vitro and in vivo. Reproduction 2018; 155:105-115. [PMID: 29326134 DOI: 10.1530/rep-17-0530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
HPC 03 is herbal formula that consists of extracts from Angelica gigas, Cnidium officinale Makino and Cinnamomum cassia Presl. The present study evaluated the estrogenic potential of HPC 03 by using in vitro and in vivo models. The regulatory mechanisms of HPC 03 in estrogen-dependent MCF-7 cells were assessed. HPC 03 induced the proliferation of estrogen receptor-positive MCF-7 cells, and the proliferation was blocked by the addition of the estrogen antagonist tamoxifen. The estrogen receptorα/β luciferase activities were significantly increased by HPC 03 treatment, which also increased the mRNA expression of the estrogen-responsive genes Psen2, Pgr and Ctsd Also, we evaluated the ameliorative effects of HPC 03 on menopausal symptoms in ovariectomized rats. HPC 03 treatment in OVX rats significantly affected the uterine weight, increased the expression of estrogen-responsive genes Pgr and Psen2 in uterus, increased bone mineral density loss in the femur and inhibited body weight increase. Serum E2, collagen type 1 and osteocalcin were significantly increased, while serum LH, FSH and ALP were decreased compared with OVX rats. HPC 03 may be a promising candidate for the treatment of menopause, but further research is necessary to determine whether the observed effects also occur in humans.
Collapse
Affiliation(s)
- Bo Yoon Chang
- Institute of Pharmaceutical Research and DevelopmentCollege of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Dae Sung Kim
- Hanpoong Pharm. Co. LtdJeonju-si, Jeonbuk, South Korea
| | - Hye Soo Kim
- Hanpoong Pharm. Co. LtdJeonju-si, Jeonbuk, South Korea
| | - Sung Yeon Kim
- Institute of Pharmaceutical Research and DevelopmentCollege of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea
| |
Collapse
|
15
|
Phytoestrogenic Activity of Blackcurrant Anthocyanins Is Partially Mediated through Estrogen Receptor Beta. Molecules 2017; 23:molecules23010074. [PMID: 29286333 PMCID: PMC6017224 DOI: 10.3390/molecules23010074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 01/09/2023] Open
Abstract
Phytoestrogens are plant compounds with estrogenic effects found in many foods. We have previously reported phytoestrogen activity of blackcurrant anthocyanins (cyanidin-3-glucoside, cyanidin-3-rutinoside, delphinidin-3-glucoside, and delphinidin-3-rutinoside) via the estrogen receptor (ER)α. In this study, we investigated the participation of ERβ in the phytoestrogen activity of these anthocyanins. Blackcurrant anthocyanin induced ERβ-mediated transcriptional activity, and the IC50 of ERβ was lower than that of ERα, indicating that blackcurrant anthocyanins have a higher binding affinity to ERβ. In silico docking analysis of cyanidin and delphinidin, the core portions of the compound that fits within the ligand-binding pocket of ERβ, showed that similarly to 17β-estradiol, hydrogen bonds formed with the ERβ residues Glu305, Arg346, and His475. No fitting placement of glucoside or rutinoside sugar chains within the ligand-binding pocket of ERβ-estradiol complex was detected. However, as the conformation of helices 3 and 12 in ERβ varies depending on the ligand, we suggest that the surrounding structure, including these helices, adopts a conformation capable of accommodating glucoside or rutinoside. Comparison of ERα and ERβ docking structures revealed that the selectivity for ERβ is higher than that for ERα, similar to genistein. These results show that blackcurrant anthocyanins exert phytoestrogen activity via ERβ.
Collapse
|
16
|
Losada-Echeberría M, Herranz-López M, Micol V, Barrajón-Catalán E. Polyphenols as Promising Drugs against Main Breast Cancer Signatures. Antioxidants (Basel) 2017; 6:E88. [PMID: 29112149 PMCID: PMC5745498 DOI: 10.3390/antiox6040088] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.
