1
|
Rahi M, Sharma R, Saroha P, Chaturvedi R, Bharti PK, Sharma A. Polymerase Chain Reaction-Based Malaria Diagnosis Can Be Increasingly Adopted during Current Phase of Malaria Elimination in India. Am J Trop Med Hyg 2022; 106:1005-1012. [PMID: 35130488 PMCID: PMC8991334 DOI: 10.4269/ajtmh.21-0966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 11/07/2022] Open
Abstract
Despite commendable progress in control of malaria in India and other countries, there are hidden reservoirs of parasites in human hosts that continually feed malaria transmission. Submicroscopic infections are a significant proportion in low-endemic settings like India, and these infections possess transmission potential. Hence, these reservoirs of infection add to the existing roadblocks for malaria elimination. It is crucial that this submerged burden of malaria is detected and treated to curtail further transmission. The currently used diagnostic tools, including the so-called "gold standard" microscopy, are incapable of detecting these submicroscopic infections and thus are suboptimal. It is an opportune time to usher in more sensitive molecular tools like polymerase chain reaction (PCR) for routine diagnosis at all levels of healthcare as an additional diagnostic tool in routine settings. PCR assays have been developed into user-friendly formats for field diagnostics and are near-point-of-collection. Because of the COVID-19 pandemic in India, these are being used rampantly across the country. The facilities created for COVID-19 diagnosis can easily be co-opted and harnessed for malaria diagnosis to augment surveillance by the inclusion of molecular techniques like PCR in the routine national malaria control program.
Collapse
Affiliation(s)
- Manju Rahi
- Indian Council of Medical Research, New Delhi, India
- AcSIR, New Delhi, India
| | - Rishu Sharma
- Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India
- AcSIR, New Delhi, India
| | - Poonam Saroha
- Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India
| | - Rini Chaturvedi
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Praveen K. Bharti
- Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea. Nat Commun 2021; 12:969. [PMID: 33579923 PMCID: PMC7881035 DOI: 10.1038/s41467-021-21110-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022] Open
Abstract
Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capability of RMOD to detect infections by directly comparing it with expert light microscopy, rapid diagnostic tests and polymerase chain reaction on capillary blood samples. We show that compared to light microscopy, RMOD exhibits 82% sensitivity and 84% specificity to detect any malaria infection and 87% sensitivity and 88% specificity to detect Plasmodium vivax. This indicates that RMOD could be useful in P. vivax dominated elimination settings. Parasite density correlates well with the quantitative magneto-optical signal. Importantly, residual hemozoin present in malaria-negative patients is also detectable by RMOD, indicating its ability to detect previous infections. This could be exploited to reveal transmission hotspots in low-transmission settings. Here Arndt et al. establish rotating-crystal magneto-optical detection (RMOD) as a near-point-of-care diagnostic tool for malaria detection and report a sensitivity and specificity of 82% and 84%, respectively, as validated by analyzing a clinical population in a high transmission setting in Papua New Guinea.
Collapse
|
3
|
Na-Bangchang K, Martviset P, Kitvatanachai S, Tarasuk M, Muhamad P. Pretreatment gametocyte carriage in symptomatic patients with Plasmodium falciparum and Plasmodium vivax infections on the Thai-Myanmar border. J Vector Borne Dis 2021; 58:257-264. [DOI: 10.4103/0972-9062.316274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
4
|
Gruenberg M, Hofmann NE, Nate E, Karl S, Robinson LJ, Lanke K, Smith TA, Bousema T, Felger I. qRT-PCR versus IFA-based Quantification of Male and Female Gametocytes in Low-Density Plasmodium falciparum Infections and Their Relevance for Transmission. J Infect Dis 2020; 221:598-607. [PMID: 31437280 PMCID: PMC7325619 DOI: 10.1093/infdis/jiz420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 11/22/2022] Open
Abstract
Background Accurate quantification of female and male gametocytes and sex ratios in asymptomatic low-density malaria infections are important for assessing their transmission potential. Gametocytes often escape detection even by molecular methods, therefore ultralow gametocyte densities were quantified in large blood volumes. Methods Female and male gametocytes were quantified in 161 PCR-positive Plasmodium falciparum infections from a cross-sectional survey in Papua New Guinea. Ten-fold concentrated RNA from 800 µL blood was analyzed using female-specific pfs25 and male-specific pfmget or mssp qRT-PCR. Gametocyte sex ratios from qRT-PCR were compared with those from immunofluorescence assays (IFA). Results Gametocytes were identified in 58% (93/161) P. falciparum-positive individuals. Mean gametocyte densities were frequently below 1 female and 1 male gametocyte/µL by qRT-PCR. The mean proportion of males was 0.39 (95% confidence interval, 0.33–0.44) by pfs25/pfmget qRT-PCR; this correlated well with IFA results (Pearsons r2 = 0.91; P < .001). A Poisson model fitted to our data predicted 16% P. falciparum-positive individuals that are likely to transmit, assuming at least 1 female and 1 male gametocyte per 2.5 µL mosquito bloodmeal. Conclusions Based on model estimates of female and male gametocytes per 2.5 µL blood, P. falciparum-positive individuals detected exclusively by ultrasensitive diagnostics are negligible for human-to-mosquito transmission. Estimating the transmission potential of ultralow-density malaria infections informs interventions. Almost all infections with ≥1 female and male gametocyte per 2.5 µL mosquito bloodmeal, and thus with highest likelihood of contributing to human-to-mosquito transmission, were detectable by standard molecular diagnostics.
