1
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
2
|
Zhang H, Liu Y, Zhang X, Ji W, Kang Z. A necessary considering factor for breeding: growth-defense tradeoff in plants. STRESS BIOLOGY 2023; 3:6. [PMID: 37676557 PMCID: PMC10441926 DOI: 10.1007/s44154-023-00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 09/08/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
3
|
Entomopathogenic Fungi as a Potential Management Tool for the Control of Urban Malaria Vector, Anopheles stephensi (Diptera: Culicidae). J Fungi (Basel) 2023; 9:jof9020223. [PMID: 36836337 PMCID: PMC9966075 DOI: 10.3390/jof9020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
Anopheles stephensi (Diptera: Culicidae) is the vector of urban malaria in India and has a significant impact in transmitting infection in cities and towns. Further, WHO has also alarmed its invasive nature as a threat to African countries. Entomopathogenic fungi such as Beauveria bassiana and Metarhizium anisopliae have been found to be highly effective in controlling vector mosquito populations and therefore could be used in integrated vector control programs. Before employing the entomopathogenic fungi into the control programs, an effective isolate must be selected. Two separate experiments were conducted to evaluate the efficacy of Beauveria bassiana (Bb5a and Bb-NBAIR) and Metarhizium anisopliae (Ma4 and Ma-NBAIR) isolates against An. stephensi. Cement and mud panels were treated with fungal conidia with the concentration of 1 × 107 conidia/mL and adult An. stephensi mosquitoes were exposed to the treated panels (24 h after conidia were applied) by conducting WHO cone bioassay tests. The survival of the mosquitoes was monitored daily until the 10th day. In the second experiment, second instar larvae of An. stephensi were treated with fungal (Bb5a, Bb-NBAIR, Ma4 and Ma-NBAIR) conidia and blastospores with the spore concentration of 1 × 107 spores/mL. The survival of larvae was monitored until pupation. All the fungal isolates tested caused mortality in the adult mosquitoes, with varying median survival times. The Bb5a isolate reported lesser median survival times on both cement and mud panels (6 days). The treated mosquitoes showed similar survival rates for each fungal isolate irrespective of the panel type. There was no mortality in the treated larvae; however, a delay in larval development to pupae was observed compared with the untreated control larvae. Ma4-treated larvae took 11 days (95% CI = 10.7-11.2) to become pupae when compared with the untreated control larvae (6 days [95% CI = 5.6-6.3]). The findings of this study will be useful to consider EPF as a tool for the management of vector mosquitoes.
Collapse
|
4
|
Joseph Matiya D, Philbert AB, Kidima WB, Matowo JJ. The Effect of Plasmodium falciparum (Welch) (Haemospororida: Plasmodiidae) Infection on the Susceptibility of Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae) to Pyrethroid Insecticides in the North-Western and South-Eastern, Tanzania. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:112-121. [PMID: 36287642 DOI: 10.1093/jme/tjac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of insecticide resistance in malaria vectors threatens insecticide-based interventions. It is hypothesized that infection of insecticide-resistant vectors with Plasmodium parasites increases their vulnerability to insecticides, thus assuring the effectiveness of insecticide-based strategies for malaria control. Nonetheless, there is limited field data to support this. We investigated the effect of the Plasmodium falciparum infection on the susceptibility of Anopheles gambiae s.l. and Anopheles funestus to pyrethroids in south-eastern (Kilombero) and north-western (Muleba), Tanzania. The wild-collected mosquitoes were tested against 0.05% deltamethrin and 0.75% permethrin, then assessed for sporozoite rate and resistant gene (kdr) mutations. All Anopheles gambiae s.l. from Kilombero were An. arabiensis (Patton, 1905) while those from Muleba were 87% An. gambiae s.s (Giles, 1902) and 13% An. Arabiensis. High levels of pyrethroid resistance were observed in both areas studied. The kdr mutation was only detected in An. gambiae s.s. at the frequency of 100% in survivors and 97% in dead mosquitoes. The P. falciparum sporozoite rates were slightly higher in susceptible than in resistant mosquitoes. In Muleba, sporozoite rates in An. gambiae s.l. were 8.1% and 6.4% in dead mosquitoes and survivors, respectively (SRR = 1.28, p = 0.19). The sporozoite rates in Kilombero were 1.3% and 0.7% in the dead and survived mosquitoes, respectively (sporozoite rate ratio (SRR) = 1.9, p = 0.33). In An. funestus group sporozoite rates were 6.2% and 4.4% in dead and survived mosquitoes, respectively (SRR = 1.4, p = 0.54). These findings indicate that insecticides might still be effective in malaria control despite the rapid development of insecticide resistance in malaria vectors.
Collapse
Affiliation(s)
- Deokary Joseph Matiya
- Dar es Salaam University College of Education (DUCE), PO Box 2329, Dar es Salaam, Tanzania
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Anitha B Philbert
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Winifrida B Kidima
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Johnson J Matowo
- Kilimanjaro Christian Medical University College (KCMUCo), PO Box 2240, Moshi, Tanzania
| |
Collapse
|
5
|
Mehmood N, Hassan A, Zhou W, Usman HM, Ai H, Huang Q. Behavioural alterations in female Aedes aegypti mosquito in response to entomopathogenic fungal infections. PEST MANAGEMENT SCIENCE 2022; 78:2065-2073. [PMID: 35137527 DOI: 10.1002/ps.6832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Due to the rapid rise in arboviral disease cases, there is a need for alternative methods of vector control since fast growing insecticides resistance is a matter of great concern. Recent studies have shown the potential of entomopathogenic fungi in controlling mosquito vectors, but behavioural responses of the mosquitoes encountering with entomopathogenic fungi are still unclear. RESULTS In this study, behavioural responses induced by the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin in adult female Aedes aegypti mosquito were evaluated. The survival of female mosquitoes was significantly reduced after exposure to medium and high concentrations of fungal conidia. A significant increase in frequencies and durations of different self-grooming types was observed in mosquitoes exposed to medium or high concentrations of fungal conidia. Mosquitoes were able to differentiate between active and inactive fungal conidia as application of inactive conidia showed non-significant effect on survival and self-grooming parameters. A concentration-specific reduction in flight locomotor activity of the female mosquitoes was found after fungal treatments. Fungal-exposed mosquitoes showed significantly higher antifungal activity 72 h post-application. CONCLUSION These findings provide greater understanding of behavioural responses of the mosquitoes to resist fungal infections and suggest that mosquitoes can remove the lower amounts of fungal conidia through self-grooming behaviour, which they encounter within natural field conditions.
