1
|
Quantitative Methods for Metabolite Analysis in Metabolic Engineering. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
King E, Cui Y, Aspacio D, Nicklen F, Zhang L, Maxel S, Luo R, Siegel JB, Aitchison E, Li H. Engineering Embden-Meyerhof-Parnas Glycolysis to Generate Noncanonical Reducing Power. ACS Catal 2022; 12:8582-8592. [PMID: 37622090 PMCID: PMC10449333 DOI: 10.1021/acscatal.2c01837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncanonical cofactors such as nicotinamide mononucleotide (NMN+) supplant the electron-transfer functionality of the natural cofactors, NAD(P)+, at a lower cost in cell-free biomanufacturing and enable orthogonal electron delivery in whole-cell metabolic engineering. Here, we redesign the high-flux Embden-Meyerhof-Parnas (EMP) glycolytic pathway to generate NMN+-based reducing power, by engineering Streptococcus mutans glyceraldehyde-3-phosphate dehydrogenase (Sm GapN) to utilize NMN+. Through iterative rounds of rational design, we discover the variant GapN Penta (P179K-F153S-S330R-I234E-G210Q) with high NMN+-dependent activity and GapN Ortho (P179K-F153S-S330R-I234E-G214E) with ~3.4 × 106-fold switch in cofactor specificity from its native cofactor NADP+ to NMN+. GapN Ortho is further demonstrated to function in Escherichia coli only in the presence of NMN+, enabling orthogonal control of glucose utilization. Molecular dynamics simulation and residue network connectivity analysis indicate that mutations altering cofactor specificity must be coordinated to maintain the appropriate degree of backbone flexibility to position the catalytic cysteine. These results provide a strategy to guide future designs of NMN+-dependent enzymes and establish the initial steps toward an orthogonal EMP pathway with biomanufacturing potential.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Youtian Cui
- Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Derek Aspacio
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Frances Nicklen
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Justin B Siegel
- Department of Chemistry, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
| | - Erick Aitchison
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
4
|
Gladwin SA, Kenji O, Honda K. One-step preparation of cell-free ATP regeneration module based on non-oxidative glycolysis using thermophilic enzymes. Chembiochem 2022; 23:e202200210. [PMID: 35642750 DOI: 10.1002/cbic.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Adenosine triphosphate (ATP) is an essential cofactor for energy-dependent enzymatic reactions that occur during in vitro biochemical conversion. Recently, an enzyme cascade based on non-oxidative glycolysis, which uses starch and orthophosphate as energy and phosphate sources, respectively, for the regeneration of ATP from adenosine diphosphate, has been developed (Wei et. al., ChemCatChem 2018 , 10 , 5597-5601). However, the 12 enzymes required for this system hampered its practical usability and further testing potential. Here, we addressed this issue by constructing co-expression vectors for the simultaneous gene expression of the 12 enzymes in a single expression strain. All enzymes were sourced from (hyper)thermophiles, which enabled a one-step purification via a heat-treatment process. We showed that the combination of the two enabled the ATP regeneration system to function in a single recombinant Escherichia coli strain. Additionally, this work provides a strategy to rationally design and control proteins expression levels in the co-expression vectors.
Collapse
Affiliation(s)
| | - Okano Kenji
- Kansai University: Kansai Daigaku, Department of Life Science and Biotechnology, JAPAN
| | - Kohsuke Honda
- Osaka University: Osaka Daigaku, International Center for Biotechnology, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| |
Collapse
|
5
|
A thermophilic phosphatase from Methanothermobacter marburgensis and its application to in vitro biosynthesis. Enzyme Microb Technol 2022; 159:110067. [DOI: 10.1016/j.enzmictec.2022.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
|
6
|
Imura M, Etoh S, Iwakiri R, Okano K, Honda K. Improvement of production yield of l-cysteine through in vitro metabolic pathway with thermophilic enzymes. J Biosci Bioeng 2021; 132:585-591. [PMID: 34600806 DOI: 10.1016/j.jbiosc.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023]
Abstract
The demand for the amino acid l-cysteine is increasing in the food, cosmetic, and pharmaceutical industries. Conventionally, the commercial production of l-cysteine is achieved by its extraction from the acid hydrolysate of hair and feathers. However, this production method is associated with the release of environmentally hazardous wastewater. Additionally, l-cysteine produced from animal sources cannot be halal-certified, which limits the market size. Although recent studies have developed an alternative commercial l-cysteine production method based on microbial fermentation, the production yield was insufficient owing to the cytotoxicity of l-cysteine against the host cells. In a previous study, we had developed an in vitrol-cysteine production method with a combination of 11 thermophilic enzymes, which yielded 10.5 mM l-cysteine from 20 mM glucose. In this study, we performed re-screening for enzymes catalyzing the rate-limiting steps of the in vitro pathway. Subsequently, the genes encoding enzymes necessary for the in vitro synthesis of l-cysteine were assembled in an expression vector and co-expressed in a single strain. To prevent the synthesis of hydrogen peroxide (H2O2), which is a byproduct and inhibits the enzyme activity, the redox balance in this biosynthetic pathway was maintained by replacing the H2O2-forming NADH oxidase with another enzymatic reaction in which pyruvate was used as a sacrificial substrate. The re-designed in vitro synthetic pathway resulted in the production of 28.2 mM l-cysteine from 20 mM glucose with a molar yield of 70.5%.