Collapse
Affiliation(s)
- Maria Gruenberg
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Natalie E Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Elma Nate
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Stephan Karl
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Kjerstin Lanke
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Teun Bousema
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Graumans W, Andolina C, Awandu SS, Grignard L, Lanke K, Bousema T. Plasmodium falciparum Gametocyte Enrichment in Peripheral Blood Samples by Magnetic Fractionation: Gametocyte Yields and Possibilities to Reuse Columns. Am J Trop Med Hyg 2020; 100:572-577. [PMID: 30608048 PMCID: PMC6402936 DOI: 10.4269/ajtmh.18-0773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gametocytes are sexual stage malaria parasites responsible for transmission to mosquitoes. Multiple gametocyte-producing clones may be present in natural infections, but the molecular characterization of gametocytes is challenging. Because of their magnetic properties, gametocyte enrichment can be achieved by magnetic fractionation. This increases detection sensitivity and allows specific genotyping of clones that contribute to malaria transmission. Here, we determined the percentage of Plasmodium falciparum gametocytes successfully bound to magnetic activated cell sorting (MACS) LS columns during magnetic fractionation and assessed whether columns can be reused without risking contamination or affecting column binding efficiency. Bound column fractions were quantified using multiplex quantitative reverse transcription polymerase chain reaction (qRT-PCR) for male (pfMGET) and female (CCp4) gametocytes and ring-stage asexual parasites (SBP1). To investigate cross contamination between columns, parasite strain identity was determined by merozoite surface protein 2 genotyping followed by capillary electrophoresis fragment sizing. A reproducible high percentage of gametocytes was bound to MACS LS columns with < 5% gametocytes appearing in the flow-through and < 0.6% asexual ring-stage parasites appearing in the gametocyte fraction. A high yield (> 94%) of gametocyte enrichment was achieved when columns were used up to five times with lower binding success after eight times (79%). We observed no evidence for cross contamination between columns.
Collapse
Affiliation(s)
- Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Shehu S Awandu
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Ayanful-Torgby R, Quashie NB, Boampong JN, Williamson KC, Amoah LE. Seasonal variations in Plasmodium falciparum parasite prevalence assessed by varying diagnostic tests in asymptomatic children in southern Ghana. PLoS One 2018; 13:e0199172. [PMID: 29906275 PMCID: PMC6003688 DOI: 10.1371/journal.pone.0199172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 12/24/2022] Open
Abstract
Plasmodium falciparum infections presenting either as symptomatic or asymptomatic may contain sexual stage parasites (gametocytes) that are crucial to malaria transmission. In this study, the prevalence of microscopic and submicroscopic asexual and gametocyte parasite stages were assessed in asymptomatic children from two communities in southern Ghana. Eighty children aged twelve years and below, none of whom exhibited signs of clinical malaria living in Obom and Cape Coast were sampled twice, one during the rainy (July 2015) and subsequently during the dry (January 2016) season. Venous blood was used to prepare thick and thin blood smears, spot a rapid malaria diagnostic test (PfHRP2 RDT) as well as prepare filter paper blood spots. Blood cell pellets were preserved in Trizol for RNA extraction. Polymerase chain reaction (PCR) and semi-quantitative real time reverse transcriptase PCR (qRT-PCR) were used to determine submicroscopic parasite prevalence. In both sites 87% (95% CI: 78-96) of the asymptomatic individuals surveyed were parasites positive during the 6 month study period. The prevalence of asexual and gametocyte stage parasites in the rainy season were both significantly higher in Obom than in Cape Coast (P < 0.001). Submicroscopic gametocyte prevalence was highest in the rainy season in Obom but in the dry season in Cape Coast. Parasite prevalence determined by PCR was similar to that determined by qRT-PCR in Obom but significantly lower than that determined by qRT-PCR in Cape Coast. Communities with varying parasite prevalence exhibit seasonal variations in the prevalence of gametocyte carriers. Submicroscopic asymptomatic parasite and gametocyte carriage is very high in southern Ghana, even during the dry season in communities with low microscopic parasite prevalence and likely to be missed during national surveillance exercises.
Collapse
Affiliation(s)
- Ruth Ayanful-Torgby
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- School of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Neils B. Quashie
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana, Accra, Ghana
| | | | - Kim C. Williamson
- Department of Microbiology, Uniform Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Linda E. Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Concentration of Plasmodium falciparum gametocytes in whole blood samples by magnetic cell sorting enhances parasite infection rates in mosquito feeding assays. Malar J 2017; 16:315. [PMID: 28779750 PMCID: PMC5545093 DOI: 10.1186/s12936-017-1959-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
Background Mosquito-feeding assays are important tools to guide the development and support the evaluation of transmission-blocking interventions. These functional bioassays measure the sporogonic development of gametocytes in blood-fed mosquitoes. Measuring the infectivity of low gametocyte densities has become increasingly important in malaria elimination scenarios. This will pose challenges to the sensitivity and throughput of existing mosquito-feeding assay protocols. Here, different gametocyte concentration methods of blood samples were explored to optimize conditions for detection of positive mosquito infections. Methods Mature gametocytes of Plasmodium falciparum were diluted into whole blood samples of malaria-naïve volunteers. Standard centrifugation, Percoll gradient, magnetic cell sorting (MACS) enrichment were compared using starting blood volumes larger than the control (direct) feed. Results MACS gametocyte enrichment resulted in the highest infection intensity with statistically significant increases in mean oocyst density in 2 of 3 experiments (p = 0.0003; p ≤ 0.0001; p = 0.2348). The Percoll gradient and standard centrifugation procedures resulted in variable infectivity. A significant increase in the proportion of infected mosquitoes and oocyst density was found when larger volumes of gametocyte-infected blood were used with the MACS procedure. Conclusions The current study demonstrates that concentration methods of P. falciparum gametocyte-infected whole blood samples can enhance transmission in mosquito-feeding assays. Gametocyte purification by MACS was the most efficient method, allowing the assessment of gametocyte infectivity in low-density gametocyte infections, as can be expected in natural or experimental conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1959-9) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Ricks KM, Adams NM, Scherr TF, Haselton FR, Wright DW. Direct transfer of HRPII-magnetic bead complexes to malaria rapid diagnostic tests significantly improves test sensitivity. Malar J 2016; 15:399. [PMID: 27495329 PMCID: PMC4975893 DOI: 10.1186/s12936-016-1448-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022] Open
