1
|
Dargusch M, Wang Y, Sha C, Yang N, Chen X, Venezuela J, Otte J, Johnston S, Lau C, Allavena R, Mardon K, McCaroll I, Cairney J. Insights into heat treatments of biodegradable Mg-Y-Nd-Zr alloys in clinical settings: Unveiling roles of β' and β 1 nanophases and latent in vivo hydrogen evolution. Acta Biomater 2024:S1742-7061(24)00639-1. [PMID: 39521316 DOI: 10.1016/j.actbio.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Heat treatment serves as a viable strategy to effectively mitigate the intense corrosion of biodegradable WE43 alloys. However, limited comprehension of the passivation mechanisms underlying heat treatment and the dilemma to quantitatively examine the evolution of hydrogen gas in vivo introduce uncertainties in designing heat treatments for developing clinically applicable WE43. This work aims to advance this knowledge by applying cutting-edge atom probe tomography to provide atomic-scale insights into the passivation roles of rare earth (RE)-rich β1 (Mg3(Y, Nd)) and β' (Mg12NdY) nanophases induced by T6 heat treatment at 250 °C, and employing machine learning-based image analysis techniques to quantitatively unveil WE43's in vivo gas evolution during a 12-week implantation. It was found that nanosized β1 and β' phases can effectively improve WE43's corrosion resistance by inducing an accelerated passivation effect on the surface and confining the distribution of hydrogen ions in the matrix. Female rats presented slightly higher corrosion rates than male rats in weeks 1 and 4 but lower hydrogen gas volumes in vivo, while male rats possessed a superior ability to metabolise hydrogen gas in vivo. Notably, latent gas evolution against the corrosion rates was found which peaked at week 4 and subsided at week 12 despite the gradually decreased corrosion rates from week 1 to 12. This study offers insights for engineering heat treatments to develop clinically applicable WE43 with acceptable corrosion rates and in vivo gas generation at various implantation stages. STATEMENT OF SIGNIFICANCE: The study aimed to reveal the role of β1 and β' nanophases on the good corrosion resistance of WE43. The influence of these nanophases on WE43's corrosion performance has not been totally understood. Similarly, the understanding of hydrogen gas evolution as it relates to the magnesium implant's corrosion rate lacks clarity. Atom probe tomography (APT) indicates β1 and β' nanophases trap hydrogen, removing H2 from the lattice and disabling its catalytic role in Mg oxidation. Machine learning-aided analyses of computed tomography (CT) scan images indicate latent gas evolution, contradicting the monotonic in vivo H2 evolution that is widely accepted.
Collapse
Affiliation(s)
- Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072 Australia.
| | - Yuan Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072 Australia
| | - Chuhan Sha
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia
| | - Nan Yang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072 Australia
| | - Xingrui Chen
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072 Australia
| | - Jeffrey Venezuela
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072 Australia
| | - Joseph Otte
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sean Johnston
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072 Australia
| | - Cora Lau
- Biological Resources, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, National Imaging Facility, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Ingrid McCaroll
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia
| | - Julie Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Okutan B, Schwarze UY, Berger L, Martinez DC, Herber V, Suljevic O, Plocinski T, Swieszkowski W, Santos SG, Schindl R, Löffler JF, Weinberg AM, Sommer NG. The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implants. BIOMATERIALS ADVANCES 2023; 146:213287. [PMID: 36669235 DOI: 10.1016/j.bioadv.2023.213287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Magnesium (Mg)-based implants are promising candidates for orthopedic interventions, because of their biocompatibility, good mechanical features, and ability to degrade completely in the body, eliminating the need for an additional removal surgery. In the present study, we synthesized and investigated two Mg-based materials, ultrahigh-purity ZX00 (Mg-Zn-Ca; <0.5 wt% Zn and <0.5 wt% Ca, in wt%; Fe-content <1 ppm) and ultrahigh-purity Mg (XHP-Mg, >99.999 wt% Mg; Fe-content <1 ppm), in vitro and in vivo in juvenile healthy rats to clarify the effect of the alloying elements Zn and Ca on mechanical properties, microstructure, cytocompatibility and degradation rate. Potential differences in bone formation and bone in-growth were also assessed and compared with state-of-the-art non-degradable titanium (Ti)-implanted, sham-operated, and control (non-intervention) groups, using micro-computed tomography, histology and scanning electron microscopy. At 6 and 24 weeks after implantation, serum alkaline phosphatase (ALP), calcium (Ca), and Mg level were measured and bone marrow stromal cells (BMSCs) were isolated for real-time PCR analysis. Results show that ZX00 implants have smaller grain size and superior mechanical properties than XHP-Mg, and that both reveal good biocompatibility in cytocompatibilty tests. ZX00 homogenously degraded with an increased gas accumulation 12 and 24 weeks after implantation, whereas XHP-Mg exhibited higher gas accumulation already at 2 weeks. Serum ALP, Ca, and Mg levels were comparable among all groups and both Mg-based implants led to similar relative expression levels of Alp, Runx2, and Bmp-2 genes at weeks 6 and 24. Histologically, Mg-based implants are superior for new bone tissue formation and bone in-growth compared to Ti implants. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we observed higher mineral apposition rate at week 2 in both Mg-based implants compared to the control groups. Our findings suggest that (i) ZX00 and XHP-Mg support bone formation and remodeling, (ii) both Mg-based implants are superior to Ti implants in terms of new bone tissue formation and osseointegration, and (iii) ZX00 is more favorable due to its lower degradation rate and moderate gas accumulation.
