1
|
Di Majo D, Ricciardi N, Di Liberto V, Allegra M, Frinchi M, Urone G, Scordino M, Massaro A, Mudò G, Ferraro G, Sardo P, Giglia G, Gambino G. The remarkable impact of Opuntia Ficus Indica fruit administration on metabolic syndrome: Correlations between cognitive functions, oxidative stress and lipid dysmetabolism in the high-fat, diet-fed rat model. Biomed Pharmacother 2024; 177:117028. [PMID: 38959603 DOI: 10.1016/j.biopha.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND A wealth of evidence underscores the bioactive properties of nutraceuticals and functional foods in addressing oxyinflammatory-based diseases with implications at both peripheral and central levels. Opuntia ficus-indica (OFI) is well-documented for its health-promoting attributes, though its fruit (OFIF) remains relatively understudied. Not only poses Metabolic Syndrome (MetS) cardiometabolic risks but also contributes significantly to cognitive impairment, especially in crucial brain areas such as hippocampus and hypothalamus. METHODS Following 8 weeks of HFD to induce MetS, rats received OFIF oral supplementation for 4 weeks to evaluate cognitive and affective modifications using behavioural paradigms, i.e. open field, burrowing, white-dark box, novelty-suppressed feeding, and object recognition tests. Our investigation extended to biochemical evaluations of lipid homeostasis, central and peripheral oxidative stress and neurotrophic pathways, correlating these measures together with circulating leptin levels. RESULTS Our data revealed that OFIF modulation of leptin positively correlates with systemic and brain oxidative stress, with markers of increased anxiety-like behaviour and impaired lipid homeostasis. On the other hand, leptin levels reduced by OFIF are associated with improved antioxidant barriers, declarative memory and neurotrophic signalling. DISCUSSION This study underscores OFIF neuroactive potential in the context of MetS-associated cognitive impairment, offering insights into its mechanisms and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Valentina Di Liberto
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Mario Allegra
- Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Monica Frinchi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giulia Urone
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Miriana Scordino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Giuseppa Mudò
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Pierangelo Sardo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Giglia
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy.
| | - Giuditta Gambino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| |
Collapse
|
2
|
Pino JMV, Silva VF, Campos RMS, Mônico-Neto M, de Araujo KA, Seva DC, Kato MY, Galvão TD, Bitterncourt LRA, Tufik S, Lee KS. Impact of Bariatric Surgery on Circulating Metabolites and Cognitive Performance. Obes Surg 2024; 34:1102-1112. [PMID: 38363496 DOI: 10.1007/s11695-024-07096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Bariatric surgery is an effective intervention to reduce obesity and improve associated comorbidities. However, its effects on cognitive function are still the subject of debate. Given that the bioavailability of circulating metabolites can influence brain metabolism and cognitive performance, we aimed to assess the effects of bariatric surgery on plasma metabolic profiles and cognitive performance. METHODS We recruited 26 women undergoing gastric bypass surgery. We conducted anthropometric assessments and collected plasma samples for metabolomic analysis. A set of 4 cognitive tests were used to evaluate cognitive performance. Participants were reevaluated 1 year post-surgery. RESULTS After surgery, attention capacity and executive function were improved, while immediate memory had deteriorated. Regarding metabolic profile, reduction of beta-tocopherol and increase of serine, glutamic acid, butanoic acid, and glycolic acid were observed. To better understand the relationship between cognitive function and metabolites, a cluster analysis was conducted to identify more homogeneous subgroups based on the cognitive performance. We identified cluster 1, which did not show changes in cognitive performance after surgery, and cluster 2, which showed improved attention and executive function, but reduced performance in the immediate memory test. Thus, cluster 2 was more homogeneous group that replicated the results of non-clustered subjects. Analysis of the metabolic profile of cluster 2 confirmed serine, glutamic acid, and glycolic acid as potential metabolites associated with cognitive performance. CONCLUSIONS Metabolites identified in this study have potential for biomarkers and alternative therapeutic target to prevent obesity-related cognitive decline. KEY POINTS • Attention capacity and executive function were improved 12 months post bariatric surgery. • Immediate memory was worsened 12 months post bariatric surgery. • Serine, glutamic acid, and glycolic acid are potential metabolites linked to the alteration of cognitive performance.
Collapse
Affiliation(s)
- Jessica M V Pino
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | - Vitória F Silva
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | - Raquel M S Campos
- Post Graduated Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Marcos Mônico-Neto
- Post Graduated Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
- BariMais Clinic-Integrated Medicine, São Paulo, Brazil
| | - Kaique A de Araujo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | - Danielle C Seva
- Post Graduated Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Melissa Y Kato
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | | | - Lia R A Bitterncourt
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil.
| |
Collapse
|
3
|
Gambino G, Frinchi M, Giglia G, Scordino M, Urone G, Ferraro G, Mudò G, Sardo P, Di Majo D, Di Liberto V. Impact of “Golden” tomato juice on cognitive alterations in metabolic syndrome: Insights into behavioural and biochemical changes in a high-fat diet rat model. J Funct Foods 2024; 112:105964. [DOI: 10.1016/j.jff.2023.105964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Wang SH, Lin HL, Huang CC, Chen YH. Comparison of Hemodynamic and Cerebral Oxygenation Responses during Exercise between Normal-Weight and Overweight Men. Healthcare (Basel) 2023; 11:healthcare11060923. [PMID: 36981579 PMCID: PMC10048205 DOI: 10.3390/healthcare11060923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity has negative impacts on cardiovascular function and may increase cerebrovascular complications during exercise. We compared hemodynamic and cerebral oxygen changes during high-intensity exercise between overweight (OW) and normal-weight (NW) individuals. Eighteen NW and fourteen OW male individuals performed high-intensity (70% of peak oxygen uptake, VO2peak) cycling exercises for 30 min. Hemodynamics were measured using a bioelectrical impedance device, and cerebral oxygenation status was measured using a near-infrared spectrophotometer during and after exercise. The VO2peak of NW individuals was significantly higher than that of OW individuals (41.3 ± 5.7 vs. 30.0 ± 5.0 mL/min/kg, respectively; p < 0.05). During the 30 min exercise, both groups exhibited an increase in oxygenated hemoglobin (O2Hb) (p < 0.001), deoxygenated hemoglobin (p < 0.001), and cardiac output with increasing time. Post-exercise, cardiac output and systemic vascular resistance were significantly higher in the OW group than in the NW group (p < 0.05). The O2Hb in the NW group was significantly higher at post-exercise times of 20 min (13.9 ± 7.0 μmol/L) and 30 min (12.3 ± 8.7 μmol/L) than that in the OW group (1.0 ± 13.1 μmol/L and 0.6 ± 10.0 μmol/L, respectively; p = 0.024 vs. 0.023, respectively). OW participants demonstrated lower cerebral oxygenation and higher vascular resistance in the post-exercise phase than non-OW subjects. These physiological responses should be considered while engaging OW and obese individuals in vigorous exercise.
Collapse
Affiliation(s)
- Szu-Hui Wang
- Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chung-Chi Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan
| | - Yen-Huey Chen
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan
| |
Collapse
|
5
|
Couto RR, Kubaski F, Siebert M, Félix TM, Brusius-Facchin AC, Leistner-Segal S. Increased Serum Levels of miR-125b and miR-132 in Fragile X Syndrome: A Preliminary Study. Neurol Genet 2022; 8:e200024. [PMID: 36313066 PMCID: PMC9608387 DOI: 10.1212/nxg.0000000000200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Background and Objectives Fragile X syndrome (FXS) is a neurodevelopmental disorder, identified as the most common cause of hereditary intellectual disability and monogenic cause of autism spectrum disorders (ASDs), caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein, a regulator of translation that plays an important role in neurodevelopment, and its loss causes cognitive and behavioral deficits. MicroRNAs (miRNAs) are small molecules that regulate gene expression in diverse biological processes. Previous studies found that the interaction of FMRP with miR-125b and miR-132 regulates the maturation and synaptic plasticity in animal models and miRNA dysregulation plays a role in the pathophysiology of FXS. The present study aimed to analyze the expression of miR-125b-5p and miR-132-3p in the serum of patients with FXS. Methods The expressions of circulating miRNAs were studied in the serum of 10 patients with FXS and 20 controls using the real-time quantitative retrotranscribed method analyzed by relative quantification. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were generated to assess the diagnostic values of the miRNAs. Results We found that both miR-125b and miR-132 were increased in the serum of patients with FXS compared with controls and likely involved with FMRP loss. The AUC (95% confidence interval) of miR-125b and miR-132 was 0.94 (0.86–1.0) and 0.89 (0.77–1.0), respectively. Databases allowed for the identification of possible target genes for miR-125b and miR-132, whose products play an important role in the homeostasis of the nervous system. Discussion Our results indicate that serum miR-125b and miR-132 may serve as potential biomarkers for FXS. The increased expression of circulating miR-125b and miR-132 seems to be associated with the genotype of FXS. Predicted gene targets of the differentially regulated miRNAs are involved in cognitive performance and ASD phenotype. Classification of Evidence This study provides Class III evidence that miR-125b and miR-132 distinguish men with FXS from normal controls.