Abstract
Background The characteristic ease of use, rapid time to result, and low cost of malaria rapid diagnostic tests (RDTs) promote their widespread use at the point-of-care for malaria detection and surveillance. However, in many settings, the success of malaria elimination campaigns depends on point-of-care diagnostics with greater sensitivity than currently available RDTs. To address this need, a sample preparation method was developed to deliver more biomarkers onto a malaria RDT by concentrating the biomarker from blood sample volumes that are too large to be directly applied to a lateral flow strip. Methods In this design, Ni–NTA-functionalized magnetic beads captured the Plasmodium falciparum biomarker HRPII from a P. falciparum D6 culture spiked blood sample. This transfer of magnetic beads to the RDT was facilitated by an inexpensive 3D-printed apparatus that aligned the sample tube with the sample deposition pad and a magnet beneath the RDT. Biomarkers were released from the bead surface onto the lateral flow strip using imidazole-spiked running buffer. Kinetics of HRPII binding to the Ni–NTA beads as a function of blood sample volume were explored prior to determining the effect of the proposed method on the limit of detection of Paracheck RDTs. Results More than 80 % of HRPII biomarkers were extracted from blood sample volumes ranging from 25 to 250 µL. The time required to reach 80 % binding ranged from 5 to 60 min, depending on sample volume. Using 250 μL of blood and a 30-min biomarker binding time, the limit of detection of the Paracheck Pf RDT brand was improved by 21-fold, resulting in a limit of detection below 1 parasite/μL. Conclusions This approach has the sensitivity and simplicity required to assist in malaria elimination campaigns in settings with limited access to clinical and laboratory resources. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1448-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keersten M Ricks
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frederick R Haselton
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
9
|
Karl S, Laman M, Moore BR, Benjamin JM, Salib M, Lorry L, Maripal S, Siba P, Robinson LJ, Mueller I, Davis TME. Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria. Acta Trop 2016; 160:1-8. [PMID: 27056132 DOI: 10.1016/j.actatropica.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 01/06/2023]
Abstract
There are limited data on gametocytaemia risk factors before/after treatment with artemisinin combination therapy in children from areas with transmission of multiple Plasmodium species. We utilised data from a randomised trial comparing artemether-lumefantrine (AL) and artemisinin-naphthoquine (AN) in 230 Papua New Guinean children aged 0.5-5 years with uncomplicated malaria in whom determinants of gametocytaemia by light microscopy were assessed at baseline using logistic regression and during follow-up using multilevel mixed effects modelling. Seventy-four (32%) and 18 (8%) children presented with P. falciparum and P. vivax gametocytaemia, respectively. Baseline P. falciparum gametocytaemia was associated with Hackett spleen grade 1 (odds ratio (95% CI) 4.01 (1.60-10.05) vs grade 0; P<0.001) and haemoglobin (0.95 (0.92-0.97) per 1g/L increase; P<0.001), and P. falciparum asexual parasitaemia in slide-positive cases (0.36 (0.19-0.68) for a 10-fold increase; P=0.002). Baseline P. vivax gametocytaemia was associated with Hackett grade 2 (12.66 (1.31-122.56); P=0.028), mixed P. falciparum/vivax infection (0.16 (0.03-1.00); P=0.050), P. vivax asexual parasitaemia (5.68 (0.98-33.04); P=0.053) and haemoglobin (0.94 (0.88-1.00); P=0.056). For post-treatment P. falciparum gametocytaemia, independent predictors were AN vs AL treatment (4.09 (1.43-11.65)), haemoglobin (0.95 (0.93-0.97)), presence/absence of P. falciparum asexual forms (3.40 (1.66-0.68)) and day post-treatment (0.086 (0.82-0.90)) (P<0.001). Post-treatment P. vivax gametocytaemia was predicted by presence of P. vivax asexual forms (596 (12-28,433); P<0.001). Consistent with slow P. falciparum gametocyte maturation, low haemoglobin, low asexual parasite density and higher spleen grading, markers of increased prior infection exposure/immunity, were strong associates of pre-treatment gametocyte positivity. The persistent inverse association between P. falciparum gametocytaemia and haemoglobin during follow-up suggests an important role for bone marrow modulation of gametocytogenesis. In P. vivax infections, baseline and post-treatment gametocyte carriage was positively related to the acute parasite burden, reflecting the close association between the development of asexual and sexual forms.
Collapse
Affiliation(s)
- Stephan Karl
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Brioni R Moore
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - John M Benjamin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mary Salib
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Lina Lorry
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Samuel Maripal
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting. Sci Rep 2016; 6:28645. [PMID: 27345590 PMCID: PMC4921854 DOI: 10.1038/srep28645] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 01/16/2023] Open
Abstract
Rapid diagnostic tests (RDTs) have been widely deployed in low-resource settings. These tests are typically read by visual inspection, and accurate record keeping and data aggregation remains a substantial challenge. A successful malaria elimination campaign will require new strategies that maximize the sensitivity of RDTs, reduce user error, and integrate results reporting tools. In this report, an unmodified mobile phone was used to photograph RDTs, which were subsequently uploaded into a globally accessible database, REDCap, and then analyzed three ways: with an automated image processing program, visual inspection, and a commercial lateral flow reader. The mobile phone image processing detected 20.6 malaria parasites/microliter of blood, compared to the commercial lateral flow reader which detected 64.4 parasites/microliter. Experienced observers visually identified positive malaria cases at 12.5 parasites/microliter, but encountered reporting errors and false negatives. Visual interpretation by inexperienced users resulted in only an 80.2% true negative rate, with substantial disagreement in the lower parasitemia range. We have demonstrated that combining a globally accessible database, such as REDCap, with mobile phone based imaging of RDTs provides objective, secure, automated, data collection and result reporting. This simple combination of existing technologies would appear to be an attractive tool for malaria elimination campaigns.
