1
|
Manjurano A, Lyimo E, Kishamawe C, Omolo J, Mosha J, Donald M, Kazyoba P, Kapiga S, Changalucha J. Prevalence of G6PD deficiency and submicroscopic malaria parasites carriage in malaria hotspot area in Northwest, Tanzania. Malar J 2023; 22:372. [PMID: 38062464 PMCID: PMC10704740 DOI: 10.1186/s12936-023-04801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The use of primaquine for mass drug administration (MDA) is being considered as a key strategy for malaria elimination. In addition to being the only drug active against the dormant and relapsing forms of Plasmodium vivax, primaquine is the sole potent drug against mature/infectious Plasmodium falciparum gametocytes. It may prevent onward transmission and help contain the spread of artemisinin resistance. However, higher dose of primaquine is associated with the risk of acute haemolytic anaemia in individuals with a deficiency in glucose-6-phosphate dehydrogenase. In many P. falciparum endemic areas there is paucity of information about the distribution of individuals at risk of primaquine-induced haemolysis at higher dose 45 mg of primaquine. METHODS A retrospective cross-sectional study was carried out using archived samples to establish the prevalence of G6PD deficiency in a malaria hotspot area in Misungwi district, located in Mwanza region, Tanzania. Blood samples collected from individuals recruited between August and November 2010 were genotyped for G6PD deficiency and submicroscopic parasites carriage using polymerase chain reaction. RESULTS A total of 263 individuals aged between 0 and 87 were recruited. The overall prevalence of the X-linked G6PD A- mutation was 83.7% (220/263) wild type, 8% (21/263) heterozygous and 8.4% (22/263) homozygous or hemizygous. Although, assessment of the enzymatic activity to assign the phenotypes according to severity and clinical manifestation as per WHO was not carried out, the overall genotype and allele frequency for the G6PD deficiency was 16.4% and 13. 2%, respectively. There was no statistically significant difference in among the different G6PD genotypes (p > 0.05). Out of 248 samples analysed for submicroscopic parasites carriage, 58.1% (144/248) were P. falciparum positive by PCR. G6PD heterozygous deficiency were associated with carriage of submicroscopic P. falciparum (p = 0.029). CONCLUSIONS This study showed that 16.4% of the population in this part of North-western Tanzania carry the G6PD A- mutation, within the range of 15-32% seen in other parts of Africa. G6PD gene mutation is widespread and heterogeneous across the study area where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of higher dose of primaquine being associated with the risk of acute haemolytic anaemia (AHA) in individuals with a deficiency in glucose-6-phosphate dehydrogenase and call further research on mapping of G6PD deficiency in Tanzania. Therefore, screening and education programmes for G6PD deficiency is warranted in a programme of malaria elimination using a higher primaquine dose.
Collapse
Affiliation(s)
| | - Eric Lyimo
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Coleman Kishamawe
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Justin Omolo
- Mabibo Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Jacklin Mosha
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Miyaye Donald
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Paul Kazyoba
- Mabibo Centre, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Saidi Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - John Changalucha
- Mwanza Centre, National Institute for Medical Research, Mwanza, Tanzania
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
2
|
Mwangungulu SP, Dorothea D, Ngereja ZR, Kaindoa EW. Geospatial based model for malaria risk prediction in Kilombero valley, South-eastern, Tanzania. PLoS One 2023; 18:e0293201. [PMID: 37874849 PMCID: PMC10597495 DOI: 10.1371/journal.pone.0293201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts. METHODS This study employs a geospatial based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability. RESULTS The study demonstrates that the majority of the study area falls under moderate risk level (61%), followed by the low risk level (31%), while the high malaria risk area covers a small area, which occupies only 8% of the total area. CONCLUSION The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions.