Collapse
Affiliation(s)
- Rowena Rubim Couto
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Francyne Kubaski
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Siebert
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Têmis Maria Félix
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Carolina Brusius-Facchin
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Sandra Leistner-Segal
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Jia L, Zhang M, Wang P, Wang L, Lei P, Du R, Han L, Zhang P, Wang Y, Jiang M. Alismatis Rhizoma methanolic extract—Effects on metabolic syndrome and mechanisms of triterpenoids using a metabolomic and lipidomic approach. Front Pharmacol 2022; 13:983428. [PMID: 36160458 PMCID: PMC9500195 DOI: 10.3389/fphar.2022.983428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Alismatis rhizoma is a traditional Chinese medicine. Studies have demonstrated that Alismatis rhizoma also has therapeutic effects on metabolic syndrome. However, the pharmacodynamic material basis and mechanism are still unclear. First, UHPLC/Q-Orbitrap MS was used to detect the chemical components of the Alismatis rhizoma extract, and 31 triterpenoids and 2 sesquiterpenes were preliminarily identified. Then, to investigate the mechanism of the Alismatis rhizoma extract on metabolic syndrome, a mouse model of metabolic syndrome induced by high-fructose drinks was established. The results of serum biochemical analysis showed that the levels of TG, TC, LDL-C, and UA after the Alismatis rhizoma extract treatment were markedly decreased. 1H-NMR was used to conduct non-targeted metabolomics studies. A total of 20 differential metabolites were associated with high-fructose–induced metabolic syndrome, which were mainly correlated with 11 metabolic pathways. Moreover, UHPLC/Q-Orbitrap MS lipidomics analysis found that a total of 53 differential lipids were screened out. The results showed that Alismatis rhizoma extract mainly reduces the synthesis of glycerophospholipid and ceramide and improves the secretion of bile acid. This study shows that the Alismatis rhizoma extract can treat metabolic syndrome mainly by inhibiting energy metabolism, amino acid metabolism, and regulating bile acid to reduce phospholipid content.
Collapse
Affiliation(s)
- Li Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengli Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruijiao Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Peng Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Miaomiao Jiang,
| |
Collapse
|
7
|
Pinto BAS, Melo TM, Flister KFT, França LM, Moreira VR, Kajihara D, Mendes NO, Pereira SR, Laurindo FRM, Paes AMA. Hippocampal Endoplasmic Reticulum Stress Hastens Motor and Cognitive Decline in Adult Male Rats Sustainedly Exposed to High-Sucrose Diet. Antioxidants (Basel) 2022; 11:antiox11071395. [PMID: 35883886 PMCID: PMC9311607 DOI: 10.3390/antiox11071395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic dysfunctions, such as hyperglycemia and insulin resistance, have been associated to cognitive impairment and dementia regardless of advanced age, although the underlying mechanisms are still elusive. Thus, this study investigates the deleterious effects of metabolic syndrome (MetS) induced by long-term exposure to a high-sucrose diet on motor and cognitive functions of male adult rats and its relationship with hippocampal endoplasmic reticulum (ER) stress. Weaned Wistar male rats were fed a high-sucrose diet until adulthood (HSD; 6 months old) and compared to both age-matched (CTR; 6 months old) and middle-aged chow-fed rats (OLD; 20 months old). MetS development, serum redox profile, behavioral, motor, and cognitive functions, and hippocampal gene/protein expressions for ER stress pro-adaptive and pro-apoptotic pathways, as well as senescence markers were assessed. Prolonged exposure to HSD induced MetS hallmarked by body weight gain associated to central obesity, hypertriglyceridemia, insulin resistance, and oxidative stress. Furthermore, HSD rats showed motor and cognitive decline similar to that in OLD animals. Noteworthy, HSD rats presented marked hippocampal ER stress characterized by failure of pro-adaptive signaling and increased expression of Chop, p21, and Parp-1 cleavage, markers of cell death and aging. This panorama resembles that found in OLD rats. In toto, our data showed that early and sustained exposure to a high-sucrose diet induced MetS, which subsequently led to hippocampus homeostasis disruption and premature impairment of motor and cognitive functions in adult rats.
Collapse
Affiliation(s)
- Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (B.A.S.P.); (T.M.M.); (K.F.T.F.); (L.M.F.); (N.O.M.)
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (B.A.S.P.); (T.M.M.); (K.F.T.F.); (L.M.F.); (N.O.M.)
| | - Karla Frida Torres Flister
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (B.A.S.P.); (T.M.M.); (K.F.T.F.); (L.M.F.); (N.O.M.)
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (B.A.S.P.); (T.M.M.); (K.F.T.F.); (L.M.F.); (N.O.M.)
| | - Vanessa Ribeiro Moreira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (V.R.M.); (S.R.P.)
| | - Daniela Kajihara
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiiar, 44, Cerqueira César, São Paulo 05403-900, SP, Brazil; (D.K.); (F.R.M.L.)
| | - Nelmar Oliveira Mendes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (B.A.S.P.); (T.M.M.); (K.F.T.F.); (L.M.F.); (N.O.M.)
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (V.R.M.); (S.R.P.)
| | - Francisco Rafael Martins Laurindo
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiiar, 44, Cerqueira César, São Paulo 05403-900, SP, Brazil; (D.K.); (F.R.M.L.)
| | - Antonio Marcus Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Av. dos Portugueses 1966, Bacanga, São Luís 65080-805, MA, Brazil; (B.A.S.P.); (T.M.M.); (K.F.T.F.); (L.M.F.); (N.O.M.)
- Correspondence: ; Tel.: +55-(98)-3272-8557
| |
Collapse
|
8
|
Busnatu SS, Salmen T, Pana MA, Rizzo M, Stallone T, Papanas N, Popovic D, Tanasescu D, Serban D, Stoian AP. The Role of Fructose as a Cardiovascular Risk Factor: An Update. Metabolites 2022; 12:67. [PMID: 35050189 PMCID: PMC8779080 DOI: 10.3390/metabo12010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
There is increasing presence of fructose in food and drinks, and some evidence suggests that its higher consumption increases cardiovascular risk, although the mechanisms still remain not fully elucidated. Cardiovascular diseases (CVD) are still responsible for one-third of deaths worldwide, and therefore, their prevention should be assessed and managed comprehensively and not by the evaluation of individual risk factor components. Lifestyle risk factors for CVD include low degree of physical activity, high body mass index, alcohol consumption, smoking, and nutritional factors. Indeed, nutritional risk factors for CVD include unhealthy dietary behaviors, such as high intake of refined foods, unhealthy fats, added sugars, and sodium and a low intake of fruits, vegetables, whole grains, fiber, fish, and nuts. Even though there is no definitive association between CVD incidence and high consumption of total sugar, such as sucrose and fructose, there is, however, evidence that total sugars, added sugars, and fructose are harmfully associated with CVD mortality. Since high fructose intake is associated with elevated plasma triglyceride levels, as well as insulin resistance, diabetes hyperuricemia, and non-alcoholic fatty liver disease, further longitudinal studies should be conducted to fully elucidate the potential association between certain sugars and CVD.
Collapse
Affiliation(s)
- Stefan-Sebastian Busnatu
- Cardiology Department Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.-S.B.); (M.-A.P.)
| | - Teodor Salmen
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania;
| | - Maria-Alexandra Pana
- Cardiology Department Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.-S.B.); (M.-A.P.)
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), School of Medicine, University of Palermo, 90100 Palermo, Italy;
| | - Tiziana Stallone
- Italian Council and Pension Funds for Biologist Enpab, 00153 Rome, Italy;
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Centre-Diabetic Foot Clinic, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupoli, Greece;
| | - Djordje Popovic
- Medical Faculty, University of Novi Sad, 21102 Novi Sad, Serbia;
| | - Denisa Tanasescu
- Fourth Department of Dental Medicine and Nursing, Faculty of Medicine, ‘Lucian Blaga’ University, 550024 Sibiu, Romania;
| | - Dragos Serban
- Department of General Surgery, Carol Davila University of Medicine, 020021 Bucharest, Romania
- Forth Department of General Surgery, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition, and Metabolic Diseases, Carol Davila University of Medicine, 050474 Bucharest, Romania;
| |
Collapse
|
9
|
Nissankara Rao LS, Kilari EK, Kola PK. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr Neurosci 2021; 24:212-225. [PMID: 31149894 DOI: 10.1080/1028415x.2019.1616436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Curcuma amada Roxb. (Mango ginger) was evaluated for anti-obesity, anti-amnesic and neuroprotection using high-fat and high-sugar diet (HFHS)-induced obesity and cognitive impairment in rats. Methods: Animals were exposed to HFHS diet to evaluate lipid parameters and subjected to Y maze test and Pole climbing test to evaluate the memory. In addition, oxidative stress parameters, acetyl cholinesterase activity (AChE), neurochemicals and histopathology were assessed in the brain. Results: HFHS diet led to increased body weight and lipid parameters (total cholesterol, low-density lipoprotein [LDL], and very low-density lipoprotein [VLDL], triglycerides [TG]) but not high-density lipoprotein (HDL). Elevated serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), oxidative biomarker, decreased enzymatic and non-enzymatic antioxidants, Acetylcholinesterase (AChE) activity and reduced percentage of spontaneous alternation behaviour (% SAB in Y-maze test) as well as reduced serotonin and dopamine levels and neurodegeneration were observed in HFHS diet-fed rats. Curcuma amada (CAAE1, 100 mg/kg and CAAE2, 300 mg/kg) treatment to HFHS diet-fed rats (21 days after HFHS diet feeding alone) showed dose-dependent activity and ameliorated the HFHS diet-induced alterations in lipid parameters related to obesity, hepatological parameters, memory, oxidative stress, neurochemicals and neurodegeneration. Furthermore, 300 mg/kg of C. amada (CAAE2) augmented the memory by inhibiting acetylcholinesterase (AChE) activity; it also ameliorated the effect of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol and mitigated the effect of malondialdehyde (MDA). CAAE2 also controlled the level of dopamine and serotonin and reduced the neurodegeneration in the hippocampus CA1 region. Discussion: The results of the present study indicated that treatment with C. amada 300 mg/kg (CAAE2) attenuated the HFHS diet-induced obesity, memory loss, oxidative stress, and neurodegeneration. These study results indicated that the administration of C. amada offers a potential treatment option for obesity and memory loss, and it requires further preclinical and clinical evaluations.