Collapse
Affiliation(s)
- María Losada-Echeberría
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Palma de Mallorca 07122, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| |
Collapse
|
17
|
Jang HH, Nam SY, Kim MJ, Kim JB, Choi JS, Kim HR, Lee YM. Agrimonia pilosa Ledeb. aqueous extract improves impaired glucose tolerance in high-fat diet-fed rats by decreasing the inflammatory response. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:442. [PMID: 28870184 PMCID: PMC5583762 DOI: 10.1186/s12906-017-1949-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
Background Agrimonia pilosa Ledeb. is a medicinal plant with physiological activities such as anti-cancer, antioxidant, anti-inflammatory activities and in vitro anti-diabetic activity. However, the effects of aqueous extracts from A. pilosa on insulin-resistant rats have not yet been examined. We investigated the effects of aqueous extract from A. pilosa on impaired glucose metabolism induced by a high-fat diet in rats. Methods Male Sprague-Dawley rats were assigned to the following groups: normal-fat diet (NF, n = 9); high-fat diet (HF, n = 9); high-fat diet with 0.1% A. pilosa aqueous extract (HFA, n = 10). Experimental diets were administered for 16 weeks. At the end of the treatment, liver and fat tissues were isolated, and serum was collected for biochemical analysis. Results The HF group rats had a significantly higher liver weight than the NF group rats did, and increased hepatic lipid accumulation (p < 0.05); however, supplementation with A. pilosa decreased liver weight. Blood glucose levels in the HFA group were lower than levels measured in the HF group 30, 60, and 120 min after glucose administration (p < 0.05). In addition, dietary A. pilosa supplementation decreased tumor necrosis factor α and interleukin 6 levels, while increasing serum adiponectin concentrations (p < 0.05 vs. the HF group). These effects were accompanied by reduced hepatic and adipose tissue expression of inflammation-related genes such as Tnf and Il1b (p < 0.05). Conclusions Our findings indicate that A. pilosa aqueous extract can ameliorate insulin resistance in high-fat diet-fed rats by decreasing the inflammatory response. Electronic supplementary material The online version of this article (10.1186/s12906-017-1949-z) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Nanashima N, Horie K, Chiba M, Nakano M, Maeda H, Nakamura T. Anthocyanin-rich blackcurrant extract inhibits proliferation of the MCF10A healthy human breast epithelial cell line through induction of G0/G1 arrest and apoptosis. Mol Med Rep 2017; 16:6134-6141. [DOI: 10.3892/mmr.2017.7391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
|
19
|
Bak MJ, Das Gupta S, Wahler J, Lee HJ, Li X, Lee MJ, Yang CS, Suh N. Inhibitory Effects of γ- and δ-Tocopherols on Estrogen-Stimulated Breast Cancer In Vitro and In Vivo. Cancer Prev Res (Phila) 2017; 10:188-197. [PMID: 28096236 DOI: 10.1158/1940-6207.capr-16-0223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Estrogens have been implicated as complete carcinogens for breast and other tissues through mechanisms involving increased cell proliferation, oxidative stress, and DNA damage. Because of their potent antioxidant activity and other effects, tocopherols have been shown to exert antitumor activities in various cancers. However, limited information is available on the effect of different forms of tocopherols in estrogen-mediated breast cancer. To address this, we examined the effects of α-, γ-, and δ-tocopherols as well as a natural γ-tocopherol-rich mixture of tocopherols, γ-TmT, on estrogen-stimulated MCF-7 cells in vitro and in vivo For the in vivo studies, MCF-7 cells were injected into the mammary fat pad of immunodeficient mice previously implanted with estrogen pellets. Mice were then administered diets containing 0.2% α-, γ-, δ-tocopherol, or γ-TmT for 5 weeks. Treatment with α-, γ-, δ-tocopherols, and γ-TmT reduced tumor volumes by 29% (P < 0.05), 45% (P < 0.05), 41% (P < 0.05), and 58% (P < 0.01), as well as tumor weights by 20%, 37% (P < 0.05), 39% (P < 0.05), and 52% (P < 0.05), respectively. γ- and δ-tocopherols and γ-TmT inhibited the expression of cell proliferation-related genes such as cyclin D1 and c-Myc, and estrogen-related genes such as TFF/pS2, cathepsin D, and progesterone receptor in estrogen-stimulated MCF-7 cells in vitro Further, γ- and δ-tocopherols decreased the levels of estrogen-induced oxidative stress and nitrosative stress markers, 8-hydroxy-2'-deoxyguanosine and nitrotyrosine, as well as the DNA damage marker, γ-H2AX. Our results suggest that γ- and δ-tocopherols and the γ-tocopherol-rich mixture are effective natural agents for the prevention and treatment of estrogen-mediated breast cancer. Cancer Prev Res; 10(3); 188-97. ©2017 AACR.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Xiaowei Li