Collapse
Affiliation(s)
- Makoto Imura
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan
| | - Shinichi Etoh
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan
| | - Ryo Iwakiri
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan
| | - Kenji Okano
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts 2021. [DOI: 10.3390/catal11101183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro enzyme cascades possess great benefits, such as their synthetic capabilities for complex molecules, no need for intermediate isolation, and the shift of unfavorable equilibria towards the products. Their performance, however, can be impaired by, for example, destabilizing or inhibitory interactions between the cascade components or incongruous reaction conditions. The optimization of such systems is therefore often inevitable but not an easy task. Many parameters such as the design of the synthesis route, the choice of enzymes, reaction conditions, or process design can alter the performance of an in vitro enzymatic cascade. Many strategies to tackle this complex task exist, ranging from experimental to in silico approaches and combinations of both. This review collates examples of various optimization strategies and their success. The feasibility of optimization goals, the influence of certain parameters and the usage of algorithm-based optimizations are discussed.
Collapse
|
8
|
Abstract
Coenzyme A (CoA) is an essential cofactor present in all domains of life and is involved in numerous metabolic pathways, including fatty acid metabolism, pyruvate oxidation through the tricarboxylic acid (TCA) cycle, and the production of secondary metabolites. This characteristic makes CoA a commercially valuable compound in the pharmaceutical, cosmetic, and clinical industries. However, CoA is difficult to accumulate in living cells at a high level, since it is consumed in multiple metabolic pathways, hampering its manufacturing by typical cell cultivation and extraction approaches. The feedback inhibition by CoA to a biosynthetic enzyme, pantothenate kinase (PanK), is also a serious obstacle for the high-titer production of CoA. To overcome this challenge, in vitro production of CoA, in which the CoA biosynthetic pathway was reconstructed outside cells using recombinant thermophilic enzymes, was performed. The in vitro pathway was designed to be insensitive to the feedback inhibition of CoA using CoA-insensitive type III PanK from the thermophilic bacterium Thermus thermophilus. Furthermore, a statistical approach using design of experiments (DOE) was employed to rationally determine the enzyme loading ratio to maximize the CoA production rate. Consequently, 0.94 mM CoA could be produced from 2 mM d-pantetheine through the designed pathway. We hypothesized that the insufficient conversion yield is attributed to the high Km value of T. thermophilus PanK toward ATP. Based on these observations, possible CoA regulation mechanisms in T. thermophilus and approaches to improve the feasibility of CoA production through the in vitro pathway have been investigated. IMPORTANCE The biosynthesis of coenzyme A (CoA) in bacteria and eukaryotes is regulated by feedback inhibition targeting type I and type II pantothenate kinase (PanK). Type III PanK is found only in bacteria and is generally insensitive to CoA. Previously, type III PanK from the hyperthermophilic bacterium Thermotoga maritima was shown to defy this typical characteristic and instead shows inhibition toward CoA. In the present study, phylogenetic analysis combined with functional analysis of type III PanK from thermophiles revealed that the CoA-sensitive behavior of type III PanK from T. maritima is uncommon. We cloned type III PanKs from Thermus thermophilus and Geobacillus sp. strain 30 and showed that neither enzyme's activities were inhibited by CoA. Furthermore, we utilized type III PanK for a one-pot cascade reaction to produce CoA.
Collapse
|
9
|
Chen H, Zhang YHPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities. Crit Rev Biotechnol 2020; 41:16-33. [PMID: 33012193 DOI: 10.1080/07388551.2020.1826403] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adenosine triphosphate (ATP), the universal energy currency of life, has a central role in numerous biochemical reactions with potential for the synthesis of numerous high-value products. ATP can be regenerated by three types of mechanisms: substrate level phosphorylation, oxidative phosphorylation, and photophosphorylation. Current ATP regeneration methods are mainly based on substrate level phosphorylation catalyzed by one enzyme, several cascade enzymes, or in vitro synthetic enzymatic pathways. Among them, polyphosphate kinases and acetate kinase, along with their respective phosphate donors, are the most popular approaches for in vitro ATP regeneration. For in vitro artificial pathways, either ATP-free or ATP-balancing strategies can be implemented via smart pathway design by choosing ATP-independent enzymes. Also, we discuss some remaining challenges and suggest perspectives, especially for industrial biomanufacturing. Development of ATP regeneration systems featuring low cost, high volumetric productivity, long lifetime, flexible compatibility, and great robustness could be one of the bottom-up strategies for cascade biocatalysis and in vitro synthetic biology.
Collapse
Affiliation(s)
- Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin, China
| |
Collapse
|
10
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
11
|
Zhu Q, Wang B, Tan J, Liu T, Li L, Liu YG. Plant Synthetic Metabolic Engineering for Enhancing Crop Nutritional Quality. PLANT COMMUNICATIONS 2020; 1:100017. [PMID: 33404538 PMCID: PMC7747972 DOI: 10.1016/j.xplc.2019.100017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 05/08/2023]
Abstract