Collapse
Affiliation(s)
- Begüm Okutan
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Uwe Y Schwarze
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Leopold Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Diana C Martinez
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; Department of Oral Surgery, University Center for Dental Medicine, University of Basel, Mattenstrasse 40, 4058 Basel, Switzerland.
| | - Omer Suljevic
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Tomasz Plocinski
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Wojciech Swieszkowski
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
| | - Rainer Schindl
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria.
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Annelie M Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Nicole G Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| |
Collapse
|
3
|
Kowalewicz K, Waselau AC, Feichtner F, Schmitt AM, Brückner M, Vorndran E, Meyer-Lindenberg A. Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment. Front Bioeng Biotechnol 2022; 10:998254. [PMID: 36246367 PMCID: PMC9554004 DOI: 10.3389/fbioe.2022.998254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the positive effects of magnesium substitution on the mechanical properties and the degradation rate of the clinically well-established calcium phosphate cements (CPCs), calcium magnesium phosphate cements (CMPCs) are increasingly being researched as bone substitutes. A post-treatment alters the materials’ physical properties and chemical composition, reinforcing the structure and modifying the degradation rate. By alkaline post-treatment with diammonium hydrogen phosphate (DAHP, (NH4)2HPO4), the precipitation product struvite is formed, while post-treatment with an acidic phosphate solution [e.g., phosphoric acid (PA, H3PO4)] results in precipitation of newberyite and brushite. However, little research has yet been conducted on newberyite as a bone substitute and PA post-treatment of CMPCs has not been described in the accessible literature so far. Therefore, in the present study, the influence of an alkaline (DAHP) or acid (PA) post-treatment on the biocompatibility, degradation behavior, and osseointegration of cylindrical scaffolds (h = 5.1 mm, Ø = 4.2 mm) produced from the ceramic cement powder Ca0.75Mg2.25(PO4)2 by the advantageous manufacturing technique of three-dimensional (3D) powder printing was investigated in vivo. Scaffolds of the material groups Mg225d (DAHP post-treatment) and Mg225p (PA post-treatment) were implanted into the cancellous part of the lateral femoral condyles in rabbits. They were evaluated up to 24 weeks by regular clinical, X-ray, micro-computed tomographic (µCT), and histological examinations as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis and compared with tricalcium phosphate (TCP). All materials showed excellent biocompatibility and rapid osseointegration. While TCP degraded only slightly, the CMPCs showed almost complete degradation. Mg225d demonstrated significantly faster loss of form and demarcability from surrounding bone, scaffold volume reduction, and significantly greater degradation on the side towards the bone marrow than to the cortex than Mg225p. Simultaneously, numerous bone trabeculae have grown into the implantation site. While these were mostly located on the side towards the cortex in Mg225d, they were more evenly distributed in Mg225p and showed almost the same structural characteristics as physiological bone after 24 weeks in Mg225p. Based on these results, the acid post-treated 3D powder-printed Mg225p is a promising degradable bone substitute that should be further investigated.