Collapse
Affiliation(s)
- Stephen P. Mwangungulu
- Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania
| | - Deus Dorothea
- Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania
| | - Zakaria R. Ngereja
- Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
3
|
Investigating differences in village-level heterogeneity of malaria infection and household risk factors in Papua New Guinea. Sci Rep 2021; 11:16540. [PMID: 34400687 PMCID: PMC8367982 DOI: 10.1038/s41598-021-95959-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria risk is highly heterogeneous. Understanding village and household-level spatial heterogeneity of malaria risk can support a transition to spatially targeted interventions for malaria elimination. This analysis uses data from cross-sectional prevalence surveys conducted in 2014 and 2016 in two villages (Megiar and Mirap) in Papua New Guinea. Generalised additive modelling was used to characterise spatial heterogeneity of malaria risk and investigate the contribution of individual, household and environmental-level risk factors. Following a period of declining malaria prevalence, the prevalence of P. falciparum increased from 11.4 to 19.1% in Megiar and 12.3 to 28.3% in Mirap between 2014 and 2016, with focal hotspots observed in these villages in 2014 and expanding in 2016. Prevalence of P. vivax was similar in both years (20.6% and 18.3% in Megiar, 22.1% and 23.4% in Mirap) and spatial risk heterogeneity was less apparent compared to P. falciparum. Within-village hotspots varied by Plasmodium species across time and between villages. In Megiar, the adjusted odds ratio (AOR) of infection could be partially explained by household factors that increase risk of vector exposure, such as collecting outdoor surface water as a main source of water. In Mirap, increased AOR overlapped with proximity to densely vegetated areas of the village. The identification of household and environmental factors associated with increased spatial risk may serve as useful indicators of transmission hotspots and inform the development of tailored approaches for malaria control.
Collapse
|
4
|
An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Sci Rep 2021; 11:13457. [PMID: 34188090 PMCID: PMC8241841 DOI: 10.1038/s41598-021-92741-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Anopheles funestus is playing an increasing role in malaria transmission in parts of sub-Saharan Africa, where An. gambiae s.s. has been effectively controlled by long-lasting insecticidal nets. We investigated vector population bionomics, insecticide resistance and malaria transmission dynamics in 86 study clusters in North-West Tanzania. An. funestus s.l. represented 94.5% (4740/5016) of all vectors and was responsible for the majority of malaria transmission (96.5%), with a sporozoite rate of 3.4% and average monthly entomological inoculation rate (EIR) of 4.57 per house. Micro-geographical heterogeneity in species composition, abundance and transmission was observed across the study district in relation to key ecological differences between northern and southern clusters, with significantly higher densities, proportions and EIR of An. funestus s.l. collected from the South. An. gambiae s.l. (5.5%) density, principally An. arabiensis (81.1%) and An. gambiae s.s. (18.9%), was much lower and closely correlated with seasonal rainfall. Both An. funestus s.l. and An. gambiae s.l. were similarly resistant to alpha-cypermethrin and permethrin. Overexpression of CYP9K1, CYP6P3, CYP6P4 and CYP6M2 and high L1014S-kdr mutation frequency were detected in An. gambiae s.s. populations. Study findings highlight the urgent need for novel vector control tools to tackle persistent malaria transmission in the Lake Region of Tanzania.