Nutrient deficiencies in crops are a serious threat to human health, especially for populations in poor areas. To overcome this problem, the development of crops with nutrient-enhanced traits is imperative. Biofortification of crops to improve nutritional quality helps combat nutrient deficiencies by increasing the levels of specific nutrient components. Compared with agronomic practices and conventional plant breeding, plant metabolic engineering and synthetic biology strategies are more effective and accurate in synthesizing specific micronutrients, phytonutrients, and/or bioactive components in crops. In this review, we discuss recent progress in the field of plant synthetic metabolic engineering, specifically in terms of research strategies of multigene stacking tools and engineering complex metabolic pathways, with a focus on improving traits related to micronutrients, phytonutrients, and bioactive components. Advances and innovations in plant synthetic metabolic engineering would facilitate the development of nutrient-enriched crops to meet the nutritional needs of humans.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14850, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Corresponding author
| |
Collapse
|
12
|
Kopp D, Willows RD, Sunna A. Cell-Free Enzymatic Conversion of Spent Coffee Grounds Into the Platform Chemical Lactic Acid. Front Bioeng Biotechnol 2019; 7:389. [PMID: 31850336 PMCID: PMC6901390 DOI: 10.3389/fbioe.2019.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
The coffee industry produces over 10 billion kg beans per year and generates high amounts of different waste products. Spent coffee grounds (SCG) are an industrially underutilized waste resource, which is rich in the polysaccharide galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups. Here, we present a cell-free reaction cascade for the conversion of mannose, the most abundant sugar in SCG, into L-lactic acid. The enzymatic conversion is based on a so far unknown oxidative mannose metabolism from Thermoplasma acidophilum and uses a previously characterized mannonate dehydratase to convert mannose into lactic acid via 4 enzymatic reactions. In comparison to known in vivo metabolisms the bioconversion is free of phosphorylated intermediates and cofactors. Assessment of enzymes, adjustment of enzyme loadings, substrate and cofactor concentrations, and buffer ionic strength allowed the identification of crucial reaction parameters and bottlenecks. Moreover, reactions with isotope labeled mannose enabled the monitoring of pathway intermediates and revealed a reverse flux in the conversion process. Finally, 4.4 ± 0.1 mM lactic acid was produced from 14.57 ± 0.7 mM SCG-derived mannose. While the conversion efficiency of the process can be further improved by enzyme engineering, the reaction demonstrates the first multi-enzyme cascade for the bioconversion of SCG.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
Okano K, Zhu Q, Honda K. In vitro reconstitution of non-phosphorylative Entner-Doudoroff pathway for lactate production. J Biosci Bioeng 2019; 129:269-275. [PMID: 31594693 DOI: 10.1016/j.jbiosc.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 01/20/2023]
Abstract
In vitro metabolic engineering is an emerging framework for bioproduction systems, in which synthetic metabolic pathways are constructed using a limited number of enzymes. Employment of thermophilic enzymes as catalytic elements in pathways enables the use of simple heat purification of recombinantly expressed enzymes. However, thermophilic enzymes are generally incompatible with thermo-labile substrates and intermediates. In previous work, we showed that lactate production through a non-ATP forming chimeric Embden-Meyerhof (EM) pathway required careful adjustment of the metabolic fluxes by continuous substrate feeding and optimization of enzyme ratios to prevent the accumulation and degradation of thermo-labile intermediates (Ye et al., Microb. Cell Fact., 11, 120, 2012). In the study reported here, we constructed an in vitro non-phosphorylative Entner-Doudoroff (np-ED) pathway. Because of the high thermal stability of the metabolic intermediates in the np-ED pathway, it could prevent degradation of accumulated metabolic intermediates caused by inconstant metabolic fluxes, and batch-mode production of lactate in which the concentrations of the substrate and metabolic intermediates change dynamically could be achieved. By combining the enzymes involved in the np-ED pathway and lactate dehydrogenase, 20.9 mM lactate was produced from 10 mM glucose and 1 mM gluconate in 6 h.
Collapse
Affiliation(s)
- Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Qianqin Zhu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Shi T, Liu S, Zhang YHPJ. CO2 fixation for malate synthesis energized by starch via in vitro metabolic engineering. Metab Eng 2019; 55:152-160. [DOI: 10.1016/j.ymben.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
15
|
Hanatani Y, Imura M, Taniguchi H, Okano K, Toya Y, Iwakiri R, Honda K. In vitro production of cysteine from glucose. Appl Microbiol Biotechnol 2019; 103:8009-8019. [PMID: 31396682 DOI: 10.1007/s00253-019-10061-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Cysteine is a commercially valuable amino acid with an increasing demand in the food, cosmetic, and pharmaceutical industries. Although cysteine is conventionally manufactured by extraction from animal proteins, this method has several problems, such as troublesome waste-water treatment and incompatibility with some dietary restrictions. Fermentative production of cysteine from plant-derived substrates is a promising alternative for the industrial production of cysteine. However, it often suffers from low product yield as living organisms are equipped with various regulatory systems to control the intracellular cysteine concentration at a moderate level. In this study, we constructed an in vitro cysteine biosynthetic pathway by assembling 11 thermophilic enzymes. The in vitro pathway was designed to be insensitive to the feedback regulation by cysteine and to balance the intra-pathway consumption and regeneration of cofactors. A kinetic model for the in vitro pathway was built using rate equations of individual enzymes and used to optimize the loading ratio of each enzyme. Consequently, 10.5 mM cysteine could be produced from 20 mM glucose through the optimized pathway. However, the observed yield and production rate of the assay were considerably lower than those predicted by the model. Determination of cofactor concentrations in the reaction mixture indicated that the inconsistency between the model and experimental assay could be attributed to the depletion of ATP and ADP, likely due to host-derived, thermo-stable enzyme(s). Based on these observations, possible approaches to improve the feasibility of cysteine production through an in vitro pathway have been discussed.
