1
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
2
|
Zhao M, Ma J, Zhang L, Qi H. Engineering strategies for enhanced heterologous protein production by Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:32. [PMID: 38247006 PMCID: PMC10801990 DOI: 10.1186/s12934-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Microbial proteins are promising substitutes for animal- and plant-based proteins. S. cerevisiae, a generally recognized as safe (GRAS) microorganism, has been frequently employed to generate heterologous proteins. However, constructing a universal yeast chassis for efficient protein production is still a challenge due to the varying properties of different proteins. With progress in synthetic biology, a multitude of molecular biology tools and metabolic engineering strategies have been employed to alleviate these issues. This review first analyses the advantages of protein production by S. cerevisiae. The most recent advances in improving heterologous protein yield are summarized and discussed in terms of protein hyperexpression systems, protein secretion engineering, glycosylation pathway engineering and systems metabolic engineering. Furthermore, the prospects for efficient and sustainable heterologous protein production by S. cerevisiae are also provided.
Collapse
Affiliation(s)
- Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jianfan Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Broucke K, Van Pamel E, Van Coillie E, Herman L, Van Royen G. Cultured meat and challenges ahead: A review on nutritional, technofunctional and sensorial properties, safety and legislation. Meat Sci 2023; 195:109006. [DOI: 10.1016/j.meatsci.2022.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
4
|
Singh S, Yap WS, Ge XY, Min VLX, Choudhury D. Cultured meat production fuelled by fermentation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
6
|
Gentiluomo L, Svilenov HL, Augustijn D, El Bialy I, Greco ML, Kulakova A, Indrakumar S, Mahapatra S, Morales MM, Pohl C, Roche A, Tosstorff A, Curtis R, Derrick JP, Nørgaard A, Khan TA, Peters GHJ, Pluen A, Rinnan Å, Streicher WW, van der Walle CF, Uddin S, Winter G, Roessner D, Harris P, Frieß W. Advancing Therapeutic Protein Discovery and Development through Comprehensive Computational and Biophysical Characterization. Mol Pharm 2020; 17:426-440. [PMID: 31790599 DOI: 10.1021/acs.molpharmaceut.9b00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Therapeutic protein candidates should exhibit favorable properties that render them suitable to become drugs. Nevertheless, there are no well-established guidelines for the efficient selection of proteinaceous molecules with desired features during early stage development. Such guidelines can emerge only from a large body of published research that employs orthogonal techniques to characterize therapeutic proteins in different formulations. In this work, we share a study on a diverse group of proteins, including their primary sequences, purity data, and computational and biophysical characterization at different pH and ionic strength. We report weak linear correlations between many of the biophysical parameters. We suggest that a stability comparison of diverse therapeutic protein candidates should be based on a computational and biophysical characterization in multiple formulation conditions, as the latter can largely determine whether a protein is above or below a certain stability threshold. We use the presented data set to calculate several stability risk scores obtained with an increasing level of analytical effort and show how they correlate with protein aggregation during storage. Our work highlights the importance of developing combined risk scores that can be used for early stage developability assessment. We suggest that such scores can have high prediction accuracy only when they are based on protein stability characterization in different solution conditions.