Collapse
Affiliation(s)
| | - Eswar Kumar Kilari
- Department of Pharmacology, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| |
Collapse
|
10
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Abstract
The interest in fructose metabolism is based on the observation that an increased dietary fructose consumption leads to an increased risk of obesity and metabolic syndrome. In particular, obesity is a known risk factor to develop many types of cancer and there is clinical and experimental evidence that an increased fructose intake promotes cancer growth. The precise mechanism, however, in which fructose induces tumor growth is still not fully understood. In this article, we present an overview of the metabolic pathways that utilize fructose and how fructose metabolism can sustain cancer cell proliferation. Although the degradation of fructose shares many of the enzymes and metabolic intermediates with glucose metabolism through glycolysis, glucose and fructose are metabolized differently. We describe the different metabolic fates of fructose carbons and how they are connected to lipogenesis and nucleotide synthesis. In addition, we discuss how the endogenous production of fructose from glucose via the polyol pathway can be beneficial for cancer cells.
Collapse
|
12
|
Yu R, Wen S, Wang Q, Wang C, Zhang L, Wu X, Li J, Kong L. Mulberroside A repairs high fructose diet-induced damage of intestinal epithelial and blood-brain barriers in mice: A potential for preventing hippocampal neuroinflammatory injury. J Neurochem 2020; 157:1979-1991. [PMID: 33205422 DOI: 10.1111/jnc.15242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Our previous studies showed that high fructose diet (HFrD)-driven gut dysbiosis caused fecal short-chain fatty acids (SCFAs) reduction and intestinal epithelial barrier (IEB) damage in mice, which might play an important role in hippocampal neuroinflammatory injury. Mulberroside A is reported to have neuroprotective effects in animal experiments, while the underlying mechanisms are not yet fully elucidated. Here, we investigated whether and how mulberroside A prevented HFrD-induced neuroinflammatory injury. HFrD-fed mice were treated orally with mulberroside A (20 and 40 mg/kg) for 8 weeks. Mulberroside A was found to inhibit hippocampal neuroinflammation and neurogenesis reduction in HFrD-fed mice. It reshaped gut dysbiosis, increased fecal and serum SCFAs contents, reactivated signaling of the colonic NLR family, pyrin domain containing 6 (NLRP6) inflammasome, and up-regulated Muc2 expression to prevent IEB damage, as well as subsequently, reduced serum endotoxin levels in this animal model. Additionally, mulberroside A inhibited oxidative stress in colon of HFrD-fed mice and hydrogen peroxide (H2 O2 )-stimulated Caco-2 cells. Blood-brain barrier (BBB) structure defects were also observed in HFrD-driven hippocampal neuroinflammatory injury of mice. Interestingly, mulberroside A maintained astrocyte morphology and up-regulated tight junction proteins to repair BBB structure defects in hippocampus dentate gyrus (DG). Our results demonstrated that mulberroside A was capable of preventing HFrD-induced damage of IEB and BBB in mice, which might contribute to the suppression of hippocampal neuroinflammatory injury.
Collapse
Affiliation(s)
- Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Shiyu Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Qiaona Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Congying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Liping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Jianmei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Lim B, Prassas I, Diamandis EP. Alzheimer Disease Pathogenesis: The Role of Autoimmunity. J Appl Lab Med 2020; 6:756-764. [PMID: 33241314 DOI: 10.1093/jalm/jfaa171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND In addition to deposits of amyloid β (Aβ) plaques and neurofibrillary tangles, growing evidence demonstrates that complex and multifaceted biological processes can arise during Alzheimer disease (AD) pathogenesis. The recent failures of clinical trials based on the amyloid hypothesis and the presence of Aβ plaques in cognitively healthy elderly persons without AD point toward a need to explore novel pathobiological mechanisms of AD. CONTENT In the search for alternative AD mechanisms, numerous genome-wide association studies and mechanistic discoveries suggest a potential immunologic component of the disease. However, new experimental tools are needed to uncover these immunogenic components. The current methods, such as ELISAs or protein microarrays, have limitations of low throughput and/or sensitivity and specificity. In this article, we briefly discuss evidence of potential autoimmune contributions to AD pathobiology, describe the current methods for identifying autoantibodies in patient fluids, and outline our own efforts to develop new techniques for novel autoantibody biomarker discovery. SUMMARY Uncovering the putative autoimmune components of AD may be crucial in paving the way to new concepts for pathogenesis, diagnosis, and therapy. IMPACT STATEMENT In addition to deposits of amyloid β plaques and neurofibrillary tangles, growing evidence demonstrates that complex and multifaceted biological processes can arise during Alzheimer disease (AD) pathogenesis. Numerous research directions, including genome-wide association, clinical correlation, and mechanistic studies, have pointed to a potential autoimmunologic contribution to AD pathology. We present research suggesting the association between autoimmunity and AD and demonstrate the need for new laboratory techniques to further characterize potential brain antigen-specific autoantibodies. Uncovering the putative autoimmune components of AD may be crucial in paving the way to new concepts for pathogenesis, diagnosis, and therapy.
Collapse
Affiliation(s)
- Bryant Lim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
14
|
Chiba Y, Murakami R, Matsumoto K, Wakamatsu K, Nonaka W, Uemura N, Yanase K, Kamada M, Ueno M. Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium. Int J Mol Sci 2020; 21:E7230. [PMID: 33008107 PMCID: PMC7582461 DOI: 10.3390/ijms21197230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| |
Collapse
|
15
|
Reifsnider E, Jeong M, Chatterjee P. An Ecological Approach to Obesity in Mexican American Children. J Pediatr Health Care 2020; 34:212-221. [PMID: 31813667 DOI: 10.1016/j.pedhc.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The objective of this study was to explore the risk factors that contribute to obesity in Mexican American children compared with Mexican American normal weight children. No hypotheses were tested in the study. When risk factors are known, nurses can use evidence to reduce risky behavior. METHOD A cross-sectional descriptive design was used, comparing two groups of children to discern the risk factors for obesity. The setting is a county in South Texas along the border with Mexico. The sample consisted of 55 Mexican American dyads (mother-child). The following measures, based on the Ecological Model of Growth, were used to collect data: anthropometrics, dietary data of children, home environment, perceived stress of mother, and maternal acculturation. Independent sample t tests, chi-square tests, Fisher exact tests, and a hierarchical logistic regression analysis were used to analyze the data. RESULTS The findings show children's age and maternal body mass index (BMI) are positively correlated with childhood obesity, as measured by BMI percentile by age/sex. There were significant differences in the host and agent factors of prolonged bottle feeding, amount of outdoor play, and fruit drinks between normal weight and obese children. DISCUSSION Engagement and involvement of other family members in outdoor activities, nutrition/feeding, and child care may mitigate the negative effects of host and agent factors on child body size.
Collapse
|
16
|
Dietary Fructose Intake and Hippocampal Structure and Connectivity during Childhood. Nutrients 2020; 12:nu12040909. [PMID: 32224933 PMCID: PMC7230400 DOI: 10.3390/nu12040909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
In rodent literature, there is evidence that excessive fructose consumption during development has a detrimental impact on hippocampal structure and function. In this study of 103 children ages 7–11 years old, we investigated whether dietary fructose intake was related to alterations in hippocampal volume and connectivity in humans. To examine if these associations were specific to fructose or were related to dietary sugars intake in general, we explored relationships between dietary intake of added sugars and the monosaccharide, glucose, on the same brain measures. We found that increased dietary intake of fructose, measured as a percentage of total calories, was associated with both an increase in the volume of the CA2/3 subfield of the right hippocampus and increased axial, radial, and mean diffusivity in the prefrontal connections of the right cingulum. These findings are consistent with the idea that increased fructose consumption during childhood may be associated with an inflammatory process, and/or decreases or delays in myelination and/or pruning. Increased habitual consumption of glucose or added sugar in general were associated with an increased volume of right CA2/3, but not with any changes in the connectivity of the hippocampus. These findings support animal data suggesting that higher dietary intake of added sugars, particularly fructose, are associated with alterations in hippocampal structure and connectivity during childhood.