Collapse
Affiliation(s)
- Yohei Hanatani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Makoto Imura
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan
| | - Ryo Iwakiri
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
16
|
Taniguchi H, Imura M, Okano K, Honda K. Developing a single strain for in vitro salvage synthesis of NAD + at high temperatures and its potential for bioconversion. Microb Cell Fact 2019; 18:75. [PMID: 31023312 PMCID: PMC6482498 DOI: 10.1186/s12934-019-1125-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Thermostable enzymes have several advantages over their mesophilic counterparts for industrial applications. However, trade-offs such as thermal instability of enzyme substrates or co-factors exist. Nicotinamide adenine dinucleotide (NAD+) is an important co-factor in many enzyme-catalyzed oxidation-reduction reactions. This compound spontaneously decomposes at elevated temperatures and basic pH, a property that limits catalysis of NAD+/NADH-dependent bioconversions using thermostable enzymes to short timeframes. To address this issue, an "in vitro metabolic pathway" for salvage synthesis of NAD+ using six thermophilic enzymes was constructed to resynthesize NAD+ from its thermal decomposition products at high temperatures. RESULTS An integrated strain, E. coli DH5α (pBR-CI857, pGETS118-NAD+), that codes for six thermophilic enzymes in a single operon was constructed. Gene-expression levels of these enzymes in the strain were modulated by their sequential order in the operon. An enzyme solution containing these enzymes was prepared by the heat purification from the cell lysate of the integrated strain, and used as an enzyme cocktail for salvage synthesis of NAD+. The salvage activity for synthesis of NAD+ from its thermal decomposition products was found to be 0.137 ± 0.006 µmol min-1 g-1 wet cells. More than 50% of this initial activity remained after 24 h at 60 °C. The enzyme cocktail could maintain a NAD+ concentration of 1 mM for 12 h at 60 °C. Furthermore, this enzyme cocktail supported continuous NAD+/NADH-dependent redox reactions using only NAD+/NADH derived from host cells, without the need for addition of external NAD+. CONCLUSIONS The integrated strain allows preparation of an enzyme cocktail that can solve the problem of NAD+ instability at high temperatures. The strain simplifies preparation of the enzyme cocktail, and thus expands the applicability of the in vitro metabolic engineering method using thermostable enzymes. Further optimization of gene expressions in the integrated strain can be achieved by using various types of ribosome binding sites as well as promoters.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Makoto Imura
- KOHJIN Life Sciences Co., Ltd., Higashihama 1-6, Saiki, Oita, 876-858, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
18
|
Petroll K, Kopp D, Care A, Bergquist PL, Sunna A. Tools and strategies for constructing cell-free enzyme pathways. Biotechnol Adv 2018; 37:91-108. [PMID: 30521853 DOI: 10.1016/j.biotechadv.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.
Collapse
Affiliation(s)
- Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia.
| |
Collapse
|
19
|
Bundy BC, Hunt JP, Jewett MC, Swartz JR, Wood DW, Frey DD, Rao G. Cell-free biomanufacturing. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Shi T, Han P, You C, Zhang YHPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018; 3:186-195. [PMID: 30345404 PMCID: PMC6190512 DOI: 10.1016/j.synbio.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Although most in vitro (cell-free) synthetic biology projects are usually used for the purposes of fundamental research or the formation of high-value products, in vitro synthetic biology platform, which can implement complicated biochemical reactions by the in vitro assembly of numerous enzymes and coenzymes, has been proposed for low-cost biomanufacturing of bioenergy, food, biochemicals, and nutraceuticals. In addition to the most important advantage-high product yield, in vitro synthetic biology platform features several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this article, we present the basic bottom-up design principles of in vitro synthetic pathway from basic building blocks-BioBricks (thermoenzymes and/or immobilized enzymes) to building modules (e.g., enzyme complexes or multiple enzymes as a module) with specific functions. With development in thermostable building blocks-BioBricks and modules, the in vitro synthetic biology platform would open a new biomanufacturing age for the cost-competitive production of biocommodities.
Collapse
Affiliation(s)
| | | | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
21
|
Hohagen H, Schwarz D, Schenk G, Guddat LW, Schieder D, Carsten J, Sieber V. Deacidification of grass silage press juice by continuous production of acetoin from its lactate via an immobilized enzymatic reaction cascade. BIORESOURCE TECHNOLOGY 2017; 245:1084-1092. [PMID: 28946391 DOI: 10.1016/j.biortech.2017.08.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/27/2023]
Abstract
An immobilized enzymatic reaction cascade was designed and optimized for the deacidification of grass silage press juice (SPJ), thus facilitating the production of bio-based chemicals. The cascade involves a three-step process using four enzymes immobilized in a Ca-alginate gel and uses lactic acid to form acetoin, a value-added product. The reaction is performed with a continuous, pH-dependent substrate feed under oxygenation. With titrated lactic acid yields of up to 91% and reaction times of ca. 6h was achieved. Using SPJ as titrant yields of 49% were obtained within 6h. In this deacidification process, with acetoin one value-added bio-based chemical is produced while simultaneously the remaining press juice can be used in applications that require a higher pH. Such, this system can be applied in a multi-product biorefinery concept to take full advantage of nutrient-rich SPJ, which is a widely available and easily storable renewable resource.
Collapse
Affiliation(s)
- Hendrik Hohagen
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Dominik Schwarz
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, St. Lucia 4072, Australia
| | - Luke W Guddat
- The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, St. Lucia 4072, Australia
| | - Doris Schieder
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Jörg Carsten
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany; Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Volker Sieber
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany; The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, St. Lucia 4072, Australia; Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany; Fraunhofer IGB, Straubing Branch Bio, Electro, and Chemocatalysis BioCat, 94315 Straubing, Germany.
| |
Collapse
|
22
|
An In Vitro Enzyme System for the Production of myo-Inositol from Starch. Appl Environ Microbiol 2017; 83:AEM.00550-17. [PMID: 28600316 DOI: 10.1128/aem.00550-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/29/2017] [Indexed: 02/02/2023] Open
Abstract
We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively.IMPORTANCEmyo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol.
Collapse
|
23
|
Taniguchi H, Okano K, Honda K. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals. Synth Syst Biotechnol 2017; 2:65-74. [PMID: 29062963 PMCID: PMC5636945 DOI: 10.1016/j.synbio.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 11/17/2022] Open
Abstract
Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro. Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.
Collapse
|
24
|
Korman TP, Opgenorth PH, Bowie JU. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat Commun 2017; 8:15526. [PMID: 28537253 PMCID: PMC5458089 DOI: 10.1038/ncomms15526] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Cell-free systems designed to perform complex chemical conversions of biomass to biofuels or commodity chemicals are emerging as promising alternatives to the metabolic engineering of living cells. Here we design a system comprises 27 enzymes for the conversion of glucose into monoterpenes that generates both NAD(P)H and ATP in a modified glucose breakdown module and utilizes both cofactors for building terpenes. Different monoterpenes are produced in our system by changing the terpene synthase enzyme. The system is stable for the production of limonene, pinene and sabinene, and can operate continuously for at least 5 days from a single addition of glucose. We obtain conversion yields >95% and titres >15 g l-1. The titres are an order of magnitude over cellular toxicity limits and thus difficult to achieve using cell-based systems. Overall, these results highlight the potential of synthetic biochemistry approaches for producing bio-based chemicals.