Collapse
Affiliation(s)
- Nasir Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hafiz Muhammad Usman
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Juache-Villagrana AE, Pando-Robles V, Garcia-Luna SM, Ponce-Garcia G, Fernandez-Salas I, Lopez-Monroy B, Rodriguez-Sanchez IP, Flores AE. Assessing the Impact of Insecticide Resistance on Vector Competence: A Review. INSECTS 2022; 13:377. [PMID: 35447819 PMCID: PMC9024519 DOI: 10.3390/insects13040377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023]
Abstract
The primary strategy to avoid adverse impacts from insect-mediated pathogen transmission is the chemical control of vector populations through insecticides; its continued use has led to insecticide resistance and unknown consequences on vector competence. This review aims to systematically analyze and synthesize the research on the influence of insecticide resistance (IR) on vector competence (VC). Thirty studies met the inclusion criteria. Twenty studies, conducted either in laboratory or field settings, described the influence of phenotypic insecticide resistance and mechanisms on VC in vectors of human pathogens. Seven studies showed the effect of exposure to insecticides on VC in vectors of human pathogens. Three studies reported the influence of phenotypic resistance and mechanisms on VC in crop pests. The evidence shows that IR could enhance, impair, or have no direct effect on VC in either field or laboratory-designed studies. Similar positive and negative trends are found in pest vectors in crops and studies of insecticide exposure and VC. Even though there is evidence that exposure to insecticides and IR can enhance VC, thus increasing the risk of pathogen transmission, more investigations are needed to confirm the observed patterns and what implications these factors could have in vector control programs.
Collapse
Affiliation(s)
- Alan E. Juache-Villagrana
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Victoria Pando-Robles
- Centro de Investigacion Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca 62100, Morelos, Mexico;
| | - Selene M. Garcia-Luna
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Ildefonso Fernandez-Salas
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
7
|
Zhang XC, Jiang M, Zang YN, Zhao HZ, Liu CX, Liu BR, Xue H, Schal C, Lu XM, Zhao DQ, Zhang XX, Zhang F. Metarhizium anisopliae is a valuable grist for biocontrol in beta-cypermethrin-resistant Blattella germanica (L.). PEST MANAGEMENT SCIENCE 2022; 78:1508-1518. [PMID: 34962342 DOI: 10.1002/ps.6769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The widespread use of chemical insecticides has resulted in the development of resistance in German cockroaches worldwide, and biopesticides based on entomopathogenic fungi as active ingredients have become a promising alternative strategy. Resistance can change many of the physiological and biochemical characteristics of insect pests, such as cuticle thickness, detoxification enzyme activity, and even intestinal flora composition. Thus, potential interactions between pathogenic fungi and insecticide resistance may lead to unpredictable changes in pest susceptibility to fungi. RESULTS Beta-cypermethrin-resistant German cockroaches were more susceptible to infection with the fungus Metarhizium anisopliae regardless of age and sex. Histopathological results showed that the infection of resistant strains (R) by M. anisopliae was visibly faster than that of susceptible strains (S). The gut microbiota of the S strain indicated a stronger ability to inhibit fungi in vitro. The abundance of Parabacteroides, Lachnoclostridium, and Tyzzerella_3 decreased significantly in the R strain, and most demonstrated the ability to regulate glucose and lipid metabolism, and antifungal infections. The expression levels of Akirin, BgTPS, and BgPo genes in the R strain were significantly lower than those in the S strain, while BgChi and CYP4G19 gene expression were significantly higher. The mortality of cockroaches infected with M. anisopliae decreased to varying degrees after RNA interference, reflecting the role of these genes in antifungal infection. CONCLUSIONS Results confirmed that insecticide resistance may enhance cockroach susceptibility to fungi by altering intestinal flora and gene expression. Fungal biopesticides have high utilization value in pest control and insecticide resistance management strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xian Cui Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meng Jiang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Ya Nan Zang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hai Zheng Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Cai Xia Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Bao Rui Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hua Xue
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Xing Meng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Dong Qin Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xue Xia Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Zhang X, Wang G, Qu X, Wang M, Guo H, Zhang L, Li T, Wang Y, Zhang H, Ji W. A truncated CC-NB-ARC gene TaRPP13L1-3D positively regulates powdery mildew resistance in wheat via the RanGAP-WPP complex-mediated nucleocytoplasmic shuttle. PLANTA 2022; 255:60. [PMID: 35133503 DOI: 10.1007/s00425-022-03843-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
A wheat RPP13-like isoform interacting with WPP1 contributes to quantitative and/or basal resistance to powdery mildew (Blumeria graminis f. sp. tritici) by restricting the development of Bgt conidia. Plant disease resistance (R) genes confer an ability to resist infection by pathogens expressing specific avirulence genes. Recognition of Peronospora parasitica 13-like (RPP13-like) genes belong to the nucleotide-binding site and leucine-rich repeat (NBS-LRR) superfamily and play important roles in resistance to various plant diseases. Previously, we detected a TaRPP13-like gene located on chromosome 3D (TaRPP13L1-3D) in the TaSpl1 resided region, which is strongly induced by the cell death phenotype (Zhang et al. 2021). Here, we investigated the expression and functional role of TaRPP13L1-3D in wheat responding to fungal stress. TaRPP13L1-3D encoded a typical NB-ARC structure characterized by Rx-N and P-loop NTPase domains. TaRPP13L1-3D transcripts were strongly upregulated in wheat by powdery mildew (Blumeria graminis f. sp. tritici; Bgt) and stripe rust (Puccinia striiformis f. sp. tritici; Pst) infection although opposing expression patterns were observed in response to wheat-Bgt in incompatible and compatible backgrounds. Overexpression of TaRPP13L1-3D enhanced disease resistance to Bgt, accompanied by upregulation of the defense-related marker genes encoding phytoalexin-deficient4 (PAD4), thaumatin-like protein (TLP) and chitinase 8-like protein (Chi8L), while silencing of TaRPP13L1-3D disrupted the resistance to Bgt infection. Subcellular localization studies showed that TaRPP13L1-3D is located in both the plasma membrane and nucleus, while yeast-two-hybrid (Y2H) assays indicated that TaRPP13L1-3D interacts with WPP domain-containing protein 1 (TaWPP1). This indicates that TaRPP13L1-3D shuttles between the nucleus and cytoplasm membrane via a mechanism that is mediated by the RanGAP-WPP complex in nuclear pores. This insight into TaRPP13L1-3D will be useful in dissecting the mechanism of fungal resistance in wheat, and understanding the interaction between R gene expression and pathogen defense.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaojian Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mengmeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
9
|
Lima Neto JE, da Solidade Ribeiro LM, de Siqueira HÁA. Inheritance and Fitness of Plutella xylostella (Lepidoptera: Plutellidae) Resistance to Chlorfenapyr. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:875-884. [PMID: 33479776 DOI: 10.1093/jee/toaa299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 06/12/2023]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a key pest of Brassicaceae worldwide. Populations have globally evolved resistance to various insecticides including chlorfenapyr, which was observed at high frequency in Brazil. We report the genetic characterization and fitness costs associated with chlorfenapyr resistance in a field-derived strain. The resistant strain (BZR-RR) and a susceptible strain (REC-SS) were used in both concentration-response bioassays and demography-based approach. Inheritance pattern of chlorfenapyr resistance was determined by conducting reciprocal crosses between susceptible and resistant strains, and by backcrossing. Next, life table analysis for the susceptible, heterozygotes, and resistant strains was performed to assess eventual fitness costs associated with chlorfenapyr resistance. Resistance of P. xylostella (BZR-RR) strain to chlorfenapyr was very high (RR50 = 421.58-fold) and also autosomal (no differences between reciprocal crosses), monofactorial and incompletely dominant (F1 pool DD = 0.26 ± 0.14). Dominance (h) was concentration dependent with 16 mg/l allowing at least 95% survival of the resistant heterozygotes. Recessive fitness cost was observed to be associated with resistance to chlorfenapyr. The relative fitness of heterozygotes (RS) and resistant homozygotes (BZR-RR) in comparison to the susceptible strain (REC-SS) was 0.91 and 0.23, respectively. Significant differences were found for many fitness components in the resistant homozygotes. Altogether, results suggest a rational use of chlorfenapyr in areas where susceptible populations still prevail, in parallel with the use of diagnostic concentrations (e. g., 20 mg chlorfenapyr/l), and rotation with different mode of actions, for which fitness costs of resistance are nonrecessive in P. xylostella.