Collapse
|
17
|
Micioni Di Bonaventura MV, Martinelli I, Moruzzi M, Micioni Di Bonaventura E, Giusepponi ME, Polidori C, Lupidi G, Tayebati SK, Amenta F, Cifani C, Tomassoni D. Brain alterations in high fat diet induced obesity: effects of tart cherry seeds and juice. Nutrients 2020; 12:E623. [PMID: 32120798 PMCID: PMC7146216 DOI: 10.3390/nu12030623] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence suggests that obesity adversely affects brain function. High body mass index, hypertension, dyslipidemia, insulin resistance, and diabetes are risk factors for increasing cognitive decline. Tart cherries (PrunusCerasus L.) are rich in anthocyanins and components that modify lipid metabolism. This study evaluated the effects of tart cherries on the brain in diet-induced obese (DIO) rats. DIO rats were fed with a high-fat diet alone or in association with a tart cherry seeds powder (DS) and juice (DJS). DIO rats were compared to rats fed with a standard diet (CHOW). Food intake, body weight, fasting glycemia, insulin, cholesterol, and triglycerides were measured. Immunochemical and immunohistochemical techniques were performed. Results showed that body weight did not differ among the groups. Blood pressure and glycemia were decreased in both DS and DJS groups when compared to DIO rats. Immunochemical and immunohistochemical techniques demonstrated that in supplemented DIO rats, the glial fibrillary acid protein expression and microglial activation were reduced in both the hippocampus and in the frontal cortex, while the neurofilament was increased. Tart cherry intake modified aquaporin 4 and endothelial inflammatory markers. These findings indicate the potential role of this nutritional supplement in preventing obesity-related risk factors, especially neuroinflammation.
Collapse
Affiliation(s)
| | - Ilenia Martinelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | | | - Maria Elena Giusepponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Carlo Polidori
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Giulio Lupidi
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Francesco Amenta
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
18
|
Janežič D, Jäntschi L, Bolboacă SD. Sugars and Sweeteners: Structure, Properties and In Silico Modeling. Curr Med Chem 2020; 27:5-22. [PMID: 30259809 DOI: 10.2174/0929867325666180926144401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/15/2018] [Accepted: 03/09/2018] [Indexed: 11/22/2022]
Abstract
Several studies report the effects of excessive use of sugars and sweeteners in the diet. These include obesity, cardiac diseases, diabetes, and even lymphomas, leukemias, cancers of the bladder and brain, chronic fatigue syndrome, Parkinson's disease, Alzheimer's disease, multiple sclerosis, autism, and systemic lupus. On the other hand, each sugar and sweetener has a distinct metabolic assimilation process, and its chemical structure plays an important role in this process. Several scientific papers present the biological effects of the sugars and sweeteners in relation to their chemical structure. One important issue dealing with the sugars is the degree of similarity in their structures, focusing mostly on optical isomerism. Finding and developing new sugars and sweeteners with desired properties is an emerging research area, in which in silico approaches play an important role.
Collapse
Affiliation(s)
- Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Lorentz Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.,Chemistry Doctoral School, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Abstract
The last few decades have witnessed a global rise in the number of older individuals. Despite this demographic shift, morbidity within this population group is high. Many factors influence healthspan; however, an obesity pandemic is emerging as a significant determinant of older people's health. It is well established that obesity adversely affects several metabolic systems. However, due to its close association with overall cardiometabolic health, the impact that obesity has on cholesterol metabolism needs to be recognised. The aim of the present review is to critically discuss the effects that obesity has on cholesterol metabolism and to reveal its significance for healthy ageing.
Collapse
|
20
|
Yamada H, Munetsuna E, Yamazaki M, Mizuno G, Sadamoto N, Ando Y, Fujii R, Shiogama K, Ishikawa H, Suzuki K, Shimono Y, Ohashi K, Hashimoto S. Maternal fructose–induced oxidative stress occurs
via Tfam
and
Ucp5
epigenetic regulation in offspring hippocampi. FASEB J 2019; 33:11431-11442. [DOI: 10.1096/fj.201901072r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hiroya Yamada
- Department of HygieneFujita Health UniversityToyoakeJapan
| | - Eiji Munetsuna
- Department of BiochemistryFujita Health UniversityToyoakeJapan
| | - Mirai Yamazaki
- Department of Clinical BiochemistryFujita Health UniversityToyoakeJapan
- Department of Medical TechnologyKagawa Prefectural University of Health SciencesTakamatsuJapan
| | - Genki Mizuno
- Joint Research Laboratory of Clinical MedicineFujita Health UniversityToyoakeJapan
| | - Nao Sadamoto
- Department of Clinical BiochemistryFujita Health UniversityToyoakeJapan
| | - Yoshitaka Ando
- Department of Clinical BiochemistryFujita Health UniversityToyoakeJapan
| | - Ryosuke Fujii
- Department of Preventive Medical SciencesFujita Health UniversityToyoakeJapan
| | - Kazuya Shiogama
- Department of Clinical ExaminationFujita Health University School of Medical SciencesFujita Health UniversityToyoakeJapan
| | - Hiroaki Ishikawa
- Department of Clinical BiochemistryFujita Health UniversityToyoakeJapan
| | - Koji Suzuki
- Department of Preventive Medical SciencesFujita Health UniversityToyoakeJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health UniversityToyoakeJapan
| | - Koji Ohashi
- Department of Clinical BiochemistryFujita Health UniversityToyoakeJapan
| | | |
Collapse
|
21
|
Mansour A, Hekmatdoost A, Mirmiran P. What are the main areas of focus to prevent or treat non-alcoholic fatty liver disease? J Dig Dis 2019; 20:271-277. [PMID: 30968561 DOI: 10.1111/1751-2980.12751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/26/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022]
Abstract
Recently, a growing body of information has accumulated to suggest that nutritional status and food compounds impact on the development or progression of non-alcoholic fatty liver disease (NAFLD). The best strategy to prevent and treat NAFLD is to modify diet and lifestyle by maintaining a healthy weight, following a well-balanced diet with appropriate energy intake and increasing physical activity or strength training. Here we review the literatures and discuss existing and potential therapeutic strategies for the prevention and management of NAFLD, emphasizing the description of nutritional status and its clinical impact on the outcomes of NAFLD.
Collapse
Affiliation(s)
- Asieh Mansour
- Student Research Committee, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Hattori Y, Sadamoto N, Ishikawa H, Ohta Y, Fujii R, Suzuki K, Hashimoto S, Ohashi K. Maternal high-fructose intake increases circulating corticosterone levels via decreased adrenal corticosterone clearance in adult offspring. J Nutr Biochem 2019; 67:44-50. [DOI: 10.1016/j.jnutbio.2019.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/21/2018] [Accepted: 01/29/2019] [Indexed: 01/18/2023]
|
23
|
Băbţan AM, Ilea A, Boşca BA, Crişan M, Petrescu NB, Collino M, Sainz RM, Gerlach JQ, Câmpian RS. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomark Med 2019; 13:479-495. [PMID: 30968701 DOI: 10.2217/bmm-2018-0448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins associated with high dry temperature food processing, coloring and flavor modification of food products. Previous studies on diet-related disease support the role of the glycation products as biomarkers in local and general proinflammatory response. Exogenous and endogenous AGEs are involved in chronic low-level inflammation, which underlies the onset of metabolic syndrome influenced by food intake, there by demonstrating their implication in diet-related pathologies. Although studies have revealed a strong association between the accumulation of AGEs and the occurrence/worsening of metabolic diseases, their routine use for the diagnosis or monitoring of local and general disease has not yet been reported.
Collapse
Affiliation(s)
- Anida M Băbţan
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Bianca A Boşca
- Department of Histology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Louis Pasteur Street, no 4, Cluj-Napoca, 400349, Romania
| | - Maria Crişan
- Department of Histology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Louis Pasteur Street, no 4, Cluj-Napoca, 400349, Romania
| | - Nausica B Petrescu
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Massimo Collino
- Department of Drug Science & Technology, University of Turin, Corso Raffaello 33, 10125 Torino, Italy
| | - Rosa M Sainz
- Department of Morphology & Cell Biology, University of Oviedo, Campus del Cristo. C/Julián Clavería 6. 33006 Oviedo, Spain
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91 CF50 Galway, Ireland
| | - Radu S Câmpian
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| |
Collapse
|
24
|
Filgueiras AR, Pires de Almeida VB, Koch Nogueira PC, Alvares Domene SM, Eduardo da Silva C, Sesso R, Sawaya AL. Exploring the consumption of ultra-processed foods and its association with food addiction in overweight children. Appetite 2018; 135:137-145. [PMID: 30439381 DOI: 10.1016/j.appet.2018.11.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 01/18/2023]
Abstract
The present study explored the consumption of ultra-processed foods and its association with food addiction in overweight children. The prevalence of food addiction was investigated using the Yale Food Addiction Scale for Children in overweight 9-11 year-old children (BMI/age ≥1 Z score) of both sexes from two schools (n = 139). Food intake was estimated by a food frequency questionnaire and the food items were classified into 4 categories: minimally processed, culinary ingredients, processed foods and ultra-processed foods (UPF), based on their degree of processing. Among the children, 95% showed at least one of the seven symptoms of food addiction and 24% presented with a diagnosis of food addiction. In analysis of covariance adjusted for age and sex, a tendency of higher consumption of added sugar (refined sugar, honey, corn syrup) and UPF was found among those diagnosed with food addiction. Multiple logistic regression adjusted for sugar, sodium and fat ingestion showed that consumption of cookies/biscuits (OR = 4.19, p = 0.015) and sausages (OR = 11.77, p = 0.029) were independently associated with food addiction. The identification of foods that may be associated with addictive behavior is very important for correctly treating and preventing childhood obesity, which continues to be one of the greatest health problems in the world.