Collapse
Affiliation(s)
- Tyler P Korman
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - Paul H Opgenorth
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| |
Collapse
|
25
|
Honda K, Kimura K, Ninh PH, Taniguchi H, Okano K, Ohtake H. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes. J Biosci Bioeng 2017; 124:296-301. [PMID: 28527827 DOI: 10.1016/j.jbiosc.2017.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023]
Abstract
Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD+ regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL-1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM.
Collapse
Affiliation(s)
- Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keisuke Kimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pham Huynh Ninh
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Zhang YHP, Sun J, Ma Y. Biomanufacturing: history and perspective. ACTA ACUST UNITED AC 2017; 44:773-784. [PMID: 27837351 DOI: 10.1007/s10295-016-1863-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Biomanufacturing is a type of manufacturing that utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercially important biomolecules for use in the agricultural, food, material, energy, and pharmaceutical industries. History of biomanufacturing could be classified into the three revolutions in terms of respective product types (mainly), production platforms, and research technologies. Biomanufacturing 1.0 focuses on the production of primary metabolites (e.g., butanol, acetone, ethanol, citric acid) by using mono-culture fermentation; biomanufacturing 2.0 focuses on the production of secondary metabolites (e.g., penicillin, streptomycin) by using a dedicated mutant and aerobic submerged liquid fermentation; and biomanufacturing 3.0 focuses on the production of large-size biomolecules—proteins and enzymes (e.g., erythropoietin, insulin, growth hormone, amylase, DNA polymerase) by using recombinant DNA technology and advanced cell culture. Biomanufacturing 4.0 could focus on new products, for example, human tissues or cells made by regenerative medicine, artificial starch made by in vitro synthetic biosystems, isobutanol fermented by metabolic engineering, and synthetic biology-driven microorganisms, as well as exiting products produced by far better approaches. Biomanufacturing 4.0 would help address some of the most important challenges of humankind, such as food security, energy security and sustainability, water crisis, climate change, health issues, and conflict related to the energy, food, and water nexus.
Collapse
Affiliation(s)
- Yi-Heng Percival Zhang
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
- 0000 0001 0694 4940 grid.438526.e Biological Systems Engineering Department Virginia Tech 304 Seitz Hall 24061 Blacksburg VA USA
| | - Jibin Sun
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| | - Yanhe Ma
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| |
Collapse
|
27
|
Dudley QM, Anderson KC, Jewett MC. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis. ACS Synth Biol 2016; 5:1578-1588. [PMID: 27476989 DOI: 10.1021/acssynbio.6b00154] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-free metabolic engineering (CFME) is advancing a powerful paradigm for accelerating the design and synthesis of biosynthetic pathways. However, as most cell-free biomolecule synthesis systems to date use purified enzymes, energy and cofactor balance can be limiting. To address this challenge, we report a new CFME framework for building biosynthetic pathways by mixing multiple crude lysates, or extracts. In our modular approach, cell-free lysates, each selectively enriched with an overexpressed enzyme, are generated in parallel and then combinatorically mixed to construct a full biosynthetic pathway. Endogenous enzymes in the cell-free extract fuel high-level energy and cofactor regeneration. As a model, we apply our framework to synthesize mevalonate, an intermediate in isoprenoid synthesis. We use our approach to rapidly screen enzyme variants, optimize enzyme ratios, and explore cofactor landscapes for improving pathway performance. Further, we show that genomic deletions in the source strain redirect metabolic flux in resultant lysates. In an optimized system, mevalonate was synthesized at 17.6 g·L-1 (119 mM) over 20 h, resulting in a volumetric productivity of 0.88 g·L-1·hr-1. We also demonstrate that this system can be lyophilized and retain biosynthesis capability. Our system catalyzes ∼1250 turnover events for the cofactor NAD+ and demonstrates the ability to rapidly prototype and debug enzymatic pathways in vitro for compelling metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Quentin M. Dudley
- Department of Chemical and Biological
Engineering, ‡Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive
Cancer Center, ∥Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Kim C. Anderson
- Department of Chemical and Biological
Engineering, ‡Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive
Cancer Center, ∥Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Michael C. Jewett
- Department of Chemical and Biological
Engineering, ‡Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive
Cancer Center, ∥Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
28
|
Zhang X, Wu H, Huang B, Li Z, Ye Q. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. J Biotechnol 2016; 241:163-169. [PMID: 27919691 DOI: 10.1016/j.jbiotec.2016.11.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023]
Abstract
In vitro cascade catalysis using enzyme-based system is becoming a promising biomanufacturing platform for biofuels and biochemicals production. Glutathione is a pivotal non-protein thiol compound and widely applied in food and pharmaceutical industries. In this study, glutathione was synthesized by a bifunctional glutathione synthetase together with a thermophilic ATP regeneration system through a two-enzyme cascade in vitro. Four bifunctional glutathione synthetases from Streptococcus sanguinis, S. gordonii, S. uberis and Bacillus cereus were applied for glutathione synthesis. The bifunctional glutathione synthetase from S. sanguinis was selected and coupled with the polyphosphate kinase from Thermosynechococcus elongatus BP-1 for regenerating ATP to produce glutathione in one pot. In the optimized system, 28.5mM glutathione was produced within 5h due to efficient ATP regeneration from low-cost polyphosphate. The yield based on added l-cysteine reached 81.4% and the productivity of glutathione achieved 5.7mM/h. The one-pot system indicated a potential biotransformation platform for industrial production of glutathione.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