Collapse
Affiliation(s)
- Jaconias Escócio Lima Neto
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Dois Irmãos, Recife, PE, Brazil
| | | | | |
Collapse
|
10
|
Akutse KS, Subramanian S, Maniania NK, Dubois T, Ekesi S. Biopesticide Research and Product Development in Africa for Sustainable Agriculture and Food Security – Experiences From the International Centre of Insect Physiology and Ecology (icipe). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.563016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Functional Annotation of Agriculturally Important Fungi for Crop Protection: Current Research and Future Challenges. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Prado R, Macedo-Salles PA, Duprat RC, Baptista ARS, Feder D, Lima JBP, Butt T, Ratcliffe NA, Mello CB. Action of Metarhizium brunneum (Hypocreales: Clavicipitaceae) Against Organophosphate- and Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) and the Synergistic Effects of Phenylthiourea. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:454-462. [PMID: 31559435 DOI: 10.1093/jme/tjz161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Dengue, yellow fever, Zika, and chikungunya arboviruses are endemic in tropical countries and are transmitted by Aedes aegypti. Resistant populations of this mosquito against chemical insecticides are spreading worldwide. This study aimed to evaluate the biological effects of exposure of pesticide-sensitive Ae. aegypti larvae (Rockefeller) to conidia of the entomopathogen, Metarhizium brunneum, laboratory strains ARSEF 4556 and V275, and any synergistic activity of phenylthiourea (PTU). In addition, to investigate the nature of any cross-resistance mechanisms, these M. brunneum strains were tested against the Rockefeller larvae and two temephos- and deltamethrin-resistant wild mosquito populations from Rio de Janeiro. Treatment of Rockefeller larvae with 106 conidia/ml of ARSEF 4556 and V275 fungal strains resulted in significant decreased survival rates to 40 and 53.33%, respectively (P < 0.0001), compared with untreated controls. In contrast, exposure to 104 or 105 conidia/ml showed no such significant survival differences. However, the addition of PTU to the conidia in the bioassays significantly increased mortalities in all groups and induced a molt block. Experiments also showed no differences in Ae. aegypti mortalities between the fungal treated, wild pesticide-resistant populations and the Rockefeller sensitive strain. The results show the efficacy of M. brunneum in controlling Ae. aegypti larvae and the synergistic role of PTU in this process. Importantly, there was no indication of any cross-resistance mechanisms between Ae. aegypti sensitive or resistant to pesticides following treatment with the fungi. These results further support using M. brunneum as an alternative biological control agent against mosquito populations resistant to chemical insecticides.
Collapse
Affiliation(s)
- Rodrigo Prado
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pãmella A Macedo-Salles
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Rodrigo C Duprat
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Andrea R S Baptista
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Denise Feder
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP Wales, UK
| | - Norman A Ratcliffe
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP Wales, UK
| | - Cicero Brasileiro Mello
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M, Failloux AB. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 2020; 286:20182273. [PMID: 30963855 DOI: 10.1098/rspb.2018.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.
Collapse
Affiliation(s)
- Célestine M Atyame
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France.,2 Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion , île de La Réunion , France
| | - Haoues Alout
- 3 INRA, UMR 1309 ASTRE, INRA-CIRAD , 34598 Montpellier , France.,4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Laurence Mousson
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Marie Vazeille
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Mawlouth Diallo
- 5 Institut Pasteur de Dakar, Unité d'Entomologie médicale , Dakar , Sénégal
| | - Mylène Weill
- 4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Anna-Bella Failloux
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| |
Collapse
|
14
|
Weeks EN, Machtinger ET, Leemon D, Geden CJ. 12. Biological control of livestock pests: entomopathogens. ECOLOGY AND CONTROL OF VECTOR-BORNE DISEASES 2018. [DOI: 10.3920/978-90-8686-863-6_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma N.I. Weeks
- University of Florida, Entomology and Nematology Dept., 970 Natural Area Drive, Gainesville, FL 32653, USA
| | - Erika T. Machtinger
- Penn State University, Department of Entomology, 501 ASI Building, University Park, State College, PA 16082, USA
| | - Diana Leemon
- Department of Agriculture and Fisheries (Queensland), Agri-Science Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - Christopher J. Geden
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
15
|
Rhodes VL, Thomas MB, Michel K. The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:125-133. [PMID: 29649553 PMCID: PMC5935592 DOI: 10.1016/j.dci.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
The Toll pathway is a central regulator of antifungal immunity in insects. In mosquitoes, the Toll pathway affects infections with the fungal entomopathogen, Beauveria bassiana, which is considered a potential mosquito biopesticide. We report here the use of B. bassiana strain I93-825 in Anopheles gambiae to analyze the impact of Toll pathway modulation on mosquito survival. Exposure to a narrow dose range of conidia by direct contact decreased mosquito longevity and median survival. In addition, fungal exposure dose correlated positively and linearly with hazard ratio. Increased Toll signaling by knockdown of its inhibitor, cactus, decreased survivorship of uninfected females, increased mosquito survival after low dose B. bassiana exposure, but had little effect following exposure to higher doses. This observed trade-off could have implications for development of B. bassiana as a prospective vector control tool. On the one hand, selection for small increases in mosquito immune signaling across a narrow dose range could impair efficacy of B. bassiana. On the other hand, costs of immunity and the capacity for higher doses of fungus to overwhelm immune responses could limit evolution of resistance.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew B Thomas
- Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
16
|
Popko DA, Henke JA, Mullens BA, Walton WE. Evaluation of Two Entomopathogenic Fungi for Control of Culex quinquefasciatus (Diptera: Culicidae) in Underground Storm Drains in the Coachella Valley, California, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:654-665. [PMID: 29294059 DOI: 10.1093/jme/tjx233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Commercially available formulations of two entomopathogenic fungi, Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), were assessed for control of Culex quinquefasciatus Say (Diptera: Culicidae) in underground storm drain systems (USDS) in the Coachella Valley of southern California. Each of three treatments, the two fungi or a water control, was applied to 1 m2 of vertical wall at eight USDS sites in spring and autumn of 2015. Fungal infectivity and lethality were assessed at 1 d and 1, 2, and 4 wk post-application. Overnight bioassays using adult lab-reared female mosquitoes were carried out on the treated USDS wall areas and then mosquitoes were held in the laboratory for up to 21 d to allow fungal infections to be expressed. Postmortem fungal sporulation was assessed up to 2 wk at 100% humidity. Mosquito-fungal interactions also were assessed in bioassays of the three treatments on filter paper exposed to USDS conditions during autumn. Metarhizium anisopliae killed mosquitoes faster than B. bassiana; nevertheless, both freshly applied formulations caused greater than 80% mortality. Fungal persistence declined significantly after 1 wk under USDS conditions, but some infectivity persisted for more than 4 wk. Beauveria bassiana was more effective against Cx. qinquefasciatus in the spring, while M. anisopliae was more effective in the cooler conditions during autumn. USDS environmental conditions (e.g., temperature, relative humidity, standing water) influenced fungal-related mortality and infection of Cx. quinquefasciatus. The utility of these fungal formulations for mosquito abatement in the Coachella Valley and implications for fungal control agents in USDS environments are discussed.