Collapse
|
5
|
Gomes MFC, Codeço CT, Bastos LS, Lana RM. Measuring the contribution of human mobility to malaria persistence. Malar J 2020; 19:404. [PMID: 33176792 PMCID: PMC7659106 DOI: 10.1186/s12936-020-03474-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/31/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To achieve malaria elimination, it is important to determine the role of human mobility in parasite transmission maintenance. The Alto Juruá basin (Brazil) exhibits one of the largest vivax and falciparum malaria prevalence in the Amazon. The goal of this study was to estimate the contribution of human commutes to malaria persistence in this region, using data from an origin-destination survey. METHODS Data from an origin-destination survey were used to describe the intensity and motivation for commutations between rural and urban areas in two Alto Juruá basin (Brazil) municipalities, Mâncio Lima and Rodrigues Alves. The relative time-person spent in each locality per household was estimated. A logistic model was developed to estimate the effect of commuting on the probability of contracting malaria for a certain residence zone inhabitant commuting to another zone. RESULTS The main results suggest that the assessed population is not very mobile. A total of [Formula: see text] households reported spending over [Formula: see text] of their annual person-hour in areas within the same residence zone. Study and work were the most prevalent commuting motivations, calculated at [Formula: see text] and [Formula: see text] respectively. Spending person-hours in urban Rodrigues Alves conferred relative protection to urban Mâncio Lima residents. The opposite effect was observed for those spending time in rural areas of both municipalities. CONCLUSION Residence area is a stronger determinant for contracting malaria than commuting zones in the Alto Juruá region. As these municipalities are a hotspot for Plasmodium transmission, understanding the main local human fluxes is essential for planning control strategies, since the probability of contracting malaria is dependent on the transmission intensity of both the origin and the displacement area. The natural conditions for the circulation of certain pathogens, such as Plasmodium spp., combined with the Amazon human mobility pattern indicate the need for disease control perspective changes. Therefore, intersectoral public policies should become the basis for health mitigation actions.
Collapse
Affiliation(s)
- Marcelo F C Gomes
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil.
| | - Cláudia T Codeço
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil
| | - Leonardo S Bastos
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil
| | - Raquel M Lana
- Programa de Computação Científica, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Tesfay K, Assefa B, Addisu A. Malaria outbreak investigation in Tanquae Abergelle district, Tigray region of Ethiopia: a case-control study. BMC Res Notes 2019; 12:645. [PMID: 31585549 PMCID: PMC6778373 DOI: 10.1186/s13104-019-4680-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/28/2019] [Indexed: 11/25/2022] Open
Abstract
Objective We investigated this outbreak to describe the magnitude and associated risk factors due to the malaria outbreak in Tanquae Abergelle district, Tigray, Ethiopia, in 2017. Result Case fatality rate of this study was zero. Among the 62 cases and 124 controls, the presence of mosquito breeding sites [OR = 6.56 CI (2.09–20.58) P value = 0.001], sleeping outside a home [OR = 5.06 CI (1.75–14.61) P-value = 0.003] and having unscreened window [OR = 14.89 CI (1.87–118.25) P-value = 0.011] were associated with illness in multivariate analysis.
Collapse
Affiliation(s)
- Kissanet Tesfay
- Department of Epidemiology, Mekelle University College of Health Science School of Public Health, Mekelle, Ethiopia.
| | - Belete Assefa
- Department of Health System Management, Mekelle University College of Health Science School of Public Health, Mekelle, Ethiopia
| | - Alefech Addisu
- Department of Epidemiology, Mekelle University College of Health Science School of Public Health, Mekelle, Ethiopia
| |
Collapse
|
7
|
Hofmann NE, Karl S, Wampfler R, Kiniboro B, Teliki A, Iga J, Waltmann A, Betuela I, Felger I, Robinson LJ, Mueller I. The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea. eLife 2017; 6:23708. [PMID: 28862132 PMCID: PMC5606846 DOI: 10.7554/elife.23708] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/18/2017] [Indexed: 01/20/2023] Open
Abstract