Collapse
|
11
|
Vallejo AF, Rubiano K, Amado A, Krystosik AR, Herrera S, Arévalo-Herrera M. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus. PLoS Negl Trop Dis 2016; 10:e0004807. [PMID: 27355210 PMCID: PMC4927173 DOI: 10.1371/journal.pntd.0004807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. METHODS/PRINCIPAL FINDINGS A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. CONCLUSIONS We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated by microscopy; 3) host cellular immune response did not appear to significantly affect mosquito infectivity; and 4) no statistically significant difference was observed in transmission between mosquitoes directly feeding on humans and artificial membrane feeding assays.
Collapse
Affiliation(s)
- Andrés F. Vallejo
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Valle de Cauca, Colombia
| | - Kelly Rubiano
- Caucaseco Scientific Research Center, Cali, Cali, Valle de Cauca, Colombia
| | - Andres Amado
- Caucaseco Scientific Research Center, Cali, Cali, Valle de Cauca, Colombia
| | - Amy R. Krystosik
- Kent State University College of Public Health, Kent, Ohio, United States of America
| | - Sócrates Herrera
- Caucaseco Scientific Research Center, Cali, Cali, Valle de Cauca, Colombia
| | | |
Collapse
|
12
|
Sumari D, Grimberg BT, Blankenship D, Mugasa J, Mugittu K, Moore L, Gwakisa P, Zborowski M. Application of magnetic cytosmear for the estimation of Plasmodium falciparum gametocyte density and detection of asexual stages in asymptomatic children. Malar J 2016; 15:113. [PMID: 26911917 PMCID: PMC4765204 DOI: 10.1186/s12936-016-1170-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/12/2016] [Indexed: 12/27/2022] Open
Abstract
Background Conventional malaria parasite detection methods, such as rapid diagnostic tests (RDT) and light microscopy (LM), are not sensitive enough to detect low level parasites and identification of gametocytes in the peripheral blood. A modified and sensitive laboratory prototype, Magnetic Deposition Microscopy (MDM) was developed to increase the detection of sub-microscopic parasitaemia and estimation of gametocytes density in asymptomatic school children. Methods Blood samples were collected from 303 asymptomatic school children from seven villages in Bagamoyo district in Tanzania. Participants were screened for presence of malaria parasites in the field using RDT and MDM whereas further examination of malaria parasites was done in the laboratory by LM. LM and MDM readings were used to calculate densities and estimate prevalence of asexual and sexual stages of the parasite. Results Plasmodium falciparum parasites (asexual and sexual stages) were detected in 23 (7.6 %), 52 (17.2 %), and 59 (19.5 %) out of 303 samples by LM, RDT and MDM respectively. Gametocytes were detected in 4 (1.3 %) and 12 (4.0 %) out of the same numbers of samples by LM, and MDM, respectively. Likewise, in vitro results conducted on two laboratory strains of P. falciparum, 3D7 and NF54 to assess MDM sensitivity on gametocytes detection and its application on concentrating gametocytes indicated that gametocytes were enriched by MDM by 10-fold higher than LM. Late stages of the parasite strains, 3D7 and NF54 were enriched by MDM by a factor of 20.5 and 35.6, respectively. MDM was more specific than LM and RDT by 87.5 % (95 %, CI 71.2–89.6 %) and 89.0 % (95 % CI 82.9–91.4) respectively. It was also found that MDM sensitivity was 62.5 % (95 % CI 49.5–71.8) when compared with RDT while with LM was 36.5 % (95 % CI 32.2–60.5). Conclusions These findings provide strong evidence that MDM enhanced detection of sub-microscopic P. falciparum infections and estimation of gametocyte density compared to current malaria diagnostic tools. In addition, MDM is superior to LM in detecting sub-microscopic gametocytaemia. Therefore, MDM is a potential tool for low-level parasitaemia identification and quantification with possible application in malaria transmission research.
Collapse
Affiliation(s)
- Deborah Sumari
- Bagamoyo Branch, Biomedical Thematic group, Ifakara Health Institute, P.O. Box 54, Bagamoyo, Tanzania. .,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution for Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Brian T Grimberg
- The Centre for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106-7286, USA.
| | - D'Arbra Blankenship
- The Centre for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106-7286, USA.
| | - Joseph Mugasa
- National Institute for Medical Research, Amani Medical Research Centre, P.O. Box 81, Muheza, Tanzania.
| | - Kefas Mugittu
- Muvek Laboratories, P. O. Box 105270, Dar Es Salaam, Tanzania.