Collapse
Affiliation(s)
- David A Popko
- Department of Entomology, University of California, Riverside, CA
| | - Jennifer A Henke
- Coachella Valley Mosquito and Vector Control District, Indio, CA
| | | | - William E Walton
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
17
|
Native entomopathogenic Metarhizium spp. from Burkina Faso and their virulence against the malaria vector Anopheles coluzzii and non-target insects. Parasit Vectors 2018; 11:209. [PMID: 29587876 PMCID: PMC5870526 DOI: 10.1186/s13071-018-2796-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/15/2018] [Indexed: 01/14/2023] Open
Abstract
Background Genetically enhanced Metarhizium pingshaense are being developed for malaria vector control in Burkina Faso. However, not much is known about the local prevalence and pathogenicity of this fungus, so we prospected mosquitoes and plant roots (a common habitat for Metarhizium spp.) for entomopathogenic fungi. Results Our investigations showed that Metarhizium spp. represented between 29–74% of fungi isolated from plant root rhizospheres in diverse collection sites. At low spore dosages (1 × 106 conidia/ml), two mosquito-derived M. pingshaense isolates (Met_S26 and Met_S10) showed greater virulence against Anopheles coluzzii (LT80 of ~7 days) than isolates tested in previous studies (LT80 of ~10 days). In addition, the local isolates did not cause disease in non-target insects (honeybees and cockroaches). Conclusions Our work provides promising findings for isolating local Metarhizium strains for application in mosquito biological control and for future transgenic biocontrol strategies in Burkina Faso. Electronic supplementary material The online version of this article (10.1186/s13071-018-2796-6) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Alout H, Labbé P, Chandre F, Cohuet A. Malaria Vector Control Still Matters despite Insecticide Resistance. Trends Parasitol 2017; 33:610-618. [PMID: 28499699 DOI: 10.1016/j.pt.2017.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance.
Collapse
Affiliation(s)
- Haoues Alout
- Institut des Sciences de l'Evolution de Montpellier, CNRS, IRD, University of Montpellier, ISEM - UMR 5554, Montpellier, France.
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier, CNRS, IRD, University of Montpellier, ISEM - UMR 5554, Montpellier, France
| | - Fabrice Chandre
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM-CNRS 5290 IRD 224, Montpellier, France
| | - Anna Cohuet
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM-CNRS 5290 IRD 224, Montpellier, France.
| |
Collapse
|
19
|
Valero-Jiménez CA, van Kan JAL, Koenraadt CJM, Zwaan BJ, Schoustra SE. Experimental evolution to increase the efficacy of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes: Effects on mycelial growth and virulence. Evol Appl 2017; 10:433-443. [PMID: 28515777 PMCID: PMC5427670 DOI: 10.1111/eva.12451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Entomopathogenic fungi such as Beauveria bassiana are currently considered as a potential control agent for malaria mosquitoes. The success of such strategies depends among others on the efficacy of the fungus to kill its hosts. As B. bassiana can use various resources for growth and reproduction, increasing the dependency on mosquitoes as a nutritional source may be instrumental for reaching this goal. Passage of entomopathogenic fungi through an insect host has been shown to increase its virulence. We evaluated the virulence, fungal outgrowth, mycelial growth rate, and sporulation rate of two B. bassiana isolates (Bb1520 and Bb8028) that underwent 10 consecutive selection cycles through malaria mosquitoes (Anopheles coluzzii) using an experimental evolution approach. This cycling resulted in an altered capacity of evolved B. Bassiana lineages to grow on different substrates while maintaining the ability to kill insects. Notably, however, there were no significant changes in virulence or speed of outgrowth when comparing the evolved lineages against their unevolved ancestors. These results suggest that fungal growth and sporulation evolved through successive and exclusive use of an insect host as a nutritional resource. We discuss the results in light of biocontrol and provide suggestions to increase fungal virulence.
Collapse
Affiliation(s)
- Claudio A Valero-Jiménez
- Laboratory of Genetics Wageningen University Wageningen The Netherlands.,Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology Wageningen University Wageningen The Netherlands
| | | | - Bas J Zwaan
- Laboratory of Genetics Wageningen University Wageningen The Netherlands
| | | |
Collapse
|
20
|
Gao T, Wang Z, Huang Y, Keyhani NO, Huang Z. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Sci Rep 2017; 7:42727. [PMID: 28230074 PMCID: PMC5322360 DOI: 10.1038/srep42727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023] Open
Abstract
The emergence of insecticide resistant insect pests is of significant concern worldwide. The whitefly, Bemisia tabaci, is an important agricultural pest and has shown incredible resilience developing resistance to a number of chemical pesticides. Entomopathogenic fungi such as Isaria fumosorosea offer an attractive alternative to chemical pesticides for insect control, and this fungus has been shown to be an effective pathogen of B. tabaci. Little is known concerning the potential for the development of resistance to I. fumosorosea by B. tabaci. Five generations of successive survivors of B. tabaci infected by I. fumosorosea were assayed with I. fumosorosea. No significant differences in susceptibility to I. fumosorosea, number of ovarioles, or ovipostioning were seen between any of the generations tested. Effects of I. fumosorosea and cell-free ethyl acetate fractions derived from the fungus on the B. tabaci fat body, ovary, and vitellogenin were also investigated. These data revealed significant deformation and degradation of ovary tissues and associated vitellogenin by the fungal mycelium as well as by cell-free ethyl acetate fungal extracts. These data indicate the lack of the emergence of resistance to I. fumosorosea under the conditions tested and demonstrate invasion of the insect reproductive tissues during fungal infection.