Collapse
Affiliation(s)
- Katharina Kowalewicz
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Manuel Brückner
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Andrea Meyer-Lindenberg,
| |
Collapse
|
4
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J Appl Biomater Funct Mater 2022; 20:22808000221078168. [PMID: 35189733 DOI: 10.1177/22808000221078168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Magnesium has mechanical properties similar to those of bone and is being considered as a potential bone substitute. In the present study, two different pore sized scaffolds of the Mg alloy LAE442, coated with magnesium fluoride, were compared. The scaffolds had interconnecting pores of either 400 (p400) or 500 µm (p500). ß-TCP served as control. Ten scaffolds per time group (6, 12, 24, 36 weeks) were implanted in the trochanter major of rabbits. Histological analyses, µCT scans, and SEM/EDX were performed. The scaffolds showed slow volume decreases (week 36 p400: 9.9%; p500: 7.5%), which were accompanied by uncritical gas releases. In contrast, ß-TCP showed accelerated resorption (78.5%) and significantly more new bone inside (18.19 ± 1.47 mm3). Bone fragments grew into p400 (0.17 ± 0.19 mm3) and p500 (0.36 ± 0.26 mm3), reaching the centrally located pores within p500 more frequently. In particular, p400 displayed a more uneven and progressively larger surface area (week 36 p400: 253.22 ± 19.44; p500: 219.19 ± 4.76 mm2). A better osseointegration of p500 was indicated by significantly more trabecular contacts and a 200 µm wide bone matrix being in the process of mineralization and in permanent contact with the scaffold. The number of macrophages and foreign body giant cells were at an acceptable level concerning resorbable biomaterials. In terms of ingrown bone and integrative properties, LAE442 scaffolds could not achieve the results of ß-TCP. In this long-term study, p500 appears to be a biocompatible and more osteoconductive pore size for the Mg alloy LAE442.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
5
|
Kleer-Reiter N, Julmi S, Feichtner F, Waselau AC, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Biomed Mater 2021; 16. [PMID: 33827052 DOI: 10.1088/1748-605x/abf5c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/07/2021] [Indexed: 11/11/2022]
Abstract
Porous magnesium implants are of particular interest for application as resorbable bone substitutes, due to their mechanical strength and a Young's modulus similar to bone. The objective of the present study was to compare the biocompatibility, bone and tissue ingrowth, and the degradation behaviour of scaffolds made from the magnesium alloys LAE442 (n= 40) and Mg-La2 (n= 40)in vivo. For this purpose, cylindrical magnesium scaffolds (diameter 4 mm, length 5 mm) with defined, interconnecting pores were produced by investment casting and coated with MgF2. The scaffolds were inserted into the cancellous part of the greater trochanter ossis femoris of rabbits. After implantation periods of 6, 12, 24 and 36 weeks, the bone-scaffold compounds were evaluated usingex vivo µCT80 images, histological examinations and energy dispersive x-ray spectroscopy analysis. The La2 scaffolds showed inhomogeneous and rapid degradation, with inferior osseointegration as compared to LAE442. For the early observation times, no bone and tissue could be observed in the pores of La2. Furthermore, the excessive amount of foreign body cells and fibrous capsule formation indicates insufficient biocompatibility of the La2 scaffolds. In contrast, the LAE442 scaffolds showed slow degradation and better osseointegration. Good vascularization, a moderate cellular response, bone and osteoid-like bone matrix at all implantation periods were observed in the pores of LAE442. In summary, porous LAE442 showed promise as a degradable scaffold for bone defect repair, based on its degradation behaviour and biocompatibility. However, further studies are needed to show it would have the necessary mechanical properties required over time for weight-bearing bone defects.
Collapse
Affiliation(s)
- N Kleer-Reiter
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - S Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - F Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - A-C Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - C Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - P Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstr. 11, Hannover 30167, Germany
| | - H J Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - A Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| |
Collapse
|
6
|
In-Vivo Degradation Behavior and Osseointegration of 3D Powder-Printed Calcium Magnesium Phosphate Cement Scaffolds. MATERIALS 2021; 14:ma14040946. [PMID: 33671265 PMCID: PMC7923127 DOI: 10.3390/ma14040946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.
Collapse
|
7
|
Long Term Evaluation of Biodegradation and Biocompatibility In-Vivo the Mg-0.5Ca-xZr Alloys in Rats. CRYSTALS 2021. [DOI: 10.3390/cryst11010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biodegradable alloys in Mg have the advantages of traditional metallic materials and those of biodegradable polymers with superior strength, lower density and ideal rigidity for fixing bone fractures. The biocompatibility and biodegradability of the five concentrations of Mg-0.5Ca-xZr alloys used were assessed using clinical and laboratory examinations that followed over time: tissue reaction, histological and imaging (RX, CT and SEM) evolution at 1, 2, 4 and 8 weeks after implant. The main purpose of this study was to investigate in vivo the long-term effect of Mg-0.5Ca-xZr alloys in rats. The results confirmed that Mg-0.5Ca-xZr alloys are biocompatible and biodegradable and are recommended to be used as possible materials for new orthopedics devices.