29
|
Karim AS, Dudley QM, Jewett MC. Cell-Free Synthetic Systems for Metabolic Engineering and Biosynthetic Pathway Prototyping. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ashty S. Karim
- Northwestern University; Department of Chemical and Biological Engineering; 2145 Sheridan Road Evanston IL 60208 USA
- Northwestern University; Chemistry of Life Processes Institute; 2170 Campus Drive Evanston IL 60208 USA
| | - Quentin M. Dudley
- Northwestern University; Department of Chemical and Biological Engineering; 2145 Sheridan Road Evanston IL 60208 USA
- Northwestern University; Chemistry of Life Processes Institute; 2170 Campus Drive Evanston IL 60208 USA
| | - Michael C. Jewett
- Northwestern University; Department of Chemical and Biological Engineering; 2145 Sheridan Road Evanston IL 60208 USA
- Northwestern University; Chemistry of Life Processes Institute; 2170 Campus Drive Evanston IL 60208 USA
- Northwestern University; Robert H. Lurie Comprehensive Cancer Center; 676 North St. Clair Chicago IL 60611 USA
- Northwestern University; Simpson Querrey Institute for Bionanotechnology; 303 E. Superior Chicago IL 60611 USA
| |
Collapse
|
30
|
Forward design of a complex enzyme cascade reaction. Nat Commun 2016; 7:12971. [PMID: 27677244 PMCID: PMC5052792 DOI: 10.1038/ncomms12971] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022] Open
Abstract
Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. Building multi-component enzymatic processes in one pot is challenged by the inherent complexity of each biochemical system. Here, the authors use online mass spectroscopy and engineering systems theory to achieve forward design of a ten-membered reaction cascade.
Collapse
|
31
|
Moustafa HMA, Kim EJ, Zhu Z, Wu CH, Zaghloul TI, Adams MWW, Zhang YHP. Water Splitting for High-Yield Hydrogen Production Energized by Biomass Xylooligosaccharides Catalyzed by an Enzyme Cocktail. ChemCatChem 2016. [DOI: 10.1002/cctc.201600772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hanan M. A. Moustafa
- Biological Systems Engineering Department; Virginia Tech; 304 Seitz Hall Blacksburg Virginia 24061 USA
- Biotechnology Department; Institute of Graduate Studies and Research; Alexandria University; 163 El-Horreya Avenue, El-Chatby Alexandria 21526 Egypt
| | - Eui-Jin Kim
- Biological Systems Engineering Department; Virginia Tech; 304 Seitz Hall Blacksburg Virginia 24061 USA
| | - Zhiguang Zhu
- Cell Free Bioinnovations, Inc.; 1800 Kraft Drive, Suite 222 Blacksburg Virginia 24060 USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens Georgia 30602 USA
| | - Taha I. Zaghloul
- Biotechnology Department; Institute of Graduate Studies and Research; Alexandria University; 163 El-Horreya Avenue, El-Chatby Alexandria 21526 Egypt
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens Georgia 30602 USA
| | - Y.-H. Percival Zhang
- Biological Systems Engineering Department; Virginia Tech; 304 Seitz Hall Blacksburg Virginia 24061 USA
- Cell Free Bioinnovations, Inc.; 1800 Kraft Drive, Suite 222 Blacksburg Virginia 24060 USA
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
32
|
Abstract
The deconstruction of biomass is a pivotal process for the manufacture of target products using microbial cells and their enzymes. But the enzymes that possess a significant role in the breakdown of biomass remain relatively unexplored. Thermophilic microorganisms are of special interest as a source of novel thermostable enzymes. Many thermophilic microorganisms possess properties suitable for biotechnological and commercial use. There is, indeed, a considerable demand for a new generation of stable enzymes that are able to withstand severe conditions in industrial processes by replacing or supplementing traditional chemical processes. This manuscript reviews the pertinent role of thermophilic microorganisms as a source for production of thermostable enzymes, factors afftecting them, recent patents on thermophiles and moreso their wide spectrum applications for commercial and biotechnological use.
Collapse
|
33
|
Krauser S, Weyler C, Blaß LK, Heinzle E. Directed multistep biocatalysis using tailored permeabilized cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 137:185-234. [PMID: 23989897 DOI: 10.1007/10_2013_240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
: Recent developments in the field of biocatalysis using permeabilized cells are reviewed here, with a special emphasis on the newly emerging area of multistep biocatalysis using permeabilized cells. New methods of metabolic engineering using in silico network design and new methods of genetic engineering provide the opportunity to design more complex biocatalysts for the synthesis of complex biomolecules. Methods for the permeabilization of cells are thoroughly reviewed. We provide an extended review of useful available databases and bioinformatics tools, particularly for setting up genome-scale reconstructed networks. Examples described include phosphorylated carbohydrates, sugar nucleotides, and polyketides.
Collapse
Affiliation(s)
- Steffen Krauser
- Biochemical Engineering Institute, Saarland University, 66123, Saarbrücken, Germany
| | | | | | | |
Collapse
|
34
|
Theisen MK, Lafontaine Rivera JG, Liao JC. Stability of Ensemble Models Predicts Productivity of Enzymatic Systems. PLoS Comput Biol 2016; 12:e1004800. [PMID: 26963521 PMCID: PMC4786283 DOI: 10.1371/journal.pcbi.1004800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantly in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. The EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.