The molecular force of blood-stage infection (molFOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum (Pf) and Pv blood-stage infections/year (Pf-molFOB = 0–18, Pv-molFOB = 0–23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections. Including relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater heterogeneity at individual (Pv-molFOB = 0–36) and village levels. Pf- and Pv-molFOB were strongly associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden by the high burden of Pv relapses. Clinical trial registration: ClinicalTrials.gov NCT02143934 Malaria is caused by five different species of parasites that are transmitted to humans by bites from parasite-carrying mosquitos. Once in human blood, the parasites rapidly multiply. People who live in countries where malaria is common may become infected and never show any symptoms because their immune systems are able to keep parasite numbers low. Repeated infections, or infection with more than one species of malaria parasite also are common. Some species of malaria, including Plasmodium vivax, can hibernate in the liver for weeks or months after the infection and only become active later. Asymptomatic infections, multi-parasite infections, and reactivating parasites make it hard to measure how often new malaria infections occur. One way scientists can determine if a new infection has occurred is by genotyping the parasites in a person’s blood. Genotyping involves looking for small differences in the parasite DNA. For example, a study in Papua New Guinea, where P. vivax is very common, showed that reactivations of hibernating parasites were more common than new infections. Now, Hofmann et al. use the same study in Papua New Guinea to compare the frequency and consequences of new infections with P. vivax and another malaria parasite, Plasmodium falciparum. In the study, 466 children from 6 villages were followed for 8 months with tests every 2 to 4 weeks to genotype the parasites in their blood. Some of the children were treated with antimalarial drugs to help wipe out any existing parasites including hibernating ones. While P. vivax was about twice as common in blood samples—likely due to reactivation—genotyping showed that new infections with the two parasites occur at equal rates and often at the same times and locations. Hofmann et al. also showed that some villages and some children had much higher rates of infection than others. This difference could not fully be explained by use of bednets or other preventive measures. Children were more likely to become ill from P. falciparum than P. vivax even though P. vivax was more common. But children with more frequent infections with P. falciparum seemed better able to manage the parasites and were less likely to develop symptoms that those with infrequent infections. The experiments show that genotyping may help scientists better track new malaria infections and develop better strategies to prevent or treat malaria.
Collapse
Affiliation(s)
- Natalie E Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Stephan Karl
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Rahel Wampfler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Albina Teliki
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Andreea Waltmann
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Melbourne, Melbourne, Australia
| | - Inoni Betuela
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Leanne J Robinson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,University of Melbourne, Melbourne, Australia.,Burnet Institute, Melbourne, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Melbourne, Melbourne, Australia.,ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-University of Barcelona, Barcelona, Spain.,Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Carrasco-Escobar G, Gamboa D, Castro MC, Bangdiwala SI, Rodriguez H, Contreras-Mancilla J, Alava F, Speybroeck N, Lescano AG, Vinetz JM, Rosas-Aguirre A, Llanos-Cuentas A. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci Rep 2017; 7:8082. [PMID: 28808240 PMCID: PMC5556029 DOI: 10.1038/s41598-017-07818-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shrikant I Bangdiwala
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Juan Contreras-Mancilla
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Andres G Lescano
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
9
|
Defining micro-epidemiology for malaria elimination: systematic review and meta-analysis. Malar J 2017; 16:164. [PMID: 28427389 PMCID: PMC5399382 DOI: 10.1186/s12936-017-1792-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background Malaria risk can vary markedly between households in the same village, or between villages, but the determinants of this “micro-epidemiological” variation in malaria risk remain poorly understood. This study aimed to identify factors that explain fine-scale variation in malaria risk across settings and improve definitions and methods for malaria micro-epidemiology. Methods A systematic review of studies that examined risk factors for variation in malaria infection between individuals, households, clusters, hotspots, or