Collapse
Affiliation(s)
- Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH , Hochstrasse 18 , 56307 Dernbach , Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5 , 81377 Munich , Germany
| | - Hristo L Svilenov
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5 , 81377 Munich , Germany
| | - Dillen Augustijn
- Department of Food Science, Faculty of Science , Copenhagen University , Rolighedsvej 26 , 1958 Frederiksberg , Denmark
| | - Inas El Bialy
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5 , 81377 Munich , Germany
| | - Maria Laura Greco
- Dosage Form Design and Development , AstraZeneca , Sir Aaron Klug Building, Granta Park , Cambridge CB21 6GH , U.K
| | - Alina Kulakova
- Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , 2800 Kongens Lyngby , Denmark
| | - Sowmya Indrakumar
- Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , 2800 Kongens Lyngby , Denmark
| | | | - Marcello Martinez Morales
- Dosage Form Design and Development , AstraZeneca , Sir Aaron Klug Building, Granta Park , Cambridge CB21 6GH , U.K
| | - Christin Pohl
- Novozymes A/S , Krogshoejvej 36 , 2880 Bagsvaerd , Denmark
| | - Aisling Roche
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Andreas Tosstorff
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5 , 81377 Munich , Germany
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , The University of Manchester , Oxford Road , Manchester M13 9PT , U.K
| | - Allan Nørgaard
- Novozymes A/S , Krogshoejvej 36 , 2880 Bagsvaerd , Denmark
| | - Tarik A Khan
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Günther H J Peters
- Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , 2800 Kongens Lyngby , Denmark
| | - Alain Pluen
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Åsmund Rinnan
- Department of Food Science, Faculty of Science , Copenhagen University , Rolighedsvej 26 , 1958 Frederiksberg , Denmark
| | | | - Christopher F van der Walle
- Dosage Form Design and Development , AstraZeneca , Sir Aaron Klug Building, Granta Park , Cambridge CB21 6GH , U.K
| | - Shahid Uddin
- Dosage Form Design and Development , AstraZeneca , Sir Aaron Klug Building, Granta Park , Cambridge CB21 6GH , U.K
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5 , 81377 Munich , Germany
| | - Dierk Roessner
- Wyatt Technology Europe GmbH , Hochstrasse 18 , 56307 Dernbach , Germany
| | - Pernille Harris
- Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , 2800 Kongens Lyngby , Denmark
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5 , 81377 Munich , Germany
| |
Collapse
|
7
|
Beal DM, Bastow EL, Staniforth GL, von der Haar T, Freedman RB, Tuite MF. Quantitative Analyses of the Yeast Oxidative Protein Folding Pathway In Vitro and In Vivo. Antioxid Redox Signal 2019; 31:261-274. [PMID: 30880408 PMCID: PMC6602113 DOI: 10.1089/ars.2018.7615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Aims: Efficient oxidative protein folding (OPF) in the endoplasmic reticulum (ER) is a key requirement of the eukaryotic secretory pathway. In particular, protein folding linked to the formation of disulfide bonds, an activity dependent on the enzyme protein disulfide isomerase (PDI), is crucial. For the de novo formation of disulfide bonds, reduced PDI must be reoxidized by an ER-located oxidase (ERO1). Despite some knowledge of this pathway, the kinetic parameters with which these components act and the importance of specific parameters, such as PDI reoxidation by Ero1, for the overall performance of OPF in vivo remain poorly understood. Results: We established an in vitro system using purified yeast (Saccharomyces cerevisiae) PDI (Pdi1p) and ERO1 (Ero1p) to investigate OPF. This necessitated the development of a novel reduction/oxidation processing strategy to generate homogenously oxidized recombinant yeast Ero1p. This new methodology enabled the quantitative assessment of the interaction of Pdi1p and Ero1p in vitro by measuring oxygen consumption and reoxidation of reduced RNase A. The resulting quantitative data were then used to generate a simple model that can describe the oxidizing capacity of Pdi1p and Ero1p in vitro and predict the in vivo effect of modulation of the levels of these proteins. Innovation: We describe a model that can be used to explore the OPF pathway and its control in a quantitative way. Conclusion: Our study informs and provides new insights into how OPF works at a molecular level and provides a platform for the design of more efficient heterologous protein expression systems in yeast.
Collapse
Affiliation(s)
- Dave M. Beal
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma L. Bastow
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gemma L. Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robert B. Freedman
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
8
|
Production of Recombinant Human Transferrin in Eukaryotic Pichia pastoris Expression System. Bull Exp Biol Med 2019; 167:335-338. [PMID: 31346870 DOI: 10.1007/s10517-019-04521-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 10/26/2022]
Abstract
The development and manufacturing of serum-free culture media allowing reducing the costs of preparations and standardizing the biotechnological process are important trends in biotechnology. Substitution of protein compounds in the serum-free media with recombinant analogues reduces the risk of contamination with various infectious agents. Human transferrin is a protein component of serum-free media responsible for the transport of Fe3+ ions into cells. We generated a producing strain P. pastoris secreting human transferrin to the culture medium. The use of constitutive GAP promoter and maintenance of medium pH at 6.5 allows attaining maximum level of transferrin expression (20 mg/liter).