Collapse
Affiliation(s)
| | | | | | | | | | - Ricardo Sesso
- Department of Medicine, Federal University of São Paulo, UNIFESP, Brazil
| | - Ana Lydia Sawaya
- Department of Physiology, Federal University of São Paulo, UNIFESP, Brazil
| |
Collapse
|
25
|
Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Ota T, Hattori Y, Sadamoto N, Suzuki K, Ishikawa H, Hashimoto S, Ohashi K. Maternal fructose intake disturbs ovarian estradiol synthesis in rats. Life Sci 2018; 202:117-123. [PMID: 29654807 DOI: 10.1016/j.lfs.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
AIMS Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation. Given the fructose is transferred to the fetus, excess fructose consumption may affect offspring ovarian development. As ovarian development and its function is maintained by 17β-estradiol, we therefore investigated whether excess maternal fructose intake influences offspring ovarian estradiol synthesis. Rats received a 20% fructose solution during gestation and lactation. After weaning, offspring ovaries were isolated. KEY FINDINGS Offspring from fructose-fed dams showed reduced StAR and P450(17α) mRNA levels, along with decreased protein expression levels. Conversely, attenuated P450arom protein level was found in the absence of mRNA expression alteration. Consistent with these phenomena, decreased circulating levels of estradiol were observed. Furthermore, estrogen receptor α (ERα) protein levels were also down-regulated. In accordance, the mRNA for progesterone receptor, a transcriptional target of ERα, was decreased. These results suggest that maternal fructose might alter ovarian physiology in the subsequent generation.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yoshitaka Ando
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Genki Mizuno
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeru Ota
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yuji Hattori
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Nao Sadamoto
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| |
Collapse
|
26
|
Sangüesa G, Cascales M, Griñán C, Sánchez RM, Roglans N, Pallàs M, Laguna JC, Alegret M. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Mol Neurobiol 2018; 55:6984-6999. [DOI: 10.1007/s12035-017-0863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
|
27
|
Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, Belleville K, Beaudet N, Longpré JM, Carpentier AC, Geraldes P, Sarret P. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep 2018; 8:424. [PMID: 29323186 PMCID: PMC5765114 DOI: 10.1038/s41598-017-18896-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is fueled by added fructose consumption. Here, we thus combined high-fat/high-fructose diet, with multiple low-dose injections of streptozotocin (HF/HF/Stz) to emulate the long-term complications of T2DM. HF/HF/Stz rats, monitored over 56 weeks, exhibited metabolic dysfunctions associated with the different stages of the T2DM disease progression in humans: an early prediabetic phase characterized by an hyperinsulinemic period with modest dysglycemia, followed by a late stage of T2DM with frank hyperglycemia, normalization of insulinemia, marked dyslipidemia, hepatic fibrosis and pancreatic β-cell failure. Histopathological analyses combined to [18F]-FDG PET imaging further demonstrated the presence of several end-organ long-term complications, including reduction in myocardial glucose utilization, renal dysfunction as well as microvascular neuropathy and retinopathy. We also provide for the first time a comprehensive µ-PET whole brain imaging of the changes in glucose metabolic activity within discrete cerebral regions in HF/HF/Stz diabetic rats. Altogether, we developed and characterized a unique non-genetic preclinical model of T2DM adapted to the current diet and lifestyle that recapitulates the major metabolic features of the disease progression, from insulin resistance to pancreatic β-cell dysfunction, and closely mimicking the target-organ damage occurring in type 2 diabetic patients at advanced stages.
Collapse
Affiliation(s)
- David André Barrière
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| | - Christophe Noll
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Geneviève Roussy
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Anissa Kessai
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karyn Kirby
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karine Belleville
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Nicolas Beaudet
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - André C Carpentier
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
28
|
Zanchi D, Meyer-Gerspach AC, Schmidt A, Suenderhauf C, Depoorter A, Drewe J, Beglinger C, Wölnerhanssen BK, Borgwardt S. Acute Effects of Glucose and Fructose Administration on the Neural Correlates of Cognitive Functioning in Healthy Subjects: A Pilot Study. Front Psychiatry 2018; 9:71. [PMID: 29593582 PMCID: PMC5857887 DOI: 10.3389/fpsyt.2018.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Abstract
The present randomized double-blinded cross-over study aims to extensively study the neural correlates underpinning cognitive functions in healthy subjects after acute glucose and fructose administration, using an integrative multimodal neuroimaging approach. Five minutes after glucose, fructose, or placebo administration through a nasogastric tube, 12 participants underwent 3 complementary neuroimaging techniques: 2 task-based functional magnetic resonance imaging (fMRI) sequences to assess working memory (N-back) and response inhibition (Go/No-Go) and one resting state fMRI sequence to address the cognition-related fronto-parietal network (FPN) and salience network (SN). During working memory processing, glucose intake decreased activation in the anterior cingulate cortex (ACC) relative to placebo, while fructose decreased activation in the ACC and sensory cortex relative to placebo and glucose. During response inhibition, glucose and fructose decreased activation in the ACC, insula and visual cortex relative to placebo. Resting state fMRI indicated increased global connectivity strength of the FPN and the SN during glucose and fructose intake. The results demonstrate that glucose and fructose lead to partially different partially overlapping changes in regional brain activities that underpin cognitive performance in different tasks.
Collapse
Affiliation(s)
- Davide Zanchi
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Antoinette Depoorter
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital, Basel, Switzerland
| | - Jürgen Drewe
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Bettina Karin Wölnerhanssen
- Department of Research, St. Clara Hospital, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Bédard A, Northstone K, Henderson AJ, Shaheen SO. Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes. Eur Respir J 2017; 50:50/1/1700073. [PMID: 28679610 PMCID: PMC5540678 DOI: 10.1183/13993003.00073-2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022]
Abstract
The possible role of maternal consumption of free sugar during pregnancy in the inception of respiratory and atopic diseases has not been studied. We aimed to study the relationship between maternal intake of free sugar during pregnancy and respiratory and atopic outcomes in the offspring in a population-based birth cohort, the Avon Longitudinal Study of Parents and Children. We analysed associations between maternal intake of free sugar in pregnancy (estimated by a food frequency questionnaire), and current doctor-diagnosed asthma, wheezing, hay fever, eczema, atopy, serum total IgE and lung function in children aged 7–9 years (n=8956 with information on maternal diet in pregnancy and at least one outcome of interest). After controlling for potential confounders, maternal intake of free sugar was positively associated with atopy (OR for highest versus lowest quintile of sugar intake 1.38, 95% CI 1.06–1.78; per quintile p-trend=0.006) and atopic asthma (OR 2.01, 95% CI 1.23–3.29; per quintile p-trend=0.004). These associations were not confounded by intake of sugar in early childhood, which was unrelated to these outcomes. Our results suggest that a higher maternal intake of free sugar during pregnancy is associated with an increased risk of atopy and atopic asthma in the offspring, independently of sugar intake in early childhood. Higher maternal intake of sugar in pregnancy may increase the risk of allergy and allergic asthma in the offspringhttp://ow.ly/zehc30bFswP
Collapse
Affiliation(s)
- Annabelle Bédard
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kate Northstone
- National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care West, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - A John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,Joint senior authors
| | - Seif O Shaheen
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Joint senior authors
| |
Collapse
|
30
|
Bédard A, Northstone K, Henderson AJ, Shaheen SO. Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes. Eur Respir J 2017. [PMID: 28679610 DOI: 10.1183/13993003-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The possible role of maternal consumption of free sugar during pregnancy in the inception of respiratory and atopic diseases has not been studied. We aimed to study the relationship between maternal intake of free sugar during pregnancy and respiratory and atopic outcomes in the offspring in a population-based birth cohort, the Avon Longitudinal Study of Parents and Children.We analysed associations between maternal intake of free sugar in pregnancy (estimated by a food frequency questionnaire), and current doctor-diagnosed asthma, wheezing, hay fever, eczema, atopy, serum total IgE and lung function in children aged 7-9 years (n=8956 with information on maternal diet in pregnancy and at least one outcome of interest).After controlling for potential confounders, maternal intake of free sugar was positively associated with atopy (OR for highest versus lowest quintile of sugar intake 1.38, 95% CI 1.06-1.78; per quintile p-trend=0.006) and atopic asthma (OR 2.01, 95% CI 1.23-3.29; per quintile p-trend=0.004). These associations were not confounded by intake of sugar in early childhood, which was unrelated to these outcomes.Our results suggest that a higher maternal intake of free sugar during pregnancy is associated with an increased risk of atopy and atopic asthma in the offspring, independently of sugar intake in early childhood.