| | - Lee Moore
- Department of Biomedical Engineering/ND20, Learner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Paul Gwakisa
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution for Science and Technology, P.O. Box 447, Arusha, Tanzania. .,Genome Science Centre and Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| | - Maciej Zborowski
- Department of Biomedical Engineering/ND20, Learner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Waltmann A, Karl S, Chiu C, Mueller I. Limited Degradation of the Plasmodium falciparum Gametocyte Marker pfs25 mRNA Exposed to Tropical Temperatures: Considerations for Malaria Transmission Field Studies. Am J Trop Med Hyg 2016; 94:886-9. [PMID: 26856913 DOI: 10.4269/ajtmh.15-0531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/17/2015] [Indexed: 12/27/2022] Open
Abstract
An important aspect of many malaria molecular epidemiology and transmission studies is RNA-based detection of gametocytes. Ensuring RNA stability represents a challenge in tropical, resource-limited environments, as RNA may quickly degrade when samples are not preserved under adequate conditions. This study investigated the degradation of pfs25 messenger RNA (mRNA), the most widely used Plasmodium falciparum gametocyte marker, in whole blood spiked with cultured P. falciparum gametocytes, exposed to different temperatures for up to 48 hours, and collected with different anticoagulants. The levels of pfs25 mRNA were similar between samples stored at 4°C and 30°C for up to 48 hours before stabilization with RNAprotect (Qiagen, Hilden, Germany). We observed that pfs25 mRNA in heparin-collected blood degraded less than that in ethylenediaminetetraacetic acid (EDTA)-collected blood over the 48-hour period. For field studies aiming for P. falciparum gametocyte detection, immediate stabilization of blood samples is not necessary, as the pfs25 transcript is relatively stable, more so in heparin than EDTA collection tubes.
Collapse
Affiliation(s)
- Andreea Waltmann
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia; Department of Medical Biology, University of Melbourne, Victoria, Australia; Center de Recerca en Salut Internacional de Barcelona, Barcelona, Spain
| | - Stephan Karl
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia; Department of Medical Biology, University of Melbourne, Victoria, Australia; Center de Recerca en Salut Internacional de Barcelona, Barcelona, Spain
| | - Chris Chiu
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia; Department of Medical Biology, University of Melbourne, Victoria, Australia; Center de Recerca en Salut Internacional de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia; Department of Medical Biology, University of Melbourne, Victoria, Australia; Center de Recerca en Salut Internacional de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Wu WT, Martin AB, Gandini A, Aubry N, Massoudi M, Antaki JF. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells. MICROFLUIDICS AND NANOFLUIDICS 2016; 20:41. [PMID: 27761107 PMCID: PMC5066816 DOI: 10.1007/s10404-016-1707-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/09/2016] [Indexed: 05/25/2023]
Abstract
This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al. 2006 (Han and Frazier 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40% with a 10% of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80% improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost 2 fold, from 26% to 49%. Further addition of a downstream diffuser reduced remixing, hence improved separation efficiency to 72%. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling-up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput - which is critical for clinical implementation as a blood-filtration system.
Collapse
Affiliation(s)
- Wei-Tao Wu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrea Blue Martin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alberto Gandini
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Nadine Aubry
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Mehrdad Massoudi
- U. S. Department of Energy, National Energy Technology Laboratory (NETL), PA, 15236, USA
| | - James F. Antaki
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
15
|
Abdul-Ghani R, Basco LK, Beier JC, Mahdy MAK. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malar J 2015; 14:413. [PMID: 26481312 PMCID: PMC4617745 DOI: 10.1186/s12936-015-0936-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring
of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| | - Leonardo K Basco
- Unité de Recherche 198, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut de Recherche pour le Développement, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France.
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
16
|
Gametocyte Clearance Kinetics Determined by Quantitative Magnetic Fractionation in Melanesian Children with Uncomplicated Malaria Treated with Artemisinin Combination Therapy. Antimicrob Agents Chemother 2015; 59:4489-96. [PMID: 25987625 DOI: 10.1128/aac.00136-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/09/2015] [Indexed: 12/24/2022] Open
Abstract
Quantitative magnetic fractionation and a published mathematical model were used to characterize between-treatment differences in gametocyte density and prevalence in 70 Papua New Guinean children with uncomplicated Plasmodium falciparum and/or Plasmodium vivax malaria randomized to one of two artemisinin combination therapies (artemether-lumefantrine or artemisinin-naphthoquine) in an intervention trial. There was an initial rise in peripheral P. falciparum gametocyte density with both treatments, but it was more pronounced in the artemisinin-naphthoquine group. Model-derived estimates of the median pretreatment sequestered gametocyte population were 21/μl for artemether-lumefantrine and 61/μl for artemisinin-naphthoquine (P < 0.001). The median time for P. falciparum gametocyte density to fall to <2.5/μl (below which transmission becomes unlikely) was 16 days in the artemether-lumefantrine group and 20 days in artemisinin-naphthoquine group (P < 0.001). Gametocyte prevalence modeling suggested that artemisinin-naphthoquine-treated children became gametocytemic faster (median, 2.2 days) than artemether-lumefantrine-treated children (median, 5.3 days; P < 0.001) and had a longer median P. falciparum gametocyte carriage time per individual (20 versus 13 days; P < 0.001). Clearance of P. vivax gametocytes was rapid (within 3 days) in both groups; however, consistent with the reappearance of asexual forms in the main trial, nearly 40% of children in the artemether-lumefantrine group developed P. vivax gametocytemia between days 28 and 42 compared with 3% of children in the artemisinin-naphthoquine group. These data suggest that artemisinin is less active than artemether against sequestered gametocytes. Greater initial gametocyte release after artemisinin-naphthoquine increases the period of potential P. falciparum transmission by 4 days relative to artemether-lumefantrine, but the longer elimination half-life of naphthoquine than of lumefantrine suppresses P. vivax recurrence and consequent gametocytemia.