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
20
|
Nanashima N, Horie K, Tomisawa T, Chiba M, Nakano M, Fujita T, Maeda H, Kitajima M, Takamagi S, Uchiyama D, Watanabe J, Nakamura T, Kato Y. Phytoestrogenic activity of blackcurrant (Ribes nigrum) anthocyanins is mediated through estrogen receptor alpha. Mol Nutr Food Res 2015; 59:2419-31. [PMID: 26395027 DOI: 10.1002/mnfr.201500479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022]
Abstract
SCOPE Blackcurrants (Ribes nigrum L., Grossulariaceae) contain high amounts of anthocyanin polyphenols, which have antioxidant and anti-carcinogenic health benefits. This study analyzed the potential phytoestrogenic effects of blackcurrant extract (BCE) in breast cancer (MCF-7) and human endometrial cancer (Ishikawa) cell lines that over-express estrogen receptor alpha (ERα), as well as in immature female rats. METHODS AND RESULTS Microarray analysis and Ingenuity® Pathway Analysis showed that BCE activated the ERα pathway, whereas quantitative-PCR confirmed that BCE and four types of anthocyanins up-regulated genes downstream of ERα. BCE (0.1-1.0 μg/mL) and anthocyanins (0.1-10 μM) induced MCF-7 cell proliferation; however, this effect was blocked by ER antagonist fulvestrant. Flow cytometry showed that anthocyanins reduced and increased the number of MCF-7 cells in the G0/G1 and G2/M phases, respectively. Anthocyanins stimulated ERα transcriptional activity in human ERα reporter assays and induced alkaline phosphatase activity in Ishikawa cells. Competition assays and in silico analysis indicated that anthocyanins bind to ERα. Finally, BCE focally induced stratification of columnar epithelial cells in the rat uterus and increased cytoplasmic mucin levels in these cells. CONCLUSION These results suggest that blackcurrant anthocyanins act as phytoestrogens in vitro and in vivo.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kayo Horie
- Department of Pathologic Analysis, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Toshiko Tomisawa
- Department of Health Promotion, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Mitsuru Chiba
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Manabu Nakano
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Toshifumi Fujita
- Department of Disability and Health, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Maiko Kitajima
- Department of Pathologic Analysis, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Shizuka Takamagi
- Department of Disability and Health, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Daishi Uchiyama
- Center for Joint Research, Hirosaki University, Hirosaki, Japan
| | - Jun Watanabe
- Department of Pathologic Analysis, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Toshiya Nakamura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yoji Kato
- Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
21
|
Kubínová R, Švajdlenka E, Jankovská D. Anticholinesterase, antioxidant activity and phytochemical investigation into aqueous extracts from five species of Agrimonia genus. Nat Prod Res 2015; 30:1174-7. [PMID: 26235662 DOI: 10.1080/14786419.2015.1043552] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aqueous extracts of aerial flowering parts of five Agrimonia species (Rosaceae): Agrimonia coreana Nakai, Agrimonia japonica (Miq.) Koidz, Agrimonia procera Wallr., Agrimonia eupatoria L. and Agrimonia leucantha Kunze were investigated on their antioxidant activity, measured using five different methods; the best was the extract from A. procera with IC50 values from 6 to 29 μg/mL. All the extracts displayed inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) at the tested concentration of 100 μg/mL. We found the highest inhibition of cholinesterase in the extract of A. japonica with inhibition 70.4% for AChE and 79.8% for BuChE. These findings are statistically significant in comparison with those of other extracts (p < 0.001). The phytochemical analyses showed that the antioxidant activity of Agrimonia extracts can be affected especially by hexahydroxydiphenoyl (HHDP)-glucose and quercetin glycosides, and inhibition of cholinesterases by apigenin, luteolin and quercetin glycosides.
Collapse
Affiliation(s)
- Renata Kubínová
- a Department of Natural Drugs, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences Brno , Palackého 1/3, Brno 61242 , The Czech Republic
| | - Emil Švajdlenka
- a Department of Natural Drugs, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences Brno , Palackého 1/3, Brno 61242 , The Czech Republic
| | - Dagmar Jankovská
- a Department of Natural Drugs, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences Brno , Palackého 1/3, Brno 61242 , The Czech Republic
| |
Collapse
|