Collapse
Affiliation(s)
- Annabelle Bédard
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kate Northstone
- National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care West, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - A John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Joint senior authors
| | - Seif O Shaheen
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Joint senior authors
| |
Collapse
|
31
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
32
|
Ko EA, Kim HR, Kim YB, Kim HS, Lee SH. Effect of High Fructose Corn Syrup (HFCS) Intake on the Female Reproductive Organs and Lipid Accumulation in Adult Rats. Dev Reprod 2017; 21:151-156. [PMID: 28785736 PMCID: PMC5532307 DOI: 10.12717/dr.2017.21.2.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/17/2022]
Abstract
High-fructose corn syrup (HFCS) is widely used as sweetener, and its
overconsumption is become a major health problem. In the present study, we used
adult female rats and applied a 28 days HFCS feeding model to monitor the
estrous cycle and changes in tissue weights and histology. Adult female rats
were divided into three groups. Animals were fed with ad
libitum normal chow and (1) 24 hours tap water (Control group), (2)
12 hours HFCS access during dark period and 12 hours tap water (12H group), and
(3) 24 hours HFCS only access (24H group). Total exposure period was 28 days.
There is no significant change in body weight between control and HFCS-fed
animals. Both absolute and relative weights of ovary in 24H animals were
significantly heavier than those in control or 12H animals. The absolute and
relative weights of the kidney and liver in 24H groups were significantly
heavier than those in control or 12H animals. The estrous cycles of the 24H
animals were significantly longer. Histological analyses revealed that 24H
ovaries were relatively bigger and possessed more corpus lutea than control
ovaries. Uterine sections of 12H and 24H animals showed a well-developed stratum
vasculare between inner and outer myometrial layers. The number of endometrial
glands were decreased in 12H uteri, and recovered in 24H uteri compared to
control. Numbers of convoluted tubule in distal region increased in 12H and 24H
kidney samples. Liver specimens of 12H and 24H showed the increased number of
fat containing vacuoles. In conclusion, our study demonstrated that HFCS
treatment for 28 days could induce (1) changes in length of estrous cycle with
extended estrous and diestrous stages, (2) altered ovarian and uterine
histology, and (3) liver and renal lipid accumulation. These findings reveal the
adverse effects of HFCS drinking on the reproductive function and lipid
metabolism of female rats.
Collapse
Affiliation(s)
- Eun-Ah Ko
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hye-Ri Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Yong-Bin Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hee-Su Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
33
|
A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats. Nutrients 2017. [PMID: 28621759 PMCID: PMC5490598 DOI: 10.3390/nu9060619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group (n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.
Collapse
|
34
|
Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus. Brain Res 2017; 1669:114-121. [PMID: 28532855 DOI: 10.1016/j.brainres.2017.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023]
Abstract
Maternal over-nutrition may predispose offspring to obesity, type 2 diabetes and other adult diseases. The present study investigated long-term impact of prenatal high sucrose (HS) diets on cognitive capabilities in aged rat offspring. The fasting plasma glucose concentration did not differ between the control and HS groups. However, the fasting plasma insulin and insulin resistance index values were significantly increased in HS offspring that showed abnormal glucose tolerance test. HS offspring exhibited increased escape latency and swimming path length to the platform, and reduced time in the target quadrant and the number of crossing the platform, as compared with the control group. The expression of Grin2b/NR2B, Wnt2, Wnt3a and active form of β-catenin protein were decreased, and Dickkopf-related protein 1 was increased in the HS group. In addition, the levels of lipid peroxidation biomarker thiobarbituricacid reactive substance, nicotinamide adenine dinucleotide phosphate oxidases 2 and superoxide dismutase 1 were significantly increased, and the activity of catalase was decreased in the hippocampus in the HS group. The results demonstrate that prenatal HS-induced metabolic changes cause cognitive deficits in aged rat offspring, probably due to altered N-methyl-d-aspartate receptors/Wnt signaling and oxidative stress in the hippocampus.
Collapse
|
35
|
Saravani S, Yari D, Saravani R, Azadi Ahmadabadi C. Association of COL4A3 (rs55703767), MMP-9 (rs17576)and TIMP-1 (rs6609533) gene polymorphisms with susceptibility to type 2 diabetes. Biomed Rep 2017; 6:329-334. [PMID: 28451395 PMCID: PMC5403448 DOI: 10.3892/br.2017.856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/23/2017] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes (T2D) is defined by high levels of glucose in the blood. The collagen IV level is associated with conditions of hyperglycemia and insulin resistance. Collagen type IV α3 chain (COL4A3) is a structural protein of the extracellular matrix (ECM). Matrix metallopeptidase 9 (MMP-9) is an enzyme that degrades the extracellular matrix and its activity is moderated by TIMP metallopeptidase inhibitor 1 (TIMP-1). The aim of the current study was to examine the association between genetic polymorphisms of COL4A3 (rs55703767), MMP-9 (rs17576) and TIMP-1 (rs6609533) in patients with T2D. This case-control study was performed on 120 Iranian patients with T2D and 120 healthy individuals. Genotypes were analyzed using the amplification refractory mutation system-polymerase chain reaction technique. The findings demonstrated significant differences between genotypic and allelic distributions of COL4A3 (G/T) and MMP-9 (A/G) polymorphisms as follows: COL4A3 (G/T); TT vs. GG, odds ratio (OR)=0.235, 95% confidence interval (CI)=0.063-0.0802 (P=0.013) and T vs. G, OR=0.592, 95% CI=0.371-0.943 (P=0.026); MMP-9 (A/G); AG vs. GG, OR=2.429, 95% CI=1.232-4.820 (P=0.008) and A vs. G, OR=2.176, 95% CI=1.155-4.130 (P=0.013). No significant association was identified between TIMP-1 (A/G) polymorphism and T2D in females and males. Thus, the genotypic and allelic distributions of COL4A3 (G/T) and MMP-9 (A/G) polymorphisms were associated with T2D. In addition, no significant association was identified in the genotypic distribution of the TIMP-1 (A/G) gene in females and in males. Further studies in other ethnic groups are required to confirm these findings.
Collapse
Affiliation(s)
- Samira Saravani
- Department of Biology, Zabol University, Zabol 98615-538, Iran
| | - Davood Yari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Ramin Saravani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Changiz Azadi Ahmadabadi
- Department of Cardiovascular Surgery, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| |
Collapse
|
36
|
Abbott KN, Morris MJ, Westbrook RF, Reichelt AC. Sex-specific effects of daily exposure to sucrose on spatial memory performance in male and female rats, and implications for estrous cycle stage. Physiol Behav 2016; 162:52-60. [DOI: 10.1016/j.physbeh.2016.01.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/06/2023]
|
37
|
Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M. High-fructose intake as risk factor for neurodegeneration: Key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis 2016; 89:65-75. [PMID: 26851500 DOI: 10.1016/j.nbd.2016.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022] Open
Abstract
Several studies indicate the involvement of advanced glycation end-products (AGEs) in neurodegenerative diseases. Moreover, the rising consumption of fructose in industrialized countries has been related to cognitive impairment, but the impact of fructose-derived AGEs on hippocampus has never been investigated. The present study aimed to evaluate in the hippocampus of C57Bl/6 mice fed a standard (SD) or a 60% fructose (HFRT) diet for 12 weeks the production of the most studied AGEs, carboxy methyllysine (CML), focusing on the role of the glutathione-dependent enzyme glyoxalase (Glo-1), the main AGEs-detoxifying system, in relation to early signs of neuronal impairment. HFRT diet evoked CML accumulation in the cell body of pyramidal neurons, followed by RAGE/NFkB signaling activation. A widespread reactive gliosis and altered mitochondrial respiratory complexes activity have been evidenced in HFRT hippocampi, paralleled by oxidative stress increase due to impaired activity of Nrf2 signaling. In addition, a translocation of Glo-1 from axons toward cell body of pyramidal neurons has been observed in HFRT mice, in relation to CML accumulation. Despite increased expression of dimeric Glo-1, its enzymatic activity was not upregulated in HFRT hippocampi, due to reduced glutathione availability, thus failing to prevent CML accumulation. The prevention of CML production by administration of the specific inhibitor pyridoxamine was able to prevent all the fructose-induced hippocampal alterations. In conclusion, a high-fructose consumption, through CML accumulation and Glo-1 impairment, induces in the hippocampus the same molecular and metabolic alterations observed in early phases of neurodegenerative diseases, and can thus represent a risk factor for their onset.