villages in any malaria-endemic setting was conducted. Four databases were searched for studies published up until 6th October 2015. Crude and adjusted effect estimates for risk factors for malaria infection were combined in random effects meta-analyses. Bias was assessed using the Newcastle–Ottawa Quality Assessment Scale. Results From 743 retrieved records, 51 studies were selected, representing populations comprising over 160,000 individuals in 21 countries, in high- and low-endemicity settings. Sixty-five risk factors were identified and meta-analyses were conducted for 11 risk factors. Most studies focused on environmental factors, especially increasing distance from a breeding site (OR 0.89, 95% CI 0.86–0.92, 10 studies). Individual bed net use was protective (OR 0.63, 95% CI 0.52–0.77, 12 studies), but not household bed net ownership. Increasing household size (OR 1.08, 95% CI 1.01–1.15, 4 studies) and household crowding (OR 1.79, 95% CI 1.48–2.16, 4 studies) were associated with malaria infection. Health seeking behaviour, medical history and genetic traits were less frequently studied. Only six studies examined whether individual-level risk factors explained differences in malaria risk at village or hotspot level, and five studies reported different risk factors at different levels of analysis. The risk of bias varied from low to high in individual studies. Insufficient reporting and comparability of measurements limited the number of meta-analyses conducted. Conclusions Several variables associated with individual-level malaria infection were identified, but there was limited evidence that these factors explain variation in malaria risk at village or hotspot level. Social, population and other factors may confound estimates of environmental risk factors, yet these variables are not included in many studies. A structured framework of malaria risk factors is proposed to improve study design and quality of evidence in future micro-epidemiological studies. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1792-1) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Heng S, Durnez L, Mao S, Siv S, Tho S, Mean V, Sluydts V, Coosemans M. Passive case detection of malaria in Ratanakiri Province (Cambodia) to detect villages at higher risk for malaria. Malar J 2017; 16:104. [PMID: 28264678 PMCID: PMC5340042 DOI: 10.1186/s12936-017-1758-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cambodia reduced malaria incidence by more than 75% between 2000 and 2015, a target of the Millennium Development Goal 6. The Cambodian Government aims to eliminate all forms of malaria by 2025. The country's malaria incidence is highly variable at provincial level, but less is known at village level. This study used passive case detection (PCD) data at village level in Ratanakiri Province from 2010 to 2014 to describe incidence trends and identify high-risk areas of malaria to be primarily targeted towards malaria elimination. METHODS In 2010, the Cambodian malaria programme created a Malaria Information System (MIS) to capture malaria information at village level through PCD by village malaria workers and health facilities. The MIS data of Ratanakiri Province 2010-2014 were used to calculate annual incidence rates by Plasmodium species at province and commune levels. For estimating the trend at provincial level only villages reporting each year were selected. The communal incidences and the number of cases per village were visualized on a map per Plasmodium species and per year. Analysis of spatial clustering of village malaria cases by Plasmodium species was performed by year. RESULTS Overall, malaria annual incidence rates per 1000 inhabitants decreased from 86 (2010) to 30 (2014). Falciparum incidence decreased (by 79% in 2014 compared to 2010; CI 95% 76-82%) more rapidly than vivax incidence (by 19% in 2014 compared to 2010; CI 95% 5-32%). There were ten to 16 significant spatial clusters each year. Big clusters tended to extend along the Cambodian-Vietnamese border and along the Sesan River. Three clusters appeared throughout all years (2010-2014): one with 21 villages appeared each year, the second shrunk progressively from 2012 to 2014 and the third was split into two smaller clusters in 2013 and 2014. CONCLUSION The decline of malaria burden can be attributed to intensive malaria control activities implemented in the areas: distribution of a long-lasting insecticidal net per person and early diagnosis and prompt treatment. Dihydro-artemisinin piperaquine was the only first-line treatment for all malaria cases. No radical treatment with primaquine was provided for Plasmodium vivax cases, which could explain the slow decrease of P. vivax due to relapses. To achieve malaria elimination by 2025, priority should be given to the control of stable malaria clusters appearing over time.