Collapse
|
8
|
Guo X, Xu H, Zhang F, Lu F. Bioabsorbable high-purity magnesium interbody cage: degradation, interbody fusion, and biocompatibility from a goat cervical spine model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1054. [PMID: 33145273 PMCID: PMC7575937 DOI: 10.21037/atm-20-225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Bioabsorbable Mg-based implants have been a focus of orthopedic researches due to their intrinsic advantages in orthopedics surgeries. This study aimed to investigate the performance of bioabsorbable high-purity magnesium (HP Mg, 99.98 wt.%) interbody cages in anterior cervical discectomy and fusion (ACDF) and to evaluate the degradation of HP Mg cages under an interbody microenvironment. Methods ACDF was performed at C2–3 and C4–5, and a HP Mg cage or autologous iliac bone was randomly implanted. At 3, 6, 12 and 24 weeks after surgery, the cervical specimens were harvested to evaluate the fusion status, degradation and biocompatibility by CT, micro-CT, histological examinations and blood tests. Results There was no significant difference in the CT fusion score between cage group and autogenous ilium group at 3 and 6 weeks. At 12 and 24 weeks, the mean CT fusion score in the cage group was markedly lower than in the autogenous ilium group. CT and histological examinations showed bony junctions formed through the middle hole of the cage between upper and lower vertebral bodies in the cage group, but the total fusion area was less than 30%. The degradation rate of cages was relatively rapid within the first 3 weeks and thereafter became stable and slow gradually. The HP Mg cage had good biosecurity and biomechanical characteristics. Conclusions Implantation of Mg-based interbody cage achieves successful histological fusion, while the total fusion area needs to be improved. More studies are needed to improve the bone-cage interface.
Collapse
Affiliation(s)
- Xiuwu Guo
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Feizhou Lu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Comparison of two pore sizes of LAE442 scaffolds and their effect on degradation and osseointegration behavior in the rabbit model. J Biomed Mater Res B Appl Biomater 2020; 108:2776-2788. [PMID: 32170913 DOI: 10.1002/jbm.b.34607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 11/09/2022]
Abstract
The magnesium alloy LAE442 emerged as a possible bioresorbable bone substitute over a decade ago. In the present study, using the investment casting process, scaffolds of the Magnesium (Mg) alloy LAE442 with two different and defined pore sizes, which had on average a diameter of 400 μm (p400) and 500 μm (p500), were investigated to evaluate degradation and osseointegration in comparison to a ß-TCP control group. Open-pored scaffolds were implanted in both greater trochanter of rabbits. Ten scaffolds per time group (6, 12, 24, and 36 weeks) and type were analyzed by clinical, radiographic and μ-CT examinations (2D and 3D). None of the scaffolds caused adverse reactions. LAE442 p400 and p500 developed moderate gas accumulation due to the Mg associated in vivo corrosion, which decreased from week 20 for both pore sizes. After 36 weeks, p400 and p500 showed volume decreases of 15.9 and 11.1%, respectively, with homogeneous degradation, whereas ß-TCP lost 74.6% of its initial volume. Compared to p400, osseointegration for p500 was significantly better at week 2 postsurgery due to more frequent bone-scaffold contacts, higher number of trabeculae and higher bone volume in the surrounding area. No further significant differences between the two pore sizes became apparent. However, p500 was close to the values of ß-TCP in terms of bone volume and trabecular number in the scaffold environment, suggesting better osseointegration for the larger pore size.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
10
|
Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. Additive manufacturing of magnesium alloys. Bioact Mater 2020; 5:44-54. [PMID: 31956735 PMCID: PMC6960485 DOI: 10.1016/j.bioactmat.2019.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/16/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
Magnesium alloys are a promising new class of degradable biomaterials that have a similar stiffness to bone, which minimizes the harmful effects of stress shielding. Use of biodegradable magnesium implants eliminates the need for a second surgery for repair or removal. There is a growing interest to capitalize on additive manufacturing's unique design capabilities to advance the frontiers of medicine. However, magnesium alloys are difficult to 3D print due to the high chemical reactivity that poses a combustion risk. Furthermore, the low vaporization temperature of magnesium and common biocompatible alloying elements further increases the difficulty to print fully dense structures that balance strength and corrosion requirements. The purpose of this study is to survey current techniques to 3D print magnesium constructs and provide guidance on best additive practices for these alloys. A review of additive manufacturing of magnesium alloys for biomedical applications. Examined challenges associated with vaporization and porosity. Surveyed multiple AM processes and the role of process parameters on print quality and performance.
Collapse
Affiliation(s)
- Rakeshkumar Karunakaran
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 68588, USA
| | - Sam Ortgies
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 68588, USA
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 68588, USA
| | - Florin Bobaru
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 68588, USA
| | - Michael P Sealy
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 68588, USA
| |
Collapse
|
11
|
Abstract
The future of biomaterial design will rely on development of bioresorbable implant materials that completely and safely degrade in vivo after the tissues grow, without generating harmful degradation products at the targeted anatomic site. Permanent biomaterials such as Ti6Al4V alloy, 316L stainless steel, and Co-based alloys currently used in mandibular reconstruction often result in stress shielding effects due to mismatch in the Young’s modulus values between the bone and the implant, resulting in implant loosening. Also, allergic responses due to metal ion releases necessitates revision surgery to prevent long term exposure of the body to toxic implant contents. Bioresorbable metals are perceived as revolutionary biomaterials that have transformed the nature of metallic biomaterials from bioinert to bioactive and multi-bio functional (anti-bacterial, anti-proliferation, and anti-cancer). In this aspect, magnesium (Mg)-based materials have recently been explored by the biomedical community as potential materials for mandibular reconstruction, as they exhibit favorable mechanical properties, adequate biocompatibility, and degradability. This article reviews the recent progress that has led to advances in developing Mg-based materials for mandibular reconstruction; correlating with the biomechanics of mandible and types of mandibular defects. Mg-based materials are discussed regarding their mechanical properties, corrosion characteristics, and in vivo performance. Finally, the paper summarizes findings from this review, together with a proposed scope for advancing the knowledge in Mg-based materials for mandibular reconstruction.