Collapse
Affiliation(s)
- Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Debora Nigro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia S Cento
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
38
|
Correa-Burrows P, Burrows R, Blanco E, Reyes M, Gahagan S. Nutritional quality of diet and academic performance in Chilean students. Bull World Health Organ 2016; 94:185-92. [PMID: 26966329 PMCID: PMC4773934 DOI: 10.2471/blt.15.161315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Objective To explore associations between the nutritional quality of diet at age 16 years and academic performance in students from Santiago, Chile. Methods We assessed the nutritional quality of diet, using a validated food frequency questionnaire, in 395 students aged 16.8 ± 0.5 years. Depending on the amount of saturated fat, fibre, sugar and salt in the foods, diet was categorized as unhealthy, fair or healthy. Academic performance was assessed using high school grade-point average (GPA) and tests for college admission in language and mathematics. Academic results on or above the 75th percentile in our sample were considered good academic performance. We tested associations between nutritional quality of diet and good academic performance using logistic regression models. We considered sociodemographic, educational and body-mass index (BMI) factors as potential confounders. Findings After controlling for potential confounding factors, an unhealthy diet at age 16 years was associated with reduced academic performance. Compared to participants with healthy diets, those with unhealthy diets were significantly less likely to perform well based on language tests (odds ratio, OR: 0.42; 95% confidence interval, CI: 0.18–0.98) mathematics tests (OR: 0.35; 95% CI: 0.15–0.82) or GPA (OR: 0.22; 95% CI: 0.09–0.56). Conclusion In our sample, excessive consumption of energy-dense, low-fibre, high-fat foods at age 16 years was associated with reduced academic performance.
Collapse
Affiliation(s)
- Paulina Correa-Burrows
- Institute of Nutrition and Food Technology, University of Chile, Avda. El Líbano 5524, Macul, CP 7830490, Santiago de Chile, Chile
| | - Raquel Burrows
- Institute of Nutrition and Food Technology, University of Chile, Avda. El Líbano 5524, Macul, CP 7830490, Santiago de Chile, Chile
| | - Estela Blanco
- Division of Child Development and Community Health, University of California San Diego, San Diego, United States of America
| | - Marcela Reyes
- Institute of Nutrition and Food Technology, University of Chile, Avda. El Líbano 5524, Macul, CP 7830490, Santiago de Chile, Chile
| | - Sheila Gahagan
- Division of Child Development and Community Health, University of California San Diego, San Diego, United States of America
| |
Collapse
|
39
|
Daniels S, Marshall P, Leri F. Alterations of naltrexone-induced conditioned place avoidance by pre-exposure to high fructose corn syrup or heroin in Sprague-Dawley rats. Psychopharmacology (Berl) 2016; 233:425-33. [PMID: 26514556 DOI: 10.1007/s00213-015-4121-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE It has been suggested that withdrawal from sugar produces a set of symptoms that resemble those observed following withdrawal from opiate drugs. OBJECTIVES This study explored naltrexone-induced withdrawal in animals pre-exposed to acute, chronic, and intermittent high fructose corn syrup (HFCS) or acute and chronic heroin administration. METHODS Experiment 1 examined conditioned place avoidance (CPA) induced by different doses of naltrexone (0.01-1 mg/kg) in naïve male Sprague-Dawley rats. In experiment 2, rats received continuous or intermittent home cage HFCS access (0 or 50 %) prior to conditioning with 1 mg/kg naltrexone. In experiment 3, HFCS ingestion was increased by food restriction and rats were conditioned with 3 mg/kg naltrexone. In experiment 4, the timing and quantity of HFCS ingestion (0, 0.5, 1, 2 g/kg) was controlled by intragastric administration, and rats were conditioned with 1 mg/kg naltrexone. In experiment 5, rats received acute (2 mg/kg) or chronic heroin (3.5 mg/kg/day) prior to conditioning with 1 mg/kg naltrexone. RESULTS Administration of naltrexone produced moderate conditioned place avoidance in naïve rats. Importantly, acute, continuous, and intermittent HFCS pre-exposure did not significantly amplify this effect, but acute and chronic heroin pre-exposure did. CONCLUSIONS As assessed by CPA, these results in rats fail to support the hypothesis that an opioid antagonist can precipitate similar affective withdrawal states following pre-exposure to sugars and opiates.
Collapse
Affiliation(s)
- Stephen Daniels
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paul Marshall
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
40
|
Mastrocola R, Nigro D, Chiazza F, Medana C, Dal Bello F, Boccuzzi G, Collino M, Aragno M. Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic Biol Med 2016; 91:224-35. [PMID: 26721591 DOI: 10.1016/j.freeradbiomed.2015.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/07/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Advanced Glycation End-Products (AGEs) have been recently related to the onset of metabolic diseases and related complications. Moreover, recent findings indicate that AGEs can endogenously be formed by high dietary sugars, in particular by fructose which is widely used as added sweetener in foods and drinks. The aim of the present study was to investigate the impact of a high-fructose diet and the causal role of fructose-derived AGEs in mice skeletal muscle morphology and metabolism. C57Bl/6J mice were fed a standard diet (SD) or a 60% fructose diet (HFRT) for 12 weeks. Two subgroups of SD and HFRT mice received the anti-glycative compound pyridoxamine (150 mg/kg/day) in the drinking water. At the end of protocol high levels of AGEs were detected in both plasma and gastrocnemius muscle of HFRT mice associated to impaired expression of AGE-detoxifying AGE-receptor 1. In gastrocnemius, AGEs upregulated the lipogenesis by multiple interference on SREBP-1c through downregulation of the SREBP-inhibiting enzyme SIRT-1 and increased glycation of the SREBP-activating protein SCAP. The AGEs-induced SREBP-1c activation affected the expression of myogenic regulatory factors leading to alterations in fiber type composition, associated with reduced mitochondrial efficiency and muscular strength. Interestingly, pyridoxamine inhibited AGEs generation, thus counteracting all the fructose-induced alterations. The unsuspected involvement of diet-derived AGEs in muscle metabolic derangements and proteins reprogramming opens new perspectives in pathogenic mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- R Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| | - D Nigro
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - F Chiazza
- Department of Drug Science and Technology, University of Turin, Italy
| | - C Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - F Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - G Boccuzzi
- Department of Medical Sciences, University of Turin, Italy
| | - M Collino
- Department of Drug Science and Technology, University of Turin, Italy
| | - M Aragno
- Department of Clinical and Biological Sciences, University of Turin, Italy
| |
Collapse
|
41
|
Moser VA, Pike CJ. Obesity and sex interact in the regulation of Alzheimer's disease. Neurosci Biobehav Rev 2015; 67:102-18. [PMID: 26708713 DOI: 10.1016/j.neubiorev.2015.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
42
|
Šakinytė I, Barkauskas J, Gaidukevič J, Razumienė J. Thermally reduced graphene oxide: The study and use for reagentless amperometric d-fructose biosensors. Talanta 2015; 144:1096-103. [DOI: 10.1016/j.talanta.2015.07.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 12/26/2022]
|
43
|
Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate. PLoS One 2015; 10:e0139502. [PMID: 26426115 PMCID: PMC4591265 DOI: 10.1371/journal.pone.0139502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/12/2015] [Indexed: 12/28/2022] Open
Abstract
Cultured adipocytes (3T3-L1) produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change) could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively) sustained. Proportionally (with respect to lactate plus glycerol), more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic) fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of lipolytic stimulation.
Collapse
|
44
|
Abstract
OBJECTIVES This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability. METHODS The initial literature search was focused on normal aging and was guided by the key words, "aging, cognition, and obesity" in PubMed. In a second search, we added key words related to neuropathology including words "Alzheimer's disease," "vascular dementia," and "mild cognitive impairment." RESULTS The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology. CONCLUSIONS Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.
Collapse
Affiliation(s)
- Gérard N. Bischof
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
| | - Denise C. Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
| |
Collapse
|
45
|
Calderón-Garcidueñas L, Franco-Lira M, D'Angiulli A, Rodríguez-Díaz J, Blaurock-Busch E, Busch Y, Chao CK, Thompson C, Mukherjee PS, Torres-Jardón R, Perry G. Mexico City normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease. ENVIRONMENTAL RESEARCH 2015; 140:579-592. [PMID: 26037109 DOI: 10.1016/j.envres.2015.05.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Millions of Mexico, US and across the world children are overweight and obese. Exposure to fossil-fuel combustion sources increases the risk for obesity and diabetes, while long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with increased risk of Alzheimer's disease (AD). Mexico City Metropolitan Area children are chronically exposed to PM2.5 and O3 concentrations above the standards and exhibit systemic, brain and intrathecal inflammation, cognitive deficits, and Alzheimer disease neuropathology. We investigated adipokines, food reward hormones, endothelial dysfunction, vitamin D and apolipoprotein E (APOE) relationships in 80 healthy, normal weight 11.1±3.2 year olds matched by age, gender, BMI and SES, low (n: 26) versus high (n:54) PM2.5 exposures. Mexico City children had higher leptin and endothelin-1 (p<0.01 and p<0.000), and decreases in glucagon-like peptide-1 (GLP 1), ghrelin, and glucagon (<0.02) versus controls. BMI and leptin relationships were significantly different in low versus high PM2.5 exposed children. Mexico City APOE 4 versus 3 children had higher glucose (p=0.009). Serum 25-hydroxyvitamin D<30 ng/mL was documented in 87% of Mexico City children. Leptin is strongly positively associated to PM 2.5 cumulative exposures. Residing in a high PM2.5 and O3 environment is associated with 12h fasting hyperleptinemia, altered appetite-regulating peptides, vitamin D deficiency, and increases in ET-1 in clinically healthy children. These changes could signal the future trajectory of urban children towards the development of insulin resistance, obesity, type II diabetes, premature cardiovascular disease, addiction-like behavior, cognitive impairment and Alzheimer's disease. Increased efforts should be made to decrease pediatric PM2.5 exposures, to deliver health interventions prior to the development of obesity and to identify and mitigate environmental factors influencing obesity and Alzheimer disease.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT 59812, USA; Hospital Central Militar, Mexico City 11649, Mexico.