Collapse
Affiliation(s)
- Matthew K. Theisen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jimmy G. Lafontaine Rivera
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James C. Liao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Honda K, Hara N, Cheng M, Nakamura A, Mandai K, Okano K, Ohtake H. In vitro metabolic engineering for the salvage synthesis of NAD(.). Metab Eng 2016; 35:114-120. [PMID: 26912312 DOI: 10.1016/j.ymben.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/28/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Excellent thermal and operational stabilities of thermophilic enzymes can greatly increase the applicability of biocatalysis in various industrial fields. However, thermophilic enzymes are generally incompatible with thermo-labile substrates, products, and cofactors, since they show the maximal activities at high temperatures. Despite their pivotal roles in a wide range of enzymatic redox reactions, NAD(P)(+) and NAD(P)H exhibit relatively low stabilities at high temperatures, tending to be a major obstacle in the long-term operation of biocatalytic chemical manufacturing with thermophilic enzymes. In this study, we constructed an in vitro artificial metabolic pathway for the salvage synthesis of NAD(+) from its degradation products by the combination of eight thermophilic enzymes. The enzymes were heterologously produced in recombinant Escherichia coli and the heat-treated crude extracts of the recombinant cells were directly used as enzyme solutions. When incubated with experimentally optimized concentrations of the enzymes at 60°C, the NAD(+) concentration could be kept almost constant for 15h.
Collapse
Affiliation(s)
- Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| | - Naoya Hara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Maria Cheng
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Anna Nakamura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Komako Mandai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Morgado G, Gerngross D, Roberts TM, Panke S. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:117-146. [PMID: 27757475 DOI: 10.1007/10_2016_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Collapse
Affiliation(s)
- Gaspar Morgado
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania M Roberts
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
37
|
Diederichs S, Linn K, Lückgen J, Klement T, Grosch JH, Honda K, Ohtake H, Büchs J. High-level production of (5S)-hydroxyhexane-2-one by two thermostable oxidoreductases in a whole-cell catalytic approach. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Zhang YHP. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnol Adv 2015; 33:1467-83. [DOI: 10.1016/j.biotechadv.2014.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
|
39
|
Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 2015; 10:69-82. [PMID: 25319678 PMCID: PMC4314355 DOI: 10.1002/biot.201400330] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/24/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022]
Abstract
Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L(-1) h(-1) , reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.
Collapse
Affiliation(s)
| | | | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Member, Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
40
|
A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system. Metab Eng 2014; 27:29-37. [PMID: 25446973 DOI: 10.1016/j.ymben.2014.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/18/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022]
Abstract
A new cost-effective metabolism providing an ATP-regeneration system for cell-free protein synthesis is presented. Hexametaphosphate, a polyphosphate molecule, is used as phosphate donor together with maltodextrin, a polysaccharide used as carbon source to stimulate glycolysis. Remarkably, addition of enzymes is not required for this metabolism, which is carried out by endogenous catalysts present in the Escherichia coli crude extract. This new ATP regeneration system allows efficient recycling of inorganic phosphate, a strong inhibitor of protein synthesis. We show that up to 1.34-1.65mg/mL of active reporter protein is synthesized in batch-mode reaction after 5h of incubation. Unlike typical hybrid in vitro protein synthesis systems based on bacteriophage transcription, expression is carried out through E. coli promoters using only the endogenous transcription-translation molecular machineries provided by the extract. We demonstrate that traditional expensive energy regeneration systems, such as creatine phosphate, phosphoenolpyruvate or phosphoglycerate, can be replaced by a cost-effective metabolic scheme suitable for cell-free protein synthesis applications. Our work also shows that cell-free systems are useful platforms for metabolic engineering.
Collapse
|
41
|
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci U S A 2014; 111:15928-33. [PMID: 25355907 DOI: 10.1073/pnas.1413470111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.
Collapse
|
42
|
Jaturapaktrarak C, Napathorn SC, Cheng M, Okano K, Ohtake H, Honda K. In vitro conversion of glycerol to lactate with thermophilic enzymes. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0018-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In vitro reconstitution of an artificial metabolic pathway has emerged as an alternative approach to conventional in vivo fermentation-based bioproduction. Particularly, employment of thermophilic and hyperthermophilic enzymes enables us a simple preparation of highly stable and selective biocatalytic modules and the construction of in vitro metabolic pathways with an excellent operational stability. In this study, we designed and constructed an artificial in vitro metabolic pathway consisting of nine (hyper)thermophilic enzymes and applied it to the conversion of glycerol to lactate. We also assessed the compatibility of the in vitro bioconversion system with methanol, which is a major impurity in crude glycerol released from biodiesel production processes.
Results
The in vitro artificial pathway was designed to balance the intrapathway consumption and regeneration of energy and redox cofactors. All enzymes involved in the in vitro pathway exhibited an acceptable level of stability at high temperature (60°C), and their stability was not markedly affected by the co-existing of up to 100 mM methanol. The one-pot conversion of glycerol to lactate through the in vitro pathway could be achieved in an almost stoichiometric manner, and 14.7 mM lactate could be produced in 7 h. Furthermore, the in vitro bioconversion system exerted almost identical performance in the presence of methanol.
Conclusions
Many thermophilic enzymes exhibit higher stability not only at high temperatures but also in the presence of denaturants such as detergents and organic solvents than their mesophilic counterparts. In this study, compatibilities of thermophilic enzymes with methanol were demonstrated, indicating the potential applicability of in vitro bioconversion systems with thermophilic enzymes in the conversion of crude glycerol to value-added chemicals.
Collapse
|
43
|
Emulsification efficiency of adsorbed chitosan for bacterial cells accumulation at the oil–water interface. Bioprocess Biosyst Eng 2014; 38:701-9. [DOI: 10.1007/s00449-014-1310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
44
|
Ninh PH, Honda K, Sakai T, Okano K, Ohtake H. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol Bioeng 2014; 112:189-96. [PMID: 25065559 DOI: 10.1002/bit.25338] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022]
Abstract
In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.