Collapse
|
9
|
Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A 2018; 115:E11025-E11032. [PMID: 30397111 DOI: 10.1073/pnas.1809921115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Baker's yeast Saccharomyces cerevisiae is one of the most important and widely used cell factories for recombinant protein production. Many strategies have been applied to engineer this yeast for improving its protein production capacity, but productivity is still relatively low, and with increasing market demand, it is important to identify new gene targets, especially targets that have synergistic effects with previously identified targets. Despite improved protein production, previous studies rarely focused on processes associated with intracellular protein retention. Here we identified genetic modifications involved in the secretory and trafficking pathways, the histone deacetylase complex, and carbohydrate metabolic processes as targets for improving protein secretion in yeast. Especially modifications on the endosome-to-Golgi trafficking was found to effectively reduce protein retention besides increasing protein secretion. Through combinatorial genetic manipulations of several of the newly identified gene targets, we enhanced the protein production capacity of yeast by more than fivefold, and the best engineered strains could produce 2.5 g/L of a fungal α-amylase with less than 10% of the recombinant protein retained within the cells, using fed-batch cultivation.
Collapse
|
10
|
Larsen MT, Rawsthorne H, Schelde KK, Dagnæs-Hansen F, Cameron J, Howard KA. Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. J Control Release 2018; 287:132-141. [PMID: 30016735 DOI: 10.1016/j.jconrel.2018.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Recombinant albumin-drug genetic fusions are an effective technology to prolong the serum half-life of therapeutics that has resulted in marketed products. Indirect evidence suggests albumin fusions' long circulation is controlled by engagement with the cellular recycling neonatal Fc receptor (FcRn) in addition to reduced kidney filtration. In this work, we have used a panel of recombinant fusions, engineered with different human FcRn (hFcRn) affinity, including a novel high binding albumin variant (HBII), to directly define and importantly, control the intracellular mechanism as a half-life extension tuning method. mNeonGreen or mCherry fusion to the N-terminal of the recombinant human albumin (rHA) variants null-binder (rHA NB), wild-type (rHA WT), high-binder I (rHA HBI), and high-binder II (rHA HBII) did not generally interfere with hFcRn interaction determined by Biolayer Interferometry. Co-localisation of the albumins with endosomal, but not lysosomal, markers was shown by confocal microscopy for high, but not low, hFcRn binders in a human microvascular endothelial hFcRn overexpressing cell line (HMEC-1 FcRn) suggestive of endosomal compartmentalisation. Furthermore, a cellular recycling assay revealed increased recycling of albumin fusions for the high binding variants (mNeonGreen WT; ~1, mNeonGreen HBI; 5.26-fold higher, and mNeonGreen HBII; 5.77-fold higher) in the hFcRn overexpressing cell line. In vivo experiments demonstrated a direct in vitro recycling/in vivo half-life correlation with a longer circulation for the mCherry fusions engineered with high hFcRn affinity that was highest with the HBII variant of 30.1 h compared to 18.2 h for the mCherry WT. This work gives the first direct evidence for an FcRn-driven endosomal cellular recycling pathway for recombinant albumin fusions that correlates with half-life extension controlled by the affinity to hFcRn; promoting a versatile method to tune the pharmacokinetics of albumin fusion-based therapeutics not met by current technologies.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Helen Rawsthorne
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Karen Kræmmer Schelde
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jason Cameron
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
11
|
Sayers EJ, Magnusson JP, Moody PR, Mastrotto F, Conte C, Brazzale C, Borri P, Caliceti P, Watson P, Mantovani G, Aylott J, Salmaso S, Jones AT, Alexander C. Switching of Macromolecular Ligand Display by Thermoresponsive Polymers Mediates Endocytosis of Multiconjugate Nanoparticles. Bioconjug Chem 2018; 29:1030-1046. [DOI: 10.1021/acs.bioconjchem.7b00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edward J. Sayers
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Johannes P. Magnusson
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Paul R. Moody
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Francesca Mastrotto
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Claudia Conte
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Chiara Brazzale
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Paola Borri
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Peter Watson
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Giuseppe Mantovani
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Jonathan Aylott
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, Italy
| | - Arwyn T. Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| |
Collapse
|
12
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
13
|
'Something in the way she moves': The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1383-1394. [PMID: 28844745 PMCID: PMC5654723 DOI: 10.1016/j.bbapap.2017.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023]
Abstract
Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI.