Collapse
|
12
|
Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D₃. Int J Mol Sci 2019; 20:ijms20020385. [PMID: 30658432 PMCID: PMC6358963 DOI: 10.3390/ijms20020385] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 01/28/2023] Open
Abstract
Magnesium (Mg) is crucial for bone health. Low concentrations of Mg inhibit the activity of osteoblasts while promoting that of osteoclasts, with the final result of inducing osteopenia. Conversely, little is known about the effects of high concentrations of extracellular Mg on osteoclasts and osteoblasts. Since the differentiation and activation of these cells is coordinated by vitamin D₃ (VD3), we investigated the effects of high extracellular Mg, as well as its impact on VD3 activity, in these cells. U937 cells were induced to osteoclastic differentiation by VD3 in the presence of supra-physiological concentrations (>1 mM) of extracellular Mg. The effect of high Mg concentrations was also studied in human bone-marrow-derived mesenchymal stem cells (bMSCs) induced to differentiate into osteoblasts by VD3. We demonstrate that high extra-cellular Mg levels potentiate VD3-induced osteoclastic differentiation, while decreasing osteoblastogenesis. We hypothesize that Mg might reprogram VD3 activity on bone remodeling, causing an unbalanced activation of osteoclasts and osteoblasts.
Collapse
|
13
|
Maradze D, Musson D, Zheng Y, Cornish J, Lewis M, Liu Y. High Magnesium Corrosion Rate has an Effect on Osteoclast and Mesenchymal Stem Cell Role During Bone Remodelling. Sci Rep 2018; 8:10003. [PMID: 29968794 PMCID: PMC6030161 DOI: 10.1038/s41598-018-28476-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to gain an understanding on the collective cellular effects of magnesium (Mg) corrosion products on the behaviour of cells responsible for bone formation and remodelling. The response of mesenchymal stem cells (MSCs) and osteoclast cells to both soluble (Mg ions) and insoluble (granule) corrosion products were recapitulated in vitro by controlling the concentration of the corrosion products. Clearance of corrosion granules by MSCs was also inspected by TEM analysis at sub-cellular level. The effect of Mg corrosion products varied depending on the state of differentiation of cells, concentration and length of exposure. The presence of the corrosion products significantly altered the cells' metabolic and proliferative activities, which further affected cell fusion/differentiation. While cells tolerated higher than physiological range of Mg concentration (16 mM), concentrations below 10 mM were beneficial for cell growth. Furthermore, MSCs were shown to contribute to the clearance of intercellular corrosion granules, whilst high concentrations of corrosion products negatively impacted on osteoclast progenitor cell number and mature osteoclast cell function.
Collapse
Affiliation(s)
- Diana Maradze
- Centre of Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - David Musson
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Yufeng Zheng
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jillian Cornish
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Mark Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Yang Liu
- Centre of Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
14
|
Yu Y, Lu H, Sun J. Long-term in vivo evolution of high-purity Mg screw degradation - Local and systemic effects of Mg degradation products. Acta Biomater 2018; 71:215-224. [PMID: 29505891 DOI: 10.1016/j.actbio.2018.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg) based materials are the focus of research for use as degradable materials in orthopedics and cranio-maxillofacial surgery. However, corrosion rate control and biosecurity are still the key issues that need to be solved prior to their clinical applications. In the present study, as-rolled high-purity magnesium (HP Mg, 99.99 wt%) screws were implanted in rabbit tibiae for up to 52 weeks in order to investigate their long-term in vivo degradation and the local and systemic effects of their degradation products. A series of long-term monitoring were performed at various time points (4w, 12w, 26w and 52w) after implantation using numerous investigations such as micro-CT assay, histomorphometric analysis, local micro-environment testing and biochemical analysis of serum and urine. It was revealed that HP Mg screws had a uniform degradation morphology and a slow degradation rate in vivo during the period of 52 weeks. Their degradation products not only increased the local pH values but also changed the local Mg2+ ions concentration and gas cavity area in the peri-implant tissues in a dynamic manner. More importantly, both the new bone formation and bone-implant contact rate were increased at bone-implant interfaces at 26 weeks and 52 weeks post-implantation. Furthermore, neither abnormal elevation of serum magnesium and urine magnesium level, nor liver and kidney dysfunction were detected during the monitoring period of 26 weeks. All these results of long-term investigation suggest that HP Mg screws possess a slow degradation rate, desirable bone repair capacity and long-term local/systemic biosafety, and consequently may have good potential for application as bone fixation devices. STATEMENT OF SIGNIFICANCE The corrosion resistance control and biosecurity issues of Mg alloys limited their clinical applications in some extent. Mg purification is another effective way to improve corrosion resistance of Mg-based materials. However, the long-term in vivo degradation of high-purity magnesium (HP Mg) and the local and systemic effects of its degradation products have not been fully investigated yet, which are the key factors to determine the clinical application prospect of HP Mg. Especially the changes in peri-implant microenvironment may greatly influence the local physiological response and bone repair. In this study, the long-term evolution tendency of in vivo degradation behavior of HP Mg screws was discovered from the view of space-time. Furthermore, not only the dynamic changes of local microenvironment and the long-term evolution process of bone repair, but also the dynamic systemic responses were systematically revealed. Conclusions of this study may help us to further understand the long-term in vivo evolution of HP Mg degradation and the local/systemic effects of its degradation products and help to guide the design of biodegradable bone fixation material.