Collapse
Affiliation(s)
- Pham Huynh Ninh
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
45
|
Myung S, Rollin J, You C, Sun F, Chandrayan S, Adams MW, Zhang YHP. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab Eng 2014; 24:70-7. [DOI: 10.1016/j.ymben.2014.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
46
|
Opgenorth PH, Korman TP, Bowie JU. A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat Commun 2014; 5:4113. [PMID: 24936528 DOI: 10.1038/ncomms5113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/14/2014] [Indexed: 12/19/2022] Open
Abstract
The greatest potential environmental benefit of metabolic engineering would be the production of high-volume commodity chemicals, such as biofuels. Yet, the high yields required for the economic viability of low-value chemicals is particularly hard to achieve in microbes owing to the myriad competing biochemical pathways. An alternative approach, which we call synthetic biochemistry, is to eliminate the organism by constructing biochemical pathways in vitro. Viable synthetic biochemistry, however, will require simple methods to replace the cellular circuitry that maintains cofactor balance. Here we design a simple purge valve module for maintaining NADP(+)/NADPH balance. We test the purge valve in the production of polyhydroxybutyryl bioplastic and isoprene--pathways where cofactor generation and utilization are unbalanced. We find that the regulatory system is highly robust to variations in cofactor levels and readily transportable. The molecular purge valve provides a step towards developing continuously operating, sustainable synthetic biochemistry systems.
Collapse
Affiliation(s)
- Paul H Opgenorth
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - Tyler P Korman
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - James U Bowie
- 1] Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA [2] Boyer Hall, UCLA, 611 Charles E Young Drive East, Los Angeles, California 90095-1570, USA
| |
Collapse
|
47
|
Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D, Bowie JU. A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Protein Sci 2014; 23:576-85. [PMID: 24623472 DOI: 10.1002/pro.2436] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 02/04/2023]
Abstract
The high yields required for the economical production of chemicals and fuels using microbes can be difficult to achieve due to the complexities of cellular metabolism. An alternative to performing biochemical transformations in microbes is to build biochemical pathways in vitro, an approach we call synthetic biochemistry. Here we test whether the full mevalonate pathway can be reconstituted in vitro and used to produce the commodity chemical isoprene. We construct an in vitro synthetic biochemical pathway that uses the carbon and ATP produced from the glycolysis intermediate phosphoenolpyruvate to run the mevalonate pathway. The system involves 12 enzymes to perform the complex transformation, while providing and balancing the ATP, NADPH, and acetyl-CoA cofactors. The optimized system produces isoprene from phosphoenolpyruvate in ∼100% molar yield. Thus, by inserting the isoprene pathway into previously developed glycolysis modules it may be possible to produce isoprene and other acetyl-CoA derived isoprenoids from glucose in vitro.
Collapse
Affiliation(s)
- Tyler P Korman
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
48
|
Zhu Z, Kin Tam T, Sun F, You C, Percival Zhang YH. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 2014; 5:3026. [DOI: 10.1038/ncomms4026] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/26/2013] [Indexed: 12/24/2022] Open
|
49
|
Caschera F, Noireaux V. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 2013; 99:162-8. [PMID: 24326247 DOI: 10.1016/j.biochi.2013.11.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 01/29/2023]
Abstract
Cell-free protein synthesis is becoming a useful technique for synthetic biology. As more applications are developed, the demand for novel and more powerful in vitro expression systems is increasing. In this work, an all Escherichia coli cell-free system, that uses the endogenous transcription and translation molecular machineries, is optimized to synthesize up to 2.3 mg/ml of a reporter protein in batch mode reactions. A new metabolism based on maltose allows recycling of inorganic phosphate through its incorporation into newly available glucose molecules, which are processed through the glycolytic pathway to produce more ATP. As a result, the ATP regeneration is more efficient and cell-free protein synthesis lasts up to 10 h. Using a commercial E. coli strain, we show for the first time that more than 2 mg/ml of protein can be synthesized in run-off cell-free transcription-translation reactions by optimizing the energy regeneration and waste products recycling. This work suggests that endogenous enzymes present in the cytoplasmic extract can be used to implement new metabolic pathways for increasing protein yields. This system is the new basis of a cell-free gene expression platform used to construct and to characterize complex biochemical processes in vitro such as gene circuits.
Collapse
Affiliation(s)
- Filippo Caschera
- School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis 55455, Minnesota, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis 55455, Minnesota, United States.
| |
Collapse
|
50
|
Tajima T, Fuki K, Kataoka N, Kudou D, Nakashimada Y, Kato J. Construction of a simple biocatalyst using psychrophilic bacterial cells and its application for efficient 3-hydroxypropionaldehyde production from glycerol. AMB Express 2013; 3:69. [PMID: 24314120 PMCID: PMC4029479 DOI: 10.1186/2191-0855-3-69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/03/2013] [Indexed: 12/02/2022] Open
Abstract
Most whole cell biocatalysts have some problems with yields and productivities because of various metabolites produced as byproducts and limitations of substrate uptake. We propose a psychrophile-based simple biocatalyst for efficient bio-production using mesophilic enzymes expressed in psychrophilic Shewanella livingstonensis Ac10 cells whose basic metabolism was inactivated by heat treatment. The 45°C heat-treated cells expressing lacZ showed maximum beta-galactosidase activity as well as chloroform/SDS-treated cells to increase membrane permeability. The fluorescent dye 5-cyano-2,3-ditolyl-tetrazolium chloride staining indicated that most basic metabolism of Ac10 was lost by heat treatment at 45˚C for 10 min. The simple biocatalyst was applied for 3-HPA production by using Klebsiella pneumoniae dhaB genes. 3-HPA was stoichiometrically produced with the complete consumption of glycerol at a high production rate of 8.85 mmol 3-HPA/g dry cell/h. The amount of 3-HPA production increased by increasing the concentrations of biocatalyst and glycerol. Furthermore, it could convert biodiesel-derived crude glycerol to 3-HPA.
Collapse
|