Collapse
|
17
|
Karl S, Laman M, Koleala T, Ibam C, Kasian B, N'Drewei N, Rosanas-Urgell A, Moore BR, Waltmann A, Koepfli C, Siba PM, Betuela I, Woodward RC, St Pierre TG, Mueller I, Davis TME. Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria. Malar J 2014; 13:319. [PMID: 25123055 PMCID: PMC4139605 DOI: 10.1186/1475-2875-13-319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/08/2014] [Indexed: 01/22/2023] Open
Abstract
Background Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted. Methods Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques. Results MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively. Conclusions The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-319) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephan Karl
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Defining the malaria burden in Nchelenge District, northern Zambia using the World Health Organization malaria indicators survey. Malar J 2014; 13:220. [PMID: 24902708 PMCID: PMC4067379 DOI: 10.1186/1475-2875-13-220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is considered as one of the major public health problems and among the diseases of poverty. In areas of stable and relatively high transmission, pregnant women and their newborn babies are among the higher risk groups. A multicentre trial on the safety and efficacy of several formulations of artemisinin-based combination therapy (ACT) during pregnancy is currently on-going in four African countries, including Zambia, whose study site is in Nchelenge district. As the study outcomes may be influenced by the local malaria endemicity, this needs to be characterized. A cross-sectional survey to determine the prevalence and intensity of infection among <10 years old was carried out in March-April 2012 in Nchelenge district. METHODS The sampling unit was the household where all children < 10 years of age were included in the survey using simple random household selection on a GPS coded list. A blood sample for determining haemoglobin concentration and identifying malaria infection was collected from each recruited child. RESULTS Six hundred thirty households were selected and 782 children tested for malaria and anaemia. Prevalence of malaria infection was 30.2% (236/782), the large majority (97.9%, 231/236) being Plasmodium falciparum and the remaining ones (2.1%, 5/236) Plasmodium malariae. Anaemia, defined as haemoglobin concentration <11 g/dl, was detected in 51.2% (398/782) children. CONCLUSION In Zambia, despite the reported decline in malaria burden, pockets of high malaria endemicity, such as Nchelenge district, still remain. This is a border area and significant progress can be achieved only by concerted efforts aimed at increasing coverage of current control interventions across the border.
Collapse
|
19
|
Shapiro HM, Apte SH, Chojnowski GM, Hänscheid T, Rebelo M, Grimberg BT. Cytometry in malaria--a practical replacement for microscopy? ACTA ACUST UNITED AC 2014; Chapter 11:11.20.1-11.20.23. [PMID: 23835802 DOI: 10.1002/0471142956.cy1120s65] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria, caused by protozoan Plasmodium parasites, kills ~800,000 people each year. Exact figures are uncertain because presumptive diagnoses are often made without identifying parasites in patients' blood either by microscopy, using Giemsa's century-old stain, or by simpler tests that are ultimately dependent on microscopy for quality control. Microscopy itself relies on trained observers' ability to detect subtle morphological features of parasitized red blood cells, only a few of which may be present on a slide. Quantitative and objective flow cytometric measurements of cellular constituents such as DNA, RNA, and the malaria pigment hemozoin are now useful in research in malaria biology and pharmacology, and can provide more reliable identification of parasite species and developmental stages and better detection of low-density parasitemia than could microscopy. The same measurements can now be implemented in much smaller, simpler, cheaper imaging cytometers, potentially providing a more accurate and precise diagnostic modality.
Collapse
|
20
|
Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 2013; 123:959-66. [PMID: 24335496 DOI: 10.1182/blood-2013-08-520767] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum immature gametocytes are not observed in peripheral blood. However, gametocyte stages in organs such as bone marrow have never been assessed by molecular techniques, which are more sensitive than optical microscopy. We quantified P falciparum sexual stages in bone marrow (n = 174) and peripheral blood (n = 70) of Mozambican anemic children by quantitative polymerase chain reaction targeting transcripts specific for early (PF14_0748; PHISTa), intermediate (PF13_0247; Pfs48/45), and mature (PF10_0303; Pfs25) gametocytes. Among children positive for the P falciparum housekeeping gene (PF08_0085; ubiquitin-conjugating enzyme gene) in bone marrow (n = 136) and peripheral blood (n = 25), prevalence of immature gametocytes was higher in bone marrow than peripheral blood (early: 95% vs 20%, P < .001; intermediate: 80% vs 16%; P < .001), as were transcript levels (P < .001 for both stages). In contrast, mature gametocytes were more prevalent (100% vs 51%, P < .001) and abundant (P < .001) in peripheral blood than in the bone marrow. Severe anemia (3.57, 95% confidence interval 1.49-8.53) and dyserythropoiesis (6.21, 95% confidence interval 2.24-17.25) were independently associated with a higher prevalence of mature gametocytes in bone marrow. Our results highlight the high prevalence and abundance of early sexual stages in bone marrow, as well as the relationship between hematological disturbances and gametocyte development in this tissue.
Collapse
|
21
|
Norgan AP, Arguello HE, Sloan LM, Fernholz EC, Pritt BS. A method for reducing the sloughing of thick blood films for malaria diagnosis. Malar J 2013; 12:231. [PMID: 23834997 PMCID: PMC3734161 DOI: 10.1186/1475-2875-12-231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/01/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The gold standard for malaria diagnosis is the examination of thick and thin blood films. Thick films contain 10 to 20 times more blood than thin films, correspondingly providing increased sensitivity for malaria screening. A potential complication of thick film preparations is sloughing of the blood droplet from the slide during staining or rinsing, resulting in the loss of sample. In this work, two methods for improving thick film slide adherence ('scratch' (SCM) and 'acetone dip' (ADM) methods) were compared to the 'standard method' (SM) of thick film preparation. METHODS Standardized blood droplets from 26 previously examined EDTA whole blood specimens (22 positive and four negative) were concurrently spread on glass slides using the SM, ADM, and SCM. For the SM and ADM prepared slides, the droplet was gently spread to an approximate 22 millimeters in diameter spot on the slide using the edge of a second glass slide. For the SCM, the droplet was spread by carefully grinding (or scratching) it into the slide with the point of a second glass slide. Slides were dried for one hour in a laminar flow hood. For the ADM, slides were dipped once in an acetone filled Coplin jar and allowed to air dry. All slides were then Giemsa-stained and examined in a blinded manner. Adherence was assessed by blinded reviewers. RESULTS No significant or severe defects were observed for slides prepared with the SCM. In contrast, 8 slides prepared by the ADM and 3 prepared using the SM displayed significant or severe defects. Thick films prepared by the three methods were microscopically indistinguishable and concordant results (positive or negative) were obtained for the three methods. Estimated parasitaemia of the blood samples ranged from 25 to 429,169 parasites/μL of blood. CONCLUSIONS The SCM is an inexpensive, rapid, and simple method that improves the adherence of thick blood films to standard glass slides without altering general slide preparation, microscopic appearance or interpretability. Using the SCM, thick films can be reliably examined less than two hours after sample receipt. This represents a significant diagnostic improvement over protocols requiring extended drying periods.