Collapse
Affiliation(s)
- Tianni Gao
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaolei Wang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yü Huang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL32611, USA
| | - Zhen Huang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL32611, USA
| |
Collapse
|
21
|
Kim D, Brown Z, Anderson R, Mutero C, Miranda ML, Wiener J, Kramer R. The Value of Information in Decision-Analytic Modeling for Malaria Vector Control in East Africa. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:231-244. [PMID: 27008340 PMCID: PMC6011226 DOI: 10.1111/risa.12606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Decision analysis tools and mathematical modeling are increasingly emphasized in malaria control programs worldwide to improve resource allocation and address ongoing challenges with sustainability. However, such tools require substantial scientific evidence, which is costly to acquire. The value of information (VOI) has been proposed as a metric for gauging the value of reduced model uncertainty. We apply this concept to an evidenced-based Malaria Decision Analysis Support Tool (MDAST) designed for application in East Africa. In developing MDAST, substantial gaps in the scientific evidence base were identified regarding insecticide resistance in malaria vector control and the effectiveness of alternative mosquito control approaches, including larviciding. We identify four entomological parameters in the model (two for insecticide resistance and two for larviciding) that involve high levels of uncertainty and to which outputs in MDAST are sensitive. We estimate and compare a VOI for combinations of these parameters in evaluating three policy alternatives relative to a status quo policy. We find having perfect information on the uncertain parameters could improve program net benefits by up to 5-21%, with the highest VOI associated with jointly eliminating uncertainty about reproductive speed of malaria-transmitting mosquitoes and initial efficacy of larviciding at reducing the emergence of new adult mosquitoes. Future research on parameter uncertainty in decision analysis of malaria control policy should investigate the VOI with respect to other aspects of malaria transmission (such as antimalarial resistance), the costs of reducing uncertainty in these parameters, and the extent to which imperfect information about these parameters can improve payoffs.
Collapse
Affiliation(s)
- Dohyeong Kim
- School of Economic, Political and Policy Sciences, The University of Texas at Dallas, TX, USA
| | - Zachary Brown
- Department of Agricultural and Resource Economics, North Carolina State University, NC, USA
| | | | - Clifford Mutero
- University of Pretoria, Pretoria, South Africa
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Jonathan Wiener
- Duke University Law School and Sanford School of Public Policy, Duke University, NC, USA
| | - Randall Kramer
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, NC, USA
| |
Collapse
|
22
|
Olombrada M, Medina P, Budia F, Gavilanes JG, Martínez-del-Pozo Á, García-Ortega L. Characterization of a new toxin from the entomopathogenic fungus Metarhizium anisopliae: the ribotoxin anisoplin. Biol Chem 2017; 398:135-142. [DOI: 10.1515/hsz-2016-0119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
Abstract
Metarhizium anisopliae is an entomopathogenic fungus relevant in biotechnology with applications like malaria vector control. Studies of its virulence factors are therefore of great interest. Fungal ribotoxins are toxic ribonucleases with extraordinary efficiency against ribosomes and suggested as potential insecticides. Here we describe this ribotoxin characteristic activity in M. anisopliae cultures. Anisoplin has been obtained as a recombinant protein and further characterized. It is structurally similar to hirsutellin A, the ribotoxin from the entomopathogen Hirsutella thompsonii. Moreover, anisoplin shows the ribonucleolytic activity typical of ribotoxins and cytotoxicity against insect cells. How Metarhizium uses this toxin and possible applications are of interest.
Collapse
|
23
|
Ren Z, Li S, Zhang T, Qi L, Xing N, Yu H, Jian J, Chon TS, Tang B. Behavior persistence in defining threshold switch in stepwise response of aquatic organisms exposed to toxic chemicals. CHEMOSPHERE 2016; 165:409-417. [PMID: 27668718 DOI: 10.1016/j.chemosphere.2016.09.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
As a characteristic in bacterial colony, persistence model described the dynamics of two subpopulations (normal (n) and persister (p)). In order to illustrate the switch of "Threshold" in the stepwise behavior responses of organisms, it is hypothesized that total behavior (Bt) of organisms consists of two types in behavior tendency, intoxication (Bp) and normal/recovery behavior (Bn). Both Bp and Bn could be concurrently affected by environmental stress E, and behavior response modes (M) are decided by the relationship between E and toxicity threshold of test organisms (Ti). The results suggested stress constant λ was decided by the constant rates gnE,gpE, an and ap. Due to different stress constant λ, the behavior responses of indicators showed great difference in different M, which included 'safe mode' (Ms), 'acclimation mode' (Mac), 'adjustment mode' (Maj) and 'toxic effect' (Mte). Usually, Bt during Ms could maintain around 0.8, and Mte would happen once it is lower than 0.2. According to the relationship between Bt values and E changes in 7 Majs, behavior persistence relying on adjustment could reflect the behavior homeostasis of organisms under environmental stress and be regarded as a threshold switch for the stepwise behavior responses. The mathematical analysis of behavior persistence allows making a quantitative prediction on environment assessment that would promote the emergence of persistence, as well as evaluating its ecological implications.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China.
| | - Shangge Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Tingting Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Luhuizi Qi
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Na Xing
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Huimin Yu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Jinfeng Jian
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Tae-Soo Chon
- Department of Biological Sciences, Pusan National University, Busan 609735, Republic of Korea; Ecology and Future Research Association, Busan 609802, Republic of Korea
| | - Bo Tang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China.
| |
Collapse
|
24
|
Insecticide Resistance and Management Strategies in Urban Ecosystems. INSECTS 2016; 7:insects7010002. [PMID: 26751480 PMCID: PMC4808782 DOI: 10.3390/insects7010002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023]
Abstract
The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.
Collapse
|
25
|
Ishii M, Takeshita J, Ishiyama M, Tani M, Koike M, Aiuchi D. Evaluation of the pathogenicity and infectivity of entomopathogenic hypocrealean fungi, isolated from wild mosquitoes in Japan and Burkina Faso, against female adult Anopheles stephensi mosquitoes. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar J 2014; 13:479. [PMID: 25480526 PMCID: PMC4364330 DOI: 10.1186/1475-2875-13-479] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/30/2014] [Indexed: 11/29/2022] Open
Abstract
Background Insecticide resistance is greatly hampering current efforts to control malaria and therefore alternative methods are needed. Entomopathogenic fungi have been proposed as an alternative with a special focus on the cosmopolitan species Beauveria bassiana. However, few studies have analysed the effects of natural variation within fungal isolates on mosquito survival, and the implications and possible exploitation for malaria control. Methods Laboratory bioassays were performed on adult female mosquitoes (Anopheles coluzzii) with spores from 29 isolates of B. bassiana, originating from different parts of the world. In addition, phenotypic characteristics of the fungal isolates such as sporulation, spore size and growth rate were studied to explore their relationship with virulence. Results All tested isolates of B. bassiana killed An. coluzzii mosquitoes, and the rate at which this happened differed significantly among the isolates. The risk of mosquitoes dying was around ten times higher when they were exposed to the most virulent as compared to the least virulent isolate. There was significant variation among isolates in spore size, growth rate and sporulation, but none of these morphological characteristics were correlated, and thus predictive, for the ability of the fungal isolate to kill malaria mosquitoes. Conclusions This study shows that there is a wide natural variation in virulence of isolates of B. bassiana, and that selecting an appropriate fungal isolate is highly relevant in killing and thus controlling malaria mosquitoes, particularly if used as part of an integrated vector management strategy. Also, the wide variation observed in virulence offers the opportunity to better understand the molecular and genetic mechanisms that drive this variation and thus to address the potential development of resistance against entomopathogenic fungi.
Collapse
|
27
|
Vogels CBF, Bukhari T, Koenraadt CJM. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi. J Invertebr Pathol 2014; 119:19-24. [PMID: 24694552 DOI: 10.1016/j.jip.2014.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/23/2014] [Accepted: 03/18/2014] [Indexed: 11/25/2022]
Abstract
Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible.