Collapse
Affiliation(s)
- Somony Heng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia. .,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Lies Durnez
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sokny Mao
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sovannaroth Siv
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sochantha Tho
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Vanna Mean
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Vincent Sluydts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Marc Coosemans
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Chourasia MK, Kamaraju R, Kleinschmidt I, Bhatt RM, Swain DK, Knox TB, Valecha N. Impact of long-lasting insecticidal nets on prevalence of subclinical malaria among children in the presence of pyrethroid resistance in Anopheles culicifacies in Central India. Int J Infect Dis 2017; 57:123-129. [PMID: 28268096 PMCID: PMC5384434 DOI: 10.1016/j.ijid.2017.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Subclinical (asymptomatic) cases of malaria could be a major barrier to the success of malaria elimination programs. This study has evaluated the impact of long-lasting insecticidal nets (LLINs) on the prevalence of subclinical malaria in the presence of pyrethroid resistance in the main malaria vector Anopheles culicifacies on malaria transmission among a cohort of children in villages of the Keshkal sub-district in Chhattisgarh state. METHODS A cohort of 6582 children ages less than 14 years was enrolled from 80 study clusters. Post monsoon survey was carried out at baseline before LLIN distribution, and 5862 children were followed up in the subsequent year. Study outcomes included assessment of subclinical malarial infections and use of LLINs among the study cohort in the presence of varied levels of pyrethroid resistance. FINDINGS In the baseline survey, the proportion of subclinical malaria was 6·1%. LLIN use during the previous night was 94·8%. Overall, prevalence of subclinical malaria was significantly reduced to 1% (p<0·001) in the second survey. LLIN users were protected from malaria (OR: 0·25, 95% CI=0·12-0·52, p<0.001) and subclinical malaria (OR: 0·25, 95% CI=0·11-0·58, p=0·001) despite the presence of pyrethroid resistance in the study area. INTERPRETATION In this low transmission area, sleeping under LLINs significantly reduced the burden of malaria among children. In the presence of pyrethroid resistant malaria vector, a high LLIN use of 94·5% was observed to have significantly brought down the proportion of subclinical malaria among the cohort children.
Collapse
Affiliation(s)
- Mehul Kumar Chourasia
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India.
| | - Raghavendra Kamaraju
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi 110077, India.
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Rajendra M Bhatt
- National Institute of Malaria Research (ICMR), Field Unit, Lalpur, Raipur Chhattisgarh, India.
| | - Dipak Kumar Swain
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India.
| | | | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi 110077, India.
| |
Collapse
|
12
|
Tang S, Ji L, Hu T, Wang R, Fu H, Shao T, Liu C, Shao P, He Z, Li G, Feng Z. Public awareness of malaria in the middle stage of national malaria elimination programme. A cross-sectional survey in rural areas of malaria-endemic counties, China. Malar J 2016; 15:373. [PMID: 27436087 PMCID: PMC4949874 DOI: 10.1186/s12936-016-1428-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Remarkable progress in the elimination of malaria has been achieved by the Chinese government in the past 5 years. However, imported cases have increased rapidly, and it is a critical threat to the national malaria elimination programme. This study aims to investigate the current status of the public awareness of malaria in the middle stage of the national malaria elimination progress. METHODS A cross-sectional survey with multi-stage stratified randomized sampling was undertaken between June 2015 and March 2016. A total of 1321 residents from nine malaria-endemic counties, 27 townships and 81 villages were interviewed using a structured questionnaire. RESULTS The results showed 51.6 % of the respondents had sufficient malaria knowledge. The malaria awareness of the public in type I counties was better than that in type II, whereas that in type III was the lowest. Approximately 74.9 % of the respondents were aware of at least one form of prevention of malaria, and 85.2 % of them would seek treatment when suffering from malaria. However, the awareness of fever, chills, sweating as common symptoms of malaria were 53.4, 56.2 and 31.6 %, respectively. The level of malaria awareness of the at-risk population was similar to that of the general population, it seemingly increased along with age and declined with the distance away from township hospitals. CONCLUSION The public awareness of malaria needs to improve continuously. Health education campaigns should focus on basic malaria knowledge and cover target populations. The multi-sectoral or even international collaboration should be further intensified. Careful planning is required to ensure that scattered villages are incorporated into the malaria health promotion system to sustain elimination.