Collapse
|
15
|
Schaller B, Matthias Burkhard JP, Chagnon M, Beck S, Imwinkelried T, Assad M. Fracture Healing and Bone Remodeling With Human Standard-Sized Magnesium Versus Polylactide-Co-Glycolide Plate and Screw Systems Using a Mini-Swine Craniomaxillofacial Osteotomy Fixation Model. J Oral Maxillofac Surg 2018; 76:2138-2150. [PMID: 29684308 DOI: 10.1016/j.joms.2018.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE This study compared the degradation profile, safety, and efficacy of bioresorbable magnesium alloy and polylactide-co-glycolide (PLGA) polymer osteosynthesis systems for the treatment of fractures in a load-sharing maxillofacial environment using a new mini-swine fracture fixation model. MATERIALS AND METHODS Two types of clinically relevant situations were evaluated in 5 Yucatan miniature pigs. Defined porcine midface osteotomies of the supraorbital rim and zygoma were created and fixed with either a coated magnesium (test animals) or PLGA plate and screw osteosynthesis system (control animals). After surgery, the mini-pigs were able to recover for either 1 or 9 months with continuous in vivo post-implantation monitoring. Standardized computed tomography (CT) imaging was taken immediately postoperatively and at termination for all animals. The 9-month cohort also underwent CT at 2, 4, and 6 months after surgery. At necropsy, osteotomy sites and bone-implant units were harvested, and healing was evaluated by micro-CT, histopathology, and histomorphometry. RESULTS After clinical and radiologic follow-up examination, all fracture sites healed well for both the magnesium and polymer groups regardless of time point. Complete bone union and gradually disappearing osteotomy lines were observed across all implantation sites, with no major consistency change in periprosthetic soft tissue or in soft tissue calcification. Macroscopic and microscopic examination showed no negative influence of gas formation observed with magnesium during the healing process. Histopathologic analysis showed similar fracture healing outcomes for both plating systems with good biocompatibility as evidenced by a minimal or mild tissue reaction. CONCLUSIONS This study confirms that WE43 magnesium alloy exhibited excellent fracture healing properties before its full degradation without causing any substantial inflammatory reactions in a long-term porcine model. Compared with PLGA implants, magnesium represents a promising new biomaterial with reduced implant sizes and improved mechanical properties to support fracture healing in a load-sharing environment.
Collapse
Affiliation(s)
- Benoît Schaller
- Senior Physician, Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
| | | | | | - Stefan Beck
- Senior Scientist, Materials Group, Synthes Biomaterials, Oberdorf, Switzerland
| | | | - Michel Assad
- Director, Orthopedics and Biomaterials, AccelLAB, Boisbriand, Quebec, Canada
| |
Collapse
|
16
|
Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model. MATERIALS 2017; 11:ma11010006. [PMID: 29267239 PMCID: PMC5793504 DOI: 10.3390/ma11010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023]
Abstract
Metallic biomaterials are widely used in maxillofacial surgery. While titanium is presumed to be the gold standard, magnesium-based implants are a current topic of interest and investigation due to their biocompatible, osteoconductive and degradable properties. This study investigates the effects of poly-ε-caprolactone-coated and previtalised magnesium implants on osteointegration within murine calvarial bone defects: After setting a 3 mm × 3 mm defect into the calvaria of 40 BALB/c mice the animals were treated with poly-ε-caprolactone-coated porous magnesium implants (without previtalisation or previtalised with either osteoblasts or adipose derived mesenchymal stem cells), porous Ti6Al4V implants or without any implant. To evaluate bone formation and implant degradation, micro-computertomographic scans were performed at day 0, 28, 56 and 84 after surgery. Additionally, histological thin sections were prepared and evaluated histomorphometrically. The outcomes revealed no significant differences within the differently treated groups regarding bone formation and the amount of osteoid. While the implant degradation resulted in implant shifting, both implant geometry and previtalisation appeared to have positive effects on vascularisation. Although adjustments in degradation behaviour and implant fixation are indicated, this study still considers magnesium as a promising alternative to titanium-based implants in maxillofacial surgery in future.