Collapse
|
14
|
Cho SY, Kim HJ, Lan NT, Han HJ, Lee DC, Hwang JY, Kwon MG, Kang BK, Han SY, Moon H, Kang HA, Kim HJ. Oral vaccination through voluntary consumption of the convict grouper Epinephelus septemfasciatus with yeast producing the capsid protein of red-spotted grouper nervous necrosis virus. Vet Microbiol 2017; 204:159-164. [DOI: 10.1016/j.vetmic.2017.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/16/2023]
|
15
|
Makwana H, Mastrotto F, Magnusson JP, Sleep D, Hay J, Nicholls KJ, Allen S, Alexander C. Engineered Polymer–Transferrin Conjugates as Self-Assembling Targeted Drug Delivery Systems. Biomacromolecules 2017; 18:1532-1543. [DOI: 10.1021/acs.biomac.7b00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiteshri Makwana
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Johannes P. Magnusson
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Darrell Sleep
- Albumedix, Ltd., 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Joanna Hay
- Albumedix, Ltd., 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Karl J Nicholls
- Albumedix, Ltd., 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Stephanie Allen
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Cameron Alexander
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
16
|
Møller TSB, Hay J, Saxton MJ, Bunting K, Petersen EI, Kjærulff S, Finnis CJA. Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter. Microb Cell Fact 2017; 16:11. [PMID: 28100236 PMCID: PMC5241953 DOI: 10.1186/s12934-017-0627-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Baker’s yeast Saccharomyces cerevisiae is a proven host for the commercial production of recombinant biopharmaceutical proteins. For the manufacture of heterologous proteins with activities deleterious to the host it can be desirable to minimise production during the growth phase and induce production late in the exponential phase. Protein expression by regulated promoter systems offers the possibility of improving productivity in this way by separating the recombinant protein production phase from the yeast growth phase. Commonly used inducible promoters do not always offer convenient solutions for industrial scale biopharmaceutical production with engineered yeast systems. Results Here we show improved secretion of the antimicrobial protein, human β-defensin-2, (hBD2), using the S. cerevisiae MET17 promoter by repressing expression during the growth phase. In shake flask culture, a higher final concentration of human β-defensin-2 was obtained using the repressible MET17 promoter system than when using the strong constitutive promoter from proteinase B (PRB1) in a yeast strain developed for high-level commercial production of recombinant proteins. Furthermore, this was achieved in under half the time using the MET17 promoter compared to the PRB1 promoter. Cell density, plasmid copy-number, transcript level and protein concentration in the culture supernatant were used to study the effects of different initial methionine concentrations in the culture media for the production of human β-defensin-2 secreted from S. cerevisiae. Conclusions The repressible S. cerevisiae MET17 promoter was more efficient than a strong constitutive promoter for the production of human β-defensin-2 from S. cerevisiae in small-scale culture and offers advantages for the commercial production of this and other heterologous proteins which are deleterious to the host organism. Furthermore, the MET17 promoter activity can be modulated by methionine alone, which has a safety profile applicable to biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Thea S B Møller
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.,Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark
| | - Joanna Hay
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Malcolm J Saxton
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Karen Bunting
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Evamaria I Petersen
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark
| | - Søren Kjærulff
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Christopher J A Finnis
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
| |
Collapse
|
17
|
Römer RA, Wells SA, Emilio Jimenez‐Roldan J, Bhattacharyya M, Vishweshwara S, Freedman RB. The flexibility and dynamics of protein disulfide isomerase. Proteins 2016; 84:1776-1785. [PMID: 27616289 PMCID: PMC5111589 DOI: 10.1002/prot.25159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
Abstract
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rudolf A. Römer
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Stephen A. Wells
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUnited Kingdom
| | - J. Emilio Jimenez‐Roldan
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Moitrayee Bhattacharyya
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore560012India
- Present address: Moitrayee Bhattacharyya's current address is Department of Molecular and Cell BiologyUniversity of California BerkeleyCalifornia94720.