Collapse
Affiliation(s)
- Chantal B F Vogels
- Laboratory of Entomology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Tullu Bukhari
- Laboratory of Entomology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Unit of Insect Vector Genetics and Genomics, Institute Pasteur, 25-28, Rue du Docteur Roux, 75724 Paris, France.
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
28
|
Nardini L, Blanford S, Coetzee M, Koekemoer LL. Effect of Beauveria bassiana infection on detoxification enzyme transcription in pyrethroid resistant Anopheles arabiensis: a preliminary study. Trans R Soc Trop Med Hyg 2014; 108:221-7. [PMID: 24561325 DOI: 10.1093/trstmh/tru021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fungal biopesticides are of great interest to vector control scientists as they provide a novel and environmentally friendly alternative to insecticide use. The aim of this study was to determine whether genes associated with pyrethroid resistance in Anopheles arabiensis from Sudan and South Africa are further induced following exposure to the entomopathogenic fungus, Beauveria bassiana (strain GHA). METHODS Following B. bassiana bioassays, RNA was extracted from infected mosquitoes and the transcription of four important insecticide resistance genes, CYP9L1, CYP6M2 and CYP4G16 (cytochrome P450s) and TPX4 (thioredoxin peroxidase) was investigated using quantitative real-time PCR. RESULTS Beauveria bassiana strain GHA was highly infective and virulent against An. arabiensis. In terms of changes in gene transcription, overall, the fold change (FC) values for each gene in the infected strains, were lower than 1.5. The FC values of CYP9L1, CYP6M2 and TPX4, were significantly lower than the FC values of the same genes in uninfected resistant An. arabiensis. CONCLUSION These data suggest that B. bassiana does not enhance the pyrethroid resistant phenotype on a molecular level as the two An. arabiensis strains used here, with different pyrethroid resistance mechanisms, revealed no increase in pre-existing metabolic transcripts. This supports the fact that fungal pathogens are suitable candidates for vector control, particularly with regard to the development of novel vector control strategies.
Collapse
Affiliation(s)
- Luisa Nardini
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, a Division of the National Health Laboratory Services, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | | | | | | |
Collapse
|
29
|
Chen ZH, Xu L, Yang FL, Ji GH, Yang J, Wang JY. Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress. BMC Microbiol 2014; 14:4. [PMID: 24383424 PMCID: PMC3890646 DOI: 10.1186/1471-2180-14-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 11/13/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. RESULTS M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. CONCLUSIONS MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.
Collapse
Affiliation(s)
- Zi-Hong Chen
- Department of Resources and Environmental Sciences, Baoshan College, Baoshan, Yunnan 678000, China
| | - Ling Xu
- Department of Resources and Environmental Sciences, Baoshan College, Baoshan, Yunnan 678000, China
| | - Feng-lian Yang
- Institute of Insect Resources, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hai Ji
- Key Laboratory of Agro-biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Jing Yang
- Key Laboratory of Agro-biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Jian-Yun Wang
- Department of Resources and Environmental Sciences, Baoshan College, Baoshan, Yunnan 678000, China
| |
Collapse
|
30
|
Kovendan K, Shanthakumar SP, Praseeja C, Kumar PM, Murugan K, Vincent S. Mosquitocidal properties of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract and Metarhizium anisopliae against malaria vector, Anopheles stephensi Liston. (Diptera: Culicidae). ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60435-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Adeleke MA, Adebimpe WO, Hassan AO, Oladejo SO, Olaoye I, Olatunde GO, Adewole T. Larval habitats of mosquito fauna in Osogbo metropolis, Southwestern Nigeria. Asian Pac J Trop Biomed 2013; 3:673-7. [PMID: 23998005 DOI: 10.1016/s2221-1691(13)60137-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/16/2013] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To determine the larval habitats of mosquito fauna and possible impact of land use/ land cover changes on the epidemiology of mosquito-borne diseases in Osogbo metropolis, Southwestern, Nigeria. METHODS All accessible larval habitats were surveyed between May and September, 2011 in Osogbo metropolis while Land Use/ Land cover of the city was analyzed using 2 Lansat Multispectral Scanner satellite imagery of SPOT 1986 and LANDSAT TM 2009. RESULTS A total of six species namely, Aedes aegypti, Aedes albopictus, Aedes vittatus, Anopheles gambiae complex, Culex quinquefasciatus and Eretmapodite chrysogaster were encountered during the study. The occurrence and contribution of disused tyres was significantly higher (P<0.05) than the other habitats encountered, while there were no significant differences in the contribution of gutters/run-offs, septic tanks/ drums, ground pools/open drains and discarded containers to the breeding of mosquitoes (P>0.05). The accessible land use/ land covered of the study area between 1986 and 2009 showed that the wet land coverage and settlement area increased from 0.19 to 9.09 hectare and 1.00 to 2.01 hectare respectively while the forest area decreased from 60.18 to 50.14 hectare. CONCLUSION The contribution of the habitats coupled with the increasing rate of flooded environment which could provide ample breeding sites for mosquitoes call for sustained environmental sanitation and management in Osogbo metropolis.
Collapse
|
32
|
Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK, Djogbénou LS, Corbel V, Cohuet A. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One 2013; 8:e63849. [PMID: 23704944 PMCID: PMC3660590 DOI: 10.1371/journal.pone.0063849] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/06/2013] [Indexed: 11/19/2022] Open
Abstract
The widespread insecticide resistance raises concerns for vector control implementation and sustainability particularly for the control of the main vector of human malaria, Anopheles gambiae sensu stricto. However, the extent to which insecticide resistance mechanisms interfere with the development of the malignant malaria parasite in its vector and their impact on overall malaria transmission remains unknown. We explore the impact of insecticide resistance on the outcome of Plasmodium falciparum infection in its natural vector using three An. gambiae strains sharing a common genetic background, one susceptible to insecticides and two resistant, one homozygous for the ace-1(R) mutation and one for the kdr mutation. Experimental infections of the three strains were conducted in parallel with field isolates of P. falciparum from Burkina Faso (West Africa) by direct membrane feeding assays. Both insecticide resistant mutations influence the outcome of malaria infection by increasing the prevalence of infection. In contrast, the kdr resistant allele is associated with reduced parasite burden in infected individuals at the oocyst stage, when compared to the susceptible strain, while the ace-1 (R) resistant allele showing no such association. Thus insecticide resistance, which is particularly problematic for malaria control efforts, impacts vector competence towards P. falciparum and probably parasite transmission through increased sporozoite prevalence in kdr resistant mosquitoes. These results are of great concern for the epidemiology of malaria considering the widespread pyrethroid resistance currently observed in Sub-Saharan Africa and the efforts deployed to control the disease.