Collapse
Affiliation(s)
| | | | - Lynne M Sloan
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Emily C Fernholz
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Bobbi S Pritt
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Shah NK, Poole C, MacDonald PDM, Srivastava B, Schapira A, Juliano JJ, Anvikar A, Meshnick SR, Valecha N, Mishra N. Epidemiology of Plasmodium falciparum gametocytemia in India: prevalence, age structure, risk factors and the role of a predictive score for detection. Trop Med Int Health 2013; 18:800-9. [PMID: 23627694 DOI: 10.1111/tmi.12119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To characterise the epidemiology of Plasmodium falciparum gametocytemia and determine the prevalence, age structure and the viability of a predictive model for detection. METHODS We collected data from 21 therapeutic efficacy trials conducted in India during 2009-2010 and estimated the contribution of each age group to the reservoir of transmission. We built a predictive model for gametocytemia and calculated the diagnostic utility of different score cut-offs from our risk score. RESULTS Gametocytemia was present in 18% (248/1 335) of patients and decreased with age. Adults constituted 43%, school-age children 45% and under fives 12% of the reservoir for potential transmission. Our model retained age, sex, region and previous antimalarial drug intake as predictors of gametocytemia. The area under the receiver operator characteristic curve was 0.76 (95%CI:0.73,0.78), and a cut-off of 14 or more on a risk score ranging from 0 to 46 provided 91% (95%CI:88,95) sensitivity and 33% (95%CI:31,36) specificity for detecting gametocytemia. CONCLUSIONS Gametocytemia was common in India and varied by region. Notably, adults contributed substantially to the reservoir for potential transmission. Predictive modelling to generate a clinical algorithm for detecting gametocytemia did not provide sufficient discrimination for targeting interventions.
Collapse
Affiliation(s)
- Naman K Shah
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kuamsab N, Putaporntip C, Pattanawong U, Jongwutiwes S. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR. Malar J 2012; 11:190. [PMID: 22682065 PMCID: PMC3464145 DOI: 10.1186/1475-2875-11-190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. Methods A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. Results The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. Conclusions The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.
Collapse
Affiliation(s)
- Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
24
|
Karl S, Gutiérrez L, House MJ, Davis TME, St Pierre TG. Nuclear magnetic resonance: a tool for malaria diagnosis? Am J Trop Med Hyg 2011; 85:815-7. [PMID: 22049032 DOI: 10.4269/ajtmh.2011.11-0299] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Malaria control can be improved by rapid, sensitive, low-cost detection of infection. Several such strategies are being pursued. Rapid diagnostic tests can detect infections at parasite densities above 200 μL(-1). Polymerase chain reaction methods can detect low parasite densities, but are slow and prone to contamination under field conditions. Methods that detect hemozoin presence in blood have been proposed as alternatives for rapid detection of infection. In this study, we used a benchtop nuclear magnetic resonance (NMR) device to detect hemozoin. This device could be deployed in malaria-endemic settings. We measured synthetic hemozoin in phosphate-buffered saline and malaria parasites in human blood. The NMR detected hemozoin in suspensions of 4 ng μL(-1) and parasites at densities of 8,000-10,000 μL(-1) (0.2% parasitemia). Thus, our preliminary NMR approach, although providing very rapid measurements, is unlikely to achieve the required sensitivity and specificity for malaria diagnosis, unless a preliminary concentration step is performed.
Collapse
Affiliation(s)
- Stephan Karl
- School of Physics, The University of Western Australia, Crawley, Australia.
| | | | | | | | | |
Collapse
|
25
|
A sub-microscopic gametocyte reservoir can sustain malaria transmission. PLoS One 2011; 6:e20805. [PMID: 21695129 PMCID: PMC3114851 DOI: 10.1371/journal.pone.0020805] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
Background Novel diagnostic tools, including PCR and high field gradient magnetic fractionation (HFGMF), have improved detection of asexual Plasmodium falciparum parasites and especially infectious gametocytes in human blood. These techniques indicate a significant number of people carry gametocyte densities that fall below the conventional threshold of detection achieved by standard light microscopy (LM). Methodology/Principal Findings To determine how low-level gametocytemia may affect transmission in present large-scale efforts for P. falciparum control in endemic areas, we developed a refinement of the classical Ross-Macdonald model of malaria transmission by introducing multiple infective compartments to model the potential impact of highly prevalent, low gametocytaemic reservoirs in the population. Models were calibrated using field-based data and several numerical experiments were conducted to assess the effect of high and low gametocytemia on P. falciparum transmission and control. Special consideration was given to the impact of long-lasting insecticide-treated bed nets (LLIN), presently considered the most efficient way to prevent transmission, and particularly LLIN coverage similar to goals targeted by the Roll Back Malaria and Global Fund malaria control campaigns. Our analyses indicate that models which include only moderate-to-high gametocytemia (detectable by LM) predict finite eradication times after LLIN introduction. Models that include a low gametocytemia reservoir (requiring PCR or HFGMF detection) predict much more stable, persistent transmission. Our modeled outcomes result in significantly different estimates for the level and duration of control needed to achieve malaria elimination if submicroscopic gametocytes are included. Conclusions/Significance It will be very important to complement current methods of surveillance with enhanced diagnostic techniques to detect asexual parasites and gametocytes to more accurately plan, monitor and guide malaria control programs aimed at eliminating malaria.