| | | | - Robert B. Freedman
- School of Life SciencesThe University of WarwickCoventryCV4 7ALUnited Kingdom
| |
Collapse
|
18
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
19
|
Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. RSC Adv 2015. [DOI: 10.1039/c5ra13003d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently available systems and synthetic biology tools can be applied to yeast engineering for improved biopharmaceutical protein production.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| | - Jixun Zhan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| |
Collapse
|
20
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Biopharmaceutical protein production bySaccharomyces cerevisiae: current state and future prospects. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Soares-Costa A, Nakayama DG, Andrade LDF, Catelli LF, Bassi APG, Ceccato-Antonini SR, Henrique-Silva F. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins. N Biotechnol 2014; 31:90-7. [DOI: 10.1016/j.nbt.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
|
23
|
Kim HJ, Lee JY, Kang HA, Lee Y, Park EJ, Kim HJ. Oral immunization with whole yeast producing viral capsid antigen provokes a stronger humoral immune response than purified viral capsid antigen. Lett Appl Microbiol 2013; 58:285-91. [PMID: 24251903 DOI: 10.1111/lam.12188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Weak antibody responses to protein antigens after oral immunization remain a serious problem. Yeasts have a rigid cell wall and are inherently resistant to harsh conditions, suggesting that recombinant antigens made in yeast could have a greater chance of making contact with the immune cells of the gastrointestinal (GI) tract in intact form. We compared antibody responses to oral immunization with purified recombinant antigen, used in the conventional manner, and responses to whole recombinant yeast producing the antigen intracellularly. Recombinant capsid protein (CP) of red-spotted grouper necrosis virus (RGNNV) was used as model antigen and Saccharomyces cerevisiae as host. The purified CP was obtained from the S. cerevisiae producing the RGNNV CP. Whole recombinant yeast producing RGNNV CP provoked 9-27 times higher anti-RGNNV CP IgG titres than purified RGNNV CP. Moreover, sera from mice immunized with the recombinant yeast had neutralizing activity against RGNNV, while those from mice immunized with purified CP did not. These results show that whole recombinant yeast is a promising platform for antigen delivery by oral immunization. SIGNIFICANCE AND IMPACT OF THE STUDY Provoking sufficient antibody responses by oral immunization has been an enormous challenge because of the harsh conditions of the gastrointestinal (GI) tract. Immunization strategies using purified antigen to make oral vaccines are incapable of commercialization because excessive amount of antigen is required to provoke antibody responses. Therefore, resolving the problems concerning the cost and effectiveness of oral vaccines is a high priority. Our results suggest that recombinant yeast has great potential for inducing antigen-specific immune responses by oral immunization. We believe that oral immunization using recombinant yeast can be a breakthrough technology.
Collapse
Affiliation(s)
- H J Kim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Chromatographically-purified capsid proteins of red-spotted grouper nervous necrosis virus expressed in Saccharomyces cerevisiae form virus-like particles. Protein Expr Purif 2013; 89:162-8. [DOI: 10.1016/j.pep.2013.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/08/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
|
25
|
Zhang D, Lee HF, Pettit SC, Zaro JL, Huang N, Shen WC. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.). BMC Biotechnol 2012. [PMID: 23194296 PMCID: PMC3521190 DOI: 10.1186/1472-6750-12-92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Transferrin (TF) plays a critical physiological role in cellular iron delivery via the transferrin receptor (TFR)-mediated endocytosis pathway in nearly all eukaryotic organisms. Human serum TF (hTF) is extensively used as an iron-delivery vehicle in various mammalian cell cultures for production of therapeutic proteins, and is also being explored for use as a drug carrier to treat a number of diseases by employing its unique TFR-mediated endocytosis pathway. With the increasing concerns over the risk of transmission of infectious pathogenic agents of human plasma-derived TF, recombinant hTF is preferred to use for these applications. Here, we carry out comparative studies of the TFR binding, TFR-mediated endocytosis and cellular iron delivery of recombinant hTF from rice (rhTF), and evaluate its suitability for biopharmaceutical applications. Result Through a TFR competition binding affinity assay with HeLa human cervic carcinoma cells (CCL-2) and Caco-2 human colon carcinoma cells (HTB-37), we show that rhTF competes similarly as hTF to bind TFR, and both the TFR binding capacity and dissociation constant of rhTF are comparable to that of hTF. The endocytosis assay confirms that rhTF behaves similarly as hTF in the slow accumulation in enterocyte-like Caco-2 cells and the rapid recycling pathway in HeLa cells. The pulse-chase assay of rhTF in Caco-2 and HeLa cells further illustrates that rice-derived rhTF possesses the similar endocytosis and intracellular processing compared to hTF. The cell culture assays show that rhTF is functionally similar to hTF in the delivery of iron to two diverse mammalian cell lines, HL-60 human promyelocytic leukemia cells (CCL-240) and murine hybridoma cells derived from a Sp2/0-Ag14 myeloma fusion partner (HB-72), for supporting their proliferation, differentiation, and physiological function of antibody production. Conclusion The functional similarity between rice derived rhTF and native hTF in their cellular iron delivery, TFR binding, and TFR-mediated endocytosis and intracellular processing support that rice-derived rhTF can be used as a safe and animal-free alternative to serum hTF for bioprocessing and biopharmaceutical applications.