Collapse
Affiliation(s)
- Haoues Alout
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo-Dioulasso 01, Burkina Faso
| | - Nicaise Tuikue Ndam
- Institut des Sciences Biomédicale et Appliquées, Cotonou, Bénin
- IRD, UMR 216, Mère et Enfant face aux Infections Tropicales, Université Paris Descartes, Paris, France
| | - Marcel Maurice Sandeu
- IRD, UMR 216, Mère et Enfant face aux Infections Tropicales, Université Paris Descartes, Paris, France
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
| | - Innocent Djégbe
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
| | - Fabrice Chandre
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
| | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo-Dioulasso 01, Burkina Faso
| | | | - Vincent Corbel
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Anna Cohuet
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo-Dioulasso 01, Burkina Faso
| |
Collapse
|
33
|
Insecticide Resistance in Insect Vectors of Disease with Special Reference to Mosquitoes: A Potential Threat to Global Public Health. HEALTH SCOPE 2013. [DOI: 10.5812/jhs.9840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Karunamoorthi K, Sabesan S. Insecticide Resistance in Insect Vectors of Disease with Special Reference to Mosquitoes: A Potential Threat to Global Public Health. HEALTH SCOPE 2013. [DOI: 10.17795/jhealthscope-9840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Raeisi A, Zarenejad F. Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis 2013. [DOI: 10.1007/s13199-013-0231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Eradication of malaria through genetic engineering: the current situation. ASIAN PAC J TROP MED 2013; 6:85-94. [DOI: 10.1016/s1995-7645(13)60001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 01/03/2023] Open
|
37
|
Blanford S, Jenkins NE, Read AF, Thomas MB. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malar J 2012; 11:365. [PMID: 23126549 PMCID: PMC3520692 DOI: 10.1186/1475-2875-11-365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Fungal entomopathogens formulated as biopesticides have received much attention and have shown considerable potential. This research has necessarily focused on relatively few fungal isolates in order to 'prove concept'. Further, most attention has been paid to examining fungal virulence (lethality) and not the other properties of fungal infection that might also contribute to reducing transmission potential. Here, a range of fungal isolates were screened to examine variation in virulence and how this relates to additional pre-lethal reductions in feeding propensity. METHODS The Asian malaria vector, Anopheles stephensi was exposed to 17 different isolates of entomopathogenic fungi belonging to species of Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Isaria farinosus. Each isolate was applied to a test substrate at a standard dose rate of 1×109 spores ml-1 and the mosquitoes exposed for six hours. Subsequently the insects were removed to mesh cages where survival was monitored over the next 14 days. During this incubation period the mosquitoes' propensity to feed was assayed for each isolate by offering a feeding stimulant at the side of the cage and recording the number probing. RESULTS AND CONCLUSIONS Fungal isolates showed a range of virulence to A. stephensi with some causing >80% mortality within 7 days, while others caused little increase in mortality relative to controls over the study period. Similarly, some isolates had a large impact on feeding propensity, causing >50% pre-lethal reductions in feeding rate, whereas other isolates had very little impact. There was clear correlation between fungal virulence and feeding reduction with virulence explaining nearly 70% of the variation in feeding reduction. However, there were some isolates where either feeding decline was not associated with high virulence, or virulence did not automatically prompt large declines in feeding. These results are discussed in the context of choosing optimum fungal isolates for biopesticide development.
Collapse
Affiliation(s)
- Simon Blanford
- Center for Infectious Disease Dynamics, Department of Biology, Penn State University Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
38
|
Mnyone LL, Ng'habi KR, Mazigo HD, Katakweba AA, Lyimo IN. Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana reduce the survival of Xenopsylla brasiliensis larvae (Siphonaptera: Pulicidae). Parasit Vectors 2012; 5:204. [PMID: 22992264 PMCID: PMC3468376 DOI: 10.1186/1756-3305-5-204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entomopathogenic fungi, particularly those belonging to the genera Metarhizium and Beauveria have shown great promise as arthropod vector control tools. These agents, however, have not been evaluated against flea vectors of plague. FINDINGS A 3-h exposure to the fungi coated paper at a concentration of 2 × 108 conidia m-2 infected >90% of flea larvae cadavers in the treatment groups. The infection reduced the survival of larvae that had been exposed to fungus relative to controls. The daily risk of dying was four- and over three-fold greater in larvae exposed to M. anisopliae (HR = 4, p<0.001) and B. bassiana (HR = 3.5, p<0.001) respectively. Both fungi can successfully infect and kill larvae of X. brasiliensis with a pooled median survival time (MST±SE) of 2 ± 0.31 days post-exposure. CONCLUSION These findings justify further research to investigate the bio-control potential of entomopathogenic fungi against fleas.
Collapse
Affiliation(s)
- Ladslaus L Mnyone
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, Ifakara, Tanzania.
| | | | | | | | | |
Collapse
|
39
|
Kamareddine L. The biological control of the malaria vector. Toxins (Basel) 2012; 4:748-67. [PMID: 23105979 PMCID: PMC3475227 DOI: 10.3390/toxins4090748] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023] Open
Abstract
The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biology, American University of Beirut, Bliss Street, Beirut 11072020, Lebanon.
| |
Collapse
|
40
|
Darbro JM, Johnson PH, Thomas MB, Ritchie SA, Kay BH, Ryan PA. Effects of Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes aegypti in laboratory and semi-field conditions. Am J Trop Med Hyg 2012; 86:656-64. [PMID: 22492151 DOI: 10.4269/ajtmh.2012.11-0455] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The fungus Beauveria bassiana reduces Aedes aegypti longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female Ae. aegypti infected with B. bassiana (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter × 7 meter × 4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59-95% in large cages compared with 61-69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. Beauveria bassiana can kill and may reduce biting of Ae. aegypti in semi-field conditions and in the laboratory. These results further support the use of B. bassiana as a potential biocontrol agent against Ae. aegypti.
Collapse
|
41
|
Mnyone LL, Lyimo IN, Lwetoijera DW, Mpingwa MW, Nchimbi N, Hancock PA, Russell TL, Kirby MJ, Takken W, Koenraadt CJM. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents. Malar J 2012; 11:87. [PMID: 22449130 PMCID: PMC3337815 DOI: 10.1186/1475-2875-11-87] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/26/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. RESULTS Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. CONCLUSIONS Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy.
Collapse
Affiliation(s)
- Ladslaus L Mnyone
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
- Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| | - Issa N Lyimo
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- Faculty of Biomedical and Life Sciences, University of Glasgow, 120 University Place, G12 8TA Glasgow, UK
| | - Dickson W Lwetoijera
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
| | - Monica W Mpingwa
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
| | - Nuru Nchimbi
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
| | | | - Tanya L Russell
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- The University of Queensland, School of Population Health, Australian Centre for Tropical and International Health, Brisbane 4006, Australia
- Vector Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Matthew J Kirby
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Constantianus JM Koenraadt
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
42
|
Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS. Microbial control of malaria: biological warfare against the parasite and its vector. Acta Trop 2012; 121:71-84. [PMID: 22100545 DOI: 10.1016/j.actatropica.2011.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 01/31/2023]
Abstract
Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.
Collapse
|
43
|
Dong Y, Morton JC, Ramirez JL, Souza-Neto JA, Dimopoulos G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:126-32. [PMID: 22198333 PMCID: PMC3462650 DOI: 10.1016/j.ibmb.2011.11.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 05/14/2023]
Abstract
Here we investigated the effect of Beauveria bassiana infection on the survival of Aedes aegypti mosquitoes and the modulation of their susceptibility to dengue virus infection. Application of B. bassiana caused a reduction in the life span of A. aegypti and hindered dengue virus replication in the mosquito midgut. Fungus infection induced the expression a variety anti-microbial and dengue virus restriction factor genes. Transient reverse genetic analyses showed that the JAK-STAT pathway is implicated anti-fungal defense of Aedes mosquitoes. Our data suggest that this B. bassiana-mediated anti-dengue activity is likely to be at least partly indirectly mediated through the activation of the mosquito's anti-dengue Toll and JAK-STAT pathways.