Collapse
|
26
|
Abstract
Since 1977, >2000 research papers described attempts to detect, identify and/or quantify parasites, or disease organisms carried by ecto-parasites, using DNA-based tests and 148 reviews of the topic were published. Despite this, only a few DNA-based tests for parasitic diseases are routinely available, and most of these are optional tests used occasionally in disease diagnosis. Malaria, trypanosomiasis, toxoplasmosis, leishmaniasis and cryptosporidiosis diagnosis may be assisted by DNA-based testing in some countries, but there are very few cases where the detection of veterinary parasites is assisted by DNA-based tests. The diagnoses of some bacterial (e.g. lyme disease) and viral diseases (e.g. tick borne encephalitis) which are transmitted by ecto-parasites more commonly use DNA-based tests, and research developing tests for these species makes up almost 20% of the literature. Other important uses of DNA-based tests are for epidemiological and risk assessment, quality control for food and water, forensic diagnosis and in parasite biology research. Some DNA-based tests for water-borne parasites, including Cryptosporidium and Giardia, are used in routine checks of water treatment, but forensic and food-testing applications have not been adopted in routine practice. Biological research, including epidemiological research, makes the widest use of DNA-based diagnostics, delivering enhanced understanding of parasites and guidelines for managing parasitic diseases. Despite the limited uptake of DNA-based tests to date, there is little doubt that they offer great potential to not only detect, identify and quantify parasites, but also to provide further information important for the implementation of parasite control strategies. For example, variant sequences within species of parasites and other organisms can be differentiated by tests in a manner similar to genetic testing in medicine or livestock breeding. If an association between DNA sequence and phenotype has been demonstrated, then qualities such as drug resistance, strain divergence, virulence, and origin of isolates could be inferred by DNA-based tests. No such tests are in clinical or commercial use in parasitology and few tests are available for other organisms. Why have DNA-based tests not had a bigger impact in veterinary and human medicine? To explore this question, technological, biological, economic and sociological factors must be considered. Additionally, a realistic expectation of research progress is needed. DNA-based tests could enhance parasite management in many ways, but patience, persistence and dedication will be needed to achieve this goal.
Collapse
|
27
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 530] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|
28
|
Karl S, Davis TME, St Pierre TG. Short report: Quantification of Plasmodium falciparum gametocytes by magnetic fractionation. Am J Trop Med Hyg 2011; 84:158-60. [PMID: 21212220 DOI: 10.4269/ajtmh.2011.10-0416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A method of gametocyte quantitation in human blood was developed based on magnetic fractionation using commercially available magnetic fractionation columns (MFCs) and exploiting the magnetic susceptibility of mature Plasmodium falciparum gametocytes. The technique uses magnetic microspheres as a calibration standard. Microspheres are added to each blood sample to a known concentration. When exposed to a magnetic field, gametocytes and magnetic microspheres are preferentially captured inside MFCs. After removal of the magnetizing field, the magnetically captured material can be eluted, placed on a microscope slide that is stained, and counted by using conventional methods. The limits of quantitation for P. falciparum gametocytes were determined from serial dilutions of blood samples with known gametocyte density. The upper limit was 1,000 gametocytes/μL. Quantitative analysis above this threshold is difficult because of an over-abundance of gametocytes. The lower limit was 0.1 gametocytes/μL, and there is a significant probability of a false-negative result below this level.
Collapse
Affiliation(s)
- Stephan Karl
- School of Physics, The University of Western Australia, Crawley, Western Australia, Australia.
| | | | | |
Collapse
|
29
|
Karl S, Davis TME, St Pierre TG. Parameterization of high magnetic field gradient fractionation columns for applications with Plasmodium falciparum infected human erythrocytes. Malar J 2010; 9:116. [PMID: 20433771 PMCID: PMC2877061 DOI: 10.1186/1475-2875-9-116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/03/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Magnetic fractionation of erythrocytes infected with Plasmodium falciparum has several research uses including enrichment of infected cells from parasite cultures or enhanced detection of P. falciparum gametocytes. The aim of the present study was to quantitatively characterize the magnetic fractionation process and thus enable optimization of protocols developed for specific uses. METHODS Synchronized cultures of P. falciparum parasites incubated with human erythrocytes were magnetically fractionated with commercially available columns. The timing of the fractionation experiments was such that the parasites were in second half of their erythrocytic life cycle with parasite densities ranging from 1 to 9%. Fractionations were carried out in a single pass through the columns. Cells were enumerated and differentiated in the initial samples as well as in the positive and negative fractions. The capture of cells by the fractionation column was described by a saturation binding model. RESULTS The magnetic binding affinity to the column matrix was approximately 350 times greater for infected cells compared with uninfected cells. The purity of infected cells in the captured fraction was generally >80% but decreased rapidly (to less than 50%) when the number of infected cells that passed through the column was substantially decreased (to less than 9 +/- 5 x 105 cells). The distribution of captured parasite developmental stages shifted to mature stages as the number of infected cells in the initial samples and flow rate increased. The relationship between the yield of infected cells in the captured fraction and flow rate of cells conformed to a complementary cumulative log-normal equation with flow rates >1.6 x 105 cells per second resulting in yields <50%. CONCLUSIONS A detailed quantitative analysis of a batchwise magnetic fractionation process for malaria infected erythrocytes using high gradient magnetic fractionation columns was performed. The models applied in this study allow the prediction of capture efficiency if the initial infected cell concentration and the flow rate are known.
Collapse
Affiliation(s)
- Stephan Karl
- School of Physics, M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | |
Collapse
|