Collapse
|
17
|
Schilling T, Bauer M, Biskup C, Haverich A, Hassel T. Engineering of biodegradable magnesium alloy scaffolds to stabilize biological myocardial grafts. BIOMED ENG-BIOMED TE 2017; 62:493-504. [PMID: 28525361 DOI: 10.1515/bmt-2016-0205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/28/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Regenerative bioprostheses are being investigated for replacement of dysfunctional myocardium worldwide. The aim of this study was to develop a degradable magnesium structure to mechanically support the delicate biological grafts during the early remodeling phase. METHODS Sheets of magnesium alloys (LA33, LA63 and AX30) were manufactured into scaffolds by abrasive water jet cutting. Thereafter, their surface properties, corrosion kinetics, and breakage behaviors were investigated. RESULTS The magnesium alloy LA63 sheets proved superior to the other alloys in terms of load cycles (lc) until break of the specimens (LA63: >10 Mio lc; AX30: 676,044±220,016 lc; LA33: 423,558±210,063 lc; p<0.01). Coating with MgF led to better protection than coating with MagPass. Less complex, yet sufficiently flexible scaffolds were less prone to early breakage. A slow traverse rate during water jet cutting resulted in the lowest burr, but in a widening of the kerf width from 615±11 μm at 500 mm/min to 708±33 μm at 10 mm/min (p<0.01). CONCLUSION The findings on alloy composition, coating, structural geometry and manufacturing parameters constitute a basis for clinically applicable magnesium scaffolds. The use of stabilized, regenerative myocardium prostheses could save the patients from severe morbidity and eventually death.
Collapse
|
18
|
Naujokat H, Seitz JM, Açil Y, Damm T, Möller I, Gülses A, Wiltfang J. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs. Acta Biomater 2017; 62:434-445. [PMID: 28844965 DOI: 10.1016/j.actbio.2017.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
Biodegradable magnesium alloys are a new class of implant material suitable for bone surgery. The aim of this study was to investigate plates and screws made of magnesium for osteosynthesis in comparison to titanium in a cranial fracture model. Implants were used for internal fixation of a cranio-osteoplasty in nine minipigs. Computed tomography was conducted repeatedly after surgery. The implants and the adjacent tissues were harvested 10, 20 and 30weeks after surgery and investigated by micro-computed tomography and histological analysis. The surgical procedure and the inserted osteosynthesis material were well tolerated by the animals, and the bone healing of the osteoplasty was undisturbed at all times. The adjacent bone showed formation of lacunas in the magnesium group, resulting in a lower bone-to-implant contact ratio than that of titanium (72 vs. 94% at week 30), but this did not lead to clinical side effects. Radiological measurements showed no reduction in osteosynthesis material volume, but indicated signs of degradation: distinct volumes within the magnesium osteosynthesis group had lower density in micro-computed tomography, and these volumes increased up to 9% at week 30. The histological preparations showed areas of translucency and porosity inside the magnesium, but the outer shape of the osteosynthesis material remained unchanged. No fracture or loosening of the osteosynthesis devices appeared. Soft tissue probes confirmed sufficient biocompatibility. Given their biodegradable capacity, biocompatibility, mechanical strength and visibility on radiographs, osteosynthesis plates made of magnesium alloys are suitable for internal fixation procedures. STATEMENT OF SIGNIFICANCE To the best of our knowledge this is the first study that used biodegradable magnesium implants for osteosynthesis in a cranial fracture model. The cranio-osteoplasty in miniature pigs allowed in vivo application of plate and screw osteosynthesis of standard-sized implants and the implementation of surgical procedures similar to those conducted on human beings. The osteosynthesis configuration, size, and mechanical properties of the magnesium implants within this study were comparable to those of titanium-based osteosynthesis materials. The results clearly show that bone healing was undisturbed in all cases and that the biocompatibility to hard- and soft tissue was sufficient. Magnesium implants might help to avoid long-term complications and secondary removal procedures due to their biodegradable properties.
Collapse
|
19
|
Willbold E, Weizbauer A, Loos A, Seitz JM, Angrisani N, Windhagen H, Reifenrath J. Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations. J Biomed Mater Res A 2016; 105:329-347. [PMID: 27596336 DOI: 10.1002/jbm.a.35893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Furthermore, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 329-347, 2017.