Collapse
|
44
|
Paula AR, Carolino AT, Silva CP, Samuels RI. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasit Vectors 2011; 4:91. [PMID: 21615890 PMCID: PMC3128852 DOI: 10.1186/1756-3305-4-91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. METHODS Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818) using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. RESULTS Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding), host susceptibility to infection returned to pre-blood fed (sucrose fed) levels. CONCLUSIONS Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged periods on fungus impregnated black cloths, thus optimizing infection rates. It should be remembered that lowered susceptibility was only a temporary phenomenon and this may not necessarily occur when mosquitoes are infected with other fungal isolates. These results may have implications for field testing of entomopathogenic fungi by our group and further studies should be carried out to better understand the insect-fungus interaction.
Collapse
Affiliation(s)
- Adriano R Paula
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | | | | |
Collapse
|
45
|
García-Munguía AM, Garza-Hernández JA, Rebollar-Tellez EA, Rodríguez-Pérez MA, Reyes-Villanueva F. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasit Vectors 2011; 4:24. [PMID: 21352560 PMCID: PMC3051917 DOI: 10.1186/1756-3305-4-24] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 02/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background Resistance to chemical insecticides plus high morbidity rates have lead to rising interest in fungi as candidates for biocontrol agents of mosquito vectors. In most studies fungal infections have been induced by exposure of mosquitoes to various surfaces treated with conidia. In the present study eight Mexican strains of Beauveria bassiana were assessed against Aedes aegypti by direct exposure of females to 6 × 108 conidia ml -1 on a filter paper, afterwards, the transmission of the least and most virulent isolates was evaluated by mating behavior from virgin, fungus-contaminated male to females, to examine this ethological pattern as a new approach to deliver conidia against the dengue vector. Methods In an exposure chamber with a filter paper impregnated with 6 × 108 conidia ml -1 of the least and most virulent strains of B. bassiana, 6-8 day old males of A. aegypti were exposed for 48 hours, and then transferred individually (each one was a replicate) to another chamber and confined with twenty healthy females of the same age. Clean males were used in controls. Survival, infection by true mating (insemination) or by mating attempts (no insemination) and fecundity were daily registered until the death of last female. Data analysis was conducted with proc glm for unbalanced experiments and means were separated with the Ryan test with SAS. Results All strains were highly virulent with LT50 ranging from 2.70 (± 0.29) to 5.33 (± 0.53) days. However the most (Bb-CBG2) and least virulent (Bb-CBG4) isolates were also transmitted by mating behavior; both killed 78-90% of females in 15 days after being confined with males that had previously been exposed for 48 hours to fungi. Of these mortality rates, 23 and 38% respectively, were infections acquired by copulations where insemination occurred. The LT50 for sexually-infected females were 7.92 (± 0.46) and 8.82 (± 0.45) days for both strains, while the one in control was 13.92 (± 0.58). Likewise, fecundity decreased by 95% and 60% for both Bb-CBG2 and Bb-CBG4 isolates in comparison with control. The role of mating attempts in this delivery procedure of B. bassiana is discussed. Conclusions This is the first report about transmission of B. bassiana by mating behavior from virgin, fungus-contaminated males to females in A. aegypti. Fungal infections acquired by this route (autodissemination) infringed high mortality rates (90%) in mated or approached females. However, prior to releasing virgin, fungus-contaminated males to spread B. basasiana among females of A. aegypti, this novel alternative needs further investigations.
Collapse
Affiliation(s)
- Alberto M García-Munguía
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N Ciudad Universitaria, Apdo. Postal 109-F, 66450, San Nicolás de los Garza, Nuevo León, México
| | | | | | | | | |
Collapse
|
46
|
Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St. Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 2011; 331:1074-7. [PMID: 21350178 PMCID: PMC4153607 DOI: 10.1126/science.1199115] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.
Collapse
Affiliation(s)
- Weiguo Fang
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Joel Vega-Rodríguez
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, E5132, Baltimore, MD 21205, USA
| | - Anil K. Ghosh
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, E5132, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, E5132, Baltimore, MD 21205, USA
| | - Angray Kang
- Antibody Technology Group, Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| |
Collapse
|
47
|
Howard AFV, N'Guessan R, Koenraadt CJM, Asidi A, Farenhorst M, Akogbéto M, Knols BGJ, Takken W. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions. Malar J 2011; 10:24. [PMID: 21288359 PMCID: PMC3045381 DOI: 10.1186/1475-2875-10-24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/02/2011] [Indexed: 11/25/2022] Open
Abstract
Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control conidia not exposed to the net or field conditions was 79%. Conclusions This work shows promise for the use of B. bassiana fungal conidia against insecticide-resistant mosquitoes in the field, but further work is required to examine the role of environmental conditions on fungal virulence and viability with a view to eventually making the fungal conidia delivery system more able to withstand the ambient African climate.
Collapse
Affiliation(s)
- Annabel F V Howard
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Paula AR, Carolino AT, Paula CO, Samuels RI. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit Vectors 2011; 4:8. [PMID: 21266078 PMCID: PMC3037915 DOI: 10.1186/1756-3305-4-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/25/2011] [Indexed: 11/21/2022] Open
Abstract
Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short exposure times.
Collapse
Affiliation(s)
- Adriano R Paula
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes RJ CEP 28013-602 Brazil
| | | | | | | |
Collapse
|
49
|
Howard AF, N'guessan R, Koenraadt CJ, Asidi A, Farenhorst M, Akogbéto M, Thomas MB, Knols BG, Takken W. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa. Parasit Vectors 2010; 3:87. [PMID: 20843321 PMCID: PMC2946288 DOI: 10.1186/1756-3305-3-87] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/15/2010] [Indexed: 02/01/2023] Open
Abstract
Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. Methods The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. Results In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. Conclusions This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new mosquito control tool effective at reducing disease transmission, although further field work in areas with filariasis transmission should be carried out to verify this. In addition, work targeting malaria vector mosquitoes should be carried out to see if these mosquitoes manifest the same behaviour modification after infection with B. bassiana conidia.
Collapse
Affiliation(s)
- Annabel Fv Howard
- Laboratory of Entomology, Wageningen University and Research Centre, P,O, Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mnyone LL, Kirby MJ, Lwetoijera DW, Mpingwa MW, Simfukwe ET, Knols BGJ, Takken W, Russell TL. Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence. Malar J 2010; 9:246. [PMID: 20799967 PMCID: PMC2939623 DOI: 10.1186/1475-2875-9-246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed. Methods The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 1010 conidia m-2) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily. Results All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d. Conclusion Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field.
Collapse
Affiliation(s)
- Ladslaus L Mnyone
- Biomedical and Environmental Group, Ifakara Health Institute, P,O, Box 53, Off Mlabani Passage, Ifakara, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|