| | | | - Amedeo D'Angiulli
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Joel Rodríguez-Díaz
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Saltillo, Coahuila 25204, Mexico
| | | | - Yvette Busch
- Clinical and Environmental Laboratory Micro Trace Minerals (MTM), 91217 Hersbruck, Germany
| | - Chih-kai Chao
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT 59812, USA
| | - Charles Thompson
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT 59812, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04510, Mexico
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
46
|
Hwang JJ, Johnson A, Cline G, Belfort-DeAguiar R, Snegovskikh D, Khokhar B, Han CS, Sherwin RS. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women. PLoS One 2015; 10:e0128582. [PMID: 26035307 PMCID: PMC4452737 DOI: 10.1371/journal.pone.0128582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023] Open
Abstract
Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.
Collapse
Affiliation(s)
- Janice J. Hwang
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
| | - Andrea Johnson
- Yale University School of Medicine, Department of Obstetrics and Gynecology, New Haven, Connecticut, United States of America
| | - Gary Cline
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
| | - Renata Belfort-DeAguiar
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
| | - Denis Snegovskikh
- Yale University School of Medicine, Department of Anesthesia, New Haven, Connecticut, United States of America
| | - Babar Khokhar
- Yale University School of Medicine, Department of Neurology, New Haven, Connecticut, United States of America
| | - Christina S. Han
- Yale University School of Medicine, Department of Obstetrics and Gynecology, New Haven, Connecticut, United States of America
| | - Robert S. Sherwin
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
47
|
Donderski R, Miśkowiec-Wiśniewska I, Kretowicz M, Grajewska M, Manitius J, Kamińska A, Junik R, Siódmiak J, Stefańska A, Odrowąż-Sypniewska G, Pluta A, Lanaspa M, Johnson RJ. The fructose tolerance test in patients with chronic kidney disease and metabolic syndrome in comparison to healthy controls. BMC Nephrol 2015; 16:68. [PMID: 25935771 PMCID: PMC4450852 DOI: 10.1186/s12882-015-0048-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 04/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background Fructose acutely raises serum uric acid in normal subjects, but the effect in subjects with metabolic syndrome or subjects with chronic kidney disease is unknown. The aim of the study was to evaluate changes in serum uric acid during the fructose tolerance test in patients with chronic kidney disease, metabolic syndrome with comparison to healthy controls. Methods Studies were performed in 36 subjects with obesity (body mass index >30) and metabolic syndrome, 14 patients with stage 3 chronic kidney disease, and 25 healthy volunteers. The fructose tolerance test was performed in each patient. The change in serum uric acid during the fructose challenge was correlated with baseline ambulatory blood pressure, serum uric acid, metabolic, and inflammatory markers, and target organ injury including carotid intima media thickness and renal resistive index (determined by Doppler). Results Absolute serum uric acid values were highest in the chronic kidney disease group, followed by the metabolic syndrome and then healthy controls. Similar increases in serum uric acid in response to the fructose tolerance test was observed in all three groups, but the greatest percent rise was observed in healthy controls compared to the other two groups. No significant association was shown between the relative rise in uric acid and clinical or inflammatory parameters associated with kidney disease (albuminuria, eGFR) or metabolic syndrome. Conclusions Subjects with chronic kidney disease and metabolic syndrome have higher absolute uric acid values following a fructose tolerance test, but show a relatively smaller percent increase in serum uric acid. Changes in serum uric acid during the fructose tolerance test did not correlate with changes in metabolic parameters, inflammatory mediators or with target organ injury. These studies suggest that acute changes in serum uric acid in response to fructose do not predict the metabolic phenotype or presence of inflammatory mediators in subjects with obesity, metabolic syndrome or chronic kidney disease. Trial registration The study was registered in ClinicalTrials.gov. Identifier : NCT01332526. www.register.clinicaltrials.gov/01332526 Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0048-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafał Donderski
- Department of Nephrology, Hypertension and Internal Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Ilona Miśkowiec-Wiśniewska
- Department of Nephrology, Hypertension and Internal Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Marek Kretowicz
- Department of Nephrology, Hypertension and Internal Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Magdalena Grajewska
- Department of Nephrology, Hypertension and Internal Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Jacek Manitius
- Department of Nephrology, Hypertension and Internal Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Anna Kamińska
- Department of Diabetology and Endocrinology, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Roman Junik
- Department of Diabetology and Endocrinology, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Joanna Siódmiak
- Department of Laboratory Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Anna Stefańska
- Department of Laboratory Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Grażyna Odrowąż-Sypniewska
- Department of Laboratory Medicine, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Agnieszka Pluta
- Institute of Public Nursing, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, CO, USA.
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, CO, USA.
| |
Collapse
|
48
|
Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet. Sci Rep 2015; 5:9589. [PMID: 25892667 PMCID: PMC4403227 DOI: 10.1038/srep09589] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
Recent evidence suggests that fructose consumption is associated with weight gain, fat deposition and impaired cognitive function. However it is unclear whether the detrimental effects are caused by fructose itself or by the concurrent increase in overall energy intake. In the present study we examine the impact of a fructose diet relative to an isocaloric glucose diet in the absence of overfeeding, using a mouse model that mimics fructose intake in the top percentile of the USA population (18% energy). Following 77 days of supplementation, changes in body weight (BW), body fat, physical activity, cognitive performance and adult hippocampal neurogenesis were assessed. Despite the fact that no differences in calorie intake were observed between groups, the fructose animals displayed significantly increased BW, liver mass and fat mass in comparison to the glucose group. This was further accompanied by a significant reduction in physical activity in the fructose animals. Conversely, no differences were detected in hippocampal neurogenesis and cognitive/motor performance as measured by object recognition, fear conditioning and rotorod tasks. The present study suggests that fructose per se, in the absence of excess energy intake, increases fat deposition and BW potentially by reducing physical activity, without impacting hippocampal neurogenesis or cognitive function.
Collapse
|
49
|
Aloi M, Rania M, Caroleo M, Bruni A, Palmieri A, Cauteruccio MA, De Fazio P, Segura-García C. Decision making, central coherence and set-shifting: a comparison between Binge Eating Disorder, Anorexia Nervosa and Healthy Controls. BMC Psychiatry 2015; 15:6. [PMID: 25616812 PMCID: PMC4308856 DOI: 10.1186/s12888-015-0395-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/15/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Several studies have investigated the cognitive profile in patients with Anorexia Nervosa (AN) and Bulimia Nervosa (BN); on the contrary few studies have evaluated it in patients with Binge Eating Disorder (BED). The purpose of this study was to compare decision making, central coherence and set-shifting between BED and AN patients. METHODS A battery of neuropsychological tests including the Iowa Gambling Task (IGT), the Rey-Osterrieth Complex Figure Test (RCFT), the Wisconsin Card Sorting Test (WCST), the Trial Making Task (TMT) and the Hayling Sentence Completion Task (HSCT) were administered in a sample of 135 women (45 AN, 45 BED, 45 Healthy Controls [HC]). Furthermore, Beck Depression Inventory (BDI) was administered to evaluate depressive symptoms. Years of education, age, Body Mass Index (BMI) and depression severity were considered as covariates in statistical analyses. RESULTS BED and AN patients showed high rates of cognitive impairment compared to HC on the domains investigated; furthermore, the cognitive profile of BED patients was characterised by poorer decision making and cognitive flexibility compared to patients with AN. Cognitive performance was strongly associated with depressive symptoms. CONCLUSIONS In the present sample, two different neurocognitive profiles emerged: a strong cognitive rigidity and a central coherence based on the details was predominant in patients with AN, while a lack of attention and difficulty in adapting to changes in a new situation seemed to better describe patients with BED. The knowledge of the different cognitive profiles of EDs patients may be important for the planning their psychotherapeutic intervention.
Collapse
Affiliation(s)
- Matteo Aloi
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Marianna Rania
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Mariarita Caroleo
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Antonella Bruni
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Antonella Palmieri
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | | | - Pasquale De Fazio
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Cristina Segura-García
- Chair of Psychiatry. Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
50
|
Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int J Mol Sci 2014; 15:20876-99. [PMID: 25402647 PMCID: PMC4264201 DOI: 10.3390/ijms151120876] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/29/2022] Open
Abstract
Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.
Collapse
|