Collapse
Affiliation(s)
- Shangfeng Tang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Lu Ji
- Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Hu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China.,Bureau of Disease Prevention and Control, National Health and Family, Beijing, China
| | - Ruoxi Wang
- University of Nottingham, Nottingham, UK
| | - Hang Fu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Shao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Chunyan Liu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Piaopiao Shao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Zhe He
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Gang Li
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Zhanchun Feng
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Seasonal dynamics and microgeographical spatial heterogeneity of malaria along the China-Myanmar border. Acta Trop 2016; 157:12-19. [PMID: 26812008 DOI: 10.1016/j.actatropica.2016.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 02/04/2023]
Abstract
Malaria transmission is heterogeneous in the Greater Mekong Subregion with most of the cases occurring along international borders. Knowledge of transmission hotspots is essential for targeted malaria control and elimination in this region. This study aimed to determine the dynamics of malaria transmission and possible existence of transmission hotspots on a microgeographical scale along the China-Myanmar border. Microscopically confirmed clinical malaria cases were recorded in five border villages through a recently established surveillance system between January 2011 and December 2014. A total of 424 clinical cases with confirmed spatial and temporal information were analyzed, of which 330 (77.8%) were Plasmodium vivax and 88 (20.8%) were Plasmodium falciparum, respectively. The P. vivax and P. falciparum case ratio increased dramatically from 2.2 in 2011 to 4.7 in 2014, demonstrating that P. vivax malaria has become the predominant parasite species. Clinical infections showed a strong bimodal seasonality. There were significant differences in monthly average incidence rates among the study villages with rates in a village in China being 3-8 folds lower than those in nearby villages in Myanmar. Spatial analysis revealed the presence of clinical malaria hotspots in four villages. This information on malaria seasonal dynamics and transmission hotspots should be harnessed for planning targeted control.
Collapse
|
14
|
Obaldia N. Determinants of low socio-economic status and risk of Plasmodium vivax malaria infection in Panama (2009-2012): a case-control study. Malar J 2015; 14:14. [PMID: 25603818 PMCID: PMC4320569 DOI: 10.1186/s12936-014-0529-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/21/2014] [Indexed: 11/15/2022] Open
Abstract
Background Identification of risk factors is important for the establishment of malaria elimination programmes tailored to specific regions. Type of house construction had been associated with increasing risk of acquiring malaria. This study aimed at establishing the association between determinants of low socio-economic status (SES) and type of house construction with the likelihood of living in a Plasmodium vivax malarious corregimiento (smallest political division) in Panama during 2009–2012. Methods To determine the association between type-2 houses (build with deciduous materials) and other determinants of low SES, with living in a malarious corregimiento, this study analyzed demographic and housing census data (2010), and malaria incidence aggregated at the corregimiento level (2009–2012), using a Spearman’s non-parametric correlation test to explore for associations, followed by a case–control study and a reduced multivariate logistic regression approach for confirmation. Results A descriptive temporal and spatial analysis indicated that P. vivax in Panama was associated with Amerindian reservations. Moreover, this study demonstrated that a strong correlation (deleterious effect) existed between living in a malarious corregimiento and being exposed to a type-2 house (OR = > 1.0) (p < 0.001), while, it showed an inverse correlation for exposure to type-1 houses (protective effect) (build with permanent materials) (OR = < 1.0) (p < 0.001). In the same way, a significant association between exposure to type-2 houses and the outcome of living in a malarious corregimiento was found using a case–control study approach (Chi2 test = p < 0.001), that was confirmed applying a reduced multivariate logistic regression fitted model. Conclusions This study demonstrated that living in a P. vivax malarious corregimiento in Panama during 2009–2012 was strongly correlated with those corregimientos having a high proportion of type-2 houses. A multivariate logistic regression approach at the house and corregimiento level indicated a strong association of type-2 houses, dirt floors and illiteracy with the likelihood of living in a malarious corregimiento. It is expected that these findings will help implement a multi-sectorial approach for the elimination of malaria in poor areas of Panama where malaria is endemic, which emphasizes house improvements such as mosquito-proofing and socio-economic development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-014-0529-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicanor Obaldia
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA. .,Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama, Panama.
| |
Collapse
|