Collapse
Affiliation(s)
- Deshui Zhang
- Ventria Bioscience, Fort Collins, CO 80524, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Steere AN, Bobst CE, Zhang D, Pettit S, Kaltashov IA, Huang N, Mason AB. Biochemical and structural characterization of recombinant human serum transferrin from rice (Oryza sativa L.). J Inorg Biochem 2012; 116:37-44. [PMID: 23010327 PMCID: PMC3483368 DOI: 10.1016/j.jinorgbio.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022]
Abstract
The Fe(3+) binding protein human serum transferrin (hTF) is well known for its role in cellular iron delivery via the transferrin receptor (TFR). A new application is the use of hTF as a therapy and targeted drug delivery system for a number of diseases. Recently, production of hTF in plants has been reported; such systems provide a relatively inexpensive, animal-free (eliminating potential contamination by animal pathogens) method to produce large amounts of recombinant proteins for such biopharmaceutical applications. Specifically, the production of Optiferrin (hTF produced in rice, Oryza sativa, from InVitria) has been shown to yield large amounts of functional protein for use in culture medium for cellular iron delivery to promote growth. In the present work we describe further purification (by gel filtration) and characterization of hTF produced in rice (purified Optiferrin) to determine its suitability in biopharmaceutical applications. The spectral, mass spectrometric, urea gel and kinetic analysis shows that purified Optiferrin is similar to recombinant nonglycosylated N-His tagged hTF expressed by baby hamster kidney cells and/or serum derived glycosylated hTF. Additionally, in a competitive immunoassay, iron-loaded Optiferrin is equivalent to iron-loaded N-His hTF in its ability to bind to the soluble portion of the TFR immobilized in an assay plate. As an essential requirement for any functional hTF, both lobes of purified Optiferrin bind Fe(3+) tightly yet reversibly. Although previously shown to be capable of delivering Fe(3+) to cells, the kinetics of iron release from iron-loaded Optiferrin™/sTFR and iron-loaded N-His hTF/sTFR complexes differ somewhat. We conclude that the purified Optiferrin might be suitable for consideration in biopharmaceutical applications.
Collapse
Affiliation(s)
- Ashley N. Steere
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Deshui Zhang
- Ventria Bioscience, 320 East Vine Drive, Fort Collins, CO 80524, USA
| | - Steve Pettit
- InVitria, 320 East Vine Drive, Fort Collins, CO 80524, USA
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Ning Huang
- Ventria Bioscience, 320 East Vine Drive, Fort Collins, CO 80524, USA
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
27
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
28
|
Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat Commun 2012; 3:610. [PMID: 22215085 PMCID: PMC3272563 DOI: 10.1038/ncomms1607] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/23/2011] [Indexed: 12/29/2022] Open
Abstract
Albumin is the most abundant protein in blood where it has a pivotal role as a transporter of fatty acids and drugs. Like IgG, albumin has long serum half-life, protected from degradation by pH-dependent recycling mediated by interaction with the neonatal Fc receptor, FcRn. Although the FcRn interaction with IgG is well characterized at the atomic level, its interaction with albumin is not. Here we present structure-based modelling of the FcRn–albumin complex, supported by binding analysis of site-specific mutants, providing mechanistic evidence for the presence of pH-sensitive ionic networks at the interaction interface. These networks involve conserved histidines in both FcRn and albumin domain III. Histidines also contribute to intramolecular interactions that stabilize the otherwise flexible loops at both the interacting surfaces. Molecular details of the FcRn–albumin complex may guide the development of novel albumin variants with altered serum half-life as carriers of drugs. Albumin transport proteins circulate in the blood and are protected from degradation by interaction with the neonatal Fc receptor. Andersen et al. investigate the albumin binding site of the neonatal Fc receptor and find pH sensitive ionic networks at the binding interface.
Collapse
|
29
|
Abstract
Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe(3+). Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe(3+) from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF.
Collapse
Affiliation(s)
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, VT, USA
| |
Collapse
|