Collapse
Affiliation(s)
- Elmar Willbold
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Andreas Weizbauer
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Anneke Loos
- Biocompatibility Laboratory BioMedimplant, Stadtfelddamm 34, 30625, Hannover, Germany
| | | | - Nina Angrisani
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Henning Windhagen
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Janin Reifenrath
- Department of Orthopedic Surgery, Hannover Medical School, NIFE, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| |
Collapse
|
20
|
Angrisani N, Reifenrath J, Zimmermann F, Eifler R, Meyer-Lindenberg A, Vano-Herrera K, Vogt C. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5years in a rabbit model. Acta Biomater 2016; 44:355-65. [PMID: 27497845 DOI: 10.1016/j.actbio.2016.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Magnesium as basic implant material has long been the center of orthopedic research. Latest progress is achieved with a European certification and clinical use of a magnesium based compression screw. However, long term studies with implantation duration that exceed one year considerably do not exist. The present examinations analyzed the degradation progress from nine months to 3.5year after implantation of cylindrical pins into the medullary cavity of New Zealand White rabbits. Evaluation included clinical assessment, in vivo μ-computed tomography, analysis of the implants by three-point-bending and examination of the adjacent tissue by means of histology and of inner organs by mass- and optical emission spectrometry using inductively coupled plasma. Clinical acceptance was without objections in all animals. Immoderate reaction of the surrounding bone could be found in neither of the applied techniques. While in vivo μ-computed tomography showed a very slow degradation rate up to 72weeks, three-point-bending revealed a percentage loss of F(max) of 41.1% for implants after 9months implantation and 88.47% for the implant after 3.5years implantation. Although the total amounts of RE detected in the inner organs were very low, the organs of rabbits with LAE442 cylinders showed 10-20-fold increased concentrations of the alloying elements lanthanum, cerium, neodymium and praseodymium compared to animals without any implanted material. STATEMENT OF SIGNIFICANCE This is the first animal study investigating the degradation process of a magnesium alloy in vivo for up to 3.5years. Currently available data from different other in vivo studies cover only implantation durations up to one year. Therefore, the analysis of these long-time effects in the present study is highly significant and of great interest. Comprehensive outcome achieved by different techniques was assessed. The degradation process was slow and homogenous. Maximum applied force (F(max)) reduced by 41.1% for implants after 9months and by 88.47% for the implant after 3.5years implantation. Total amounts of RE detected in the inner organs were very low; the organs of rabbits with LAE442 cylinders showed 10-20-fold increased concentrations.
Collapse
|
21
|
Grillo CA, Alvarez F, Fernández Lorenzo de Mele MA. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:372-80. [DOI: 10.1016/j.msec.2015.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/16/2015] [Accepted: 08/22/2015] [Indexed: 02/06/2023]
|
22
|
Rössig C, Angrisani N, Helmecke P, Besdo S, Seitz JM, Welke B, Fedchenko N, Kock H, Reifenrath J. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater 2015; 25:369-83. [PMID: 26188326 DOI: 10.1016/j.actbio.2015.07.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/10/2023]
Abstract
The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (μCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. μCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. STATEMENT OF SIGNIFICANCE An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (μ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous.
Collapse
|
23
|
Plaaß C, Modrejewski C, Ettinger S, Noll Y, Claassen L, Daniilidis K, Belenko L, Windhagen H, Stukenborg-Colsman C. Frühergebnisse von distalen Metatarsale-1-Osteotomien bei Hallux valgus unter Verwendung eines biodegradierbaren Magnesium-Implantates. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.fuspru.2015.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Reifenrath J, Marten AK, Angrisani N, Eifler R, Weizbauer A. In vitro
and
in vivo
corrosion of the novel magnesium alloy Mg–La–Nd–Zr: influence of the measurement technique and
in vivo
implant location. Biomed Mater 2015; 10:045021. [DOI: 10.1088/1748-6041/10/4/045021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Han P, Cheng P, Zhang S, Zhao C, Ni J, Zhang Y, Zhong W, Hou P, Zhang X, Zheng Y, Chai Y. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials 2015; 64:57-69. [PMID: 26117658 DOI: 10.1016/j.biomaterials.2015.06.031] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023]
Abstract
High-purity magnesium (HP Mg) takes advantage in no alloying toxic elements and slower degradation rate in lack of second phases and micro-galvanic corrosion. In this study, as rolled HP Mg was fabricated into screws and went through in vitro immersion tests, cytotoxicity test and bioactive analysis. The HP Mg screws performed uniform corrosion behavior in vitro, and its extraction promoted cell viability, bone alkaline phosphatase (ALP) activity, and mRNA expression of osteogenic differentiation related gene, i.e. ALP, osteopontin (OPN) and RUNX2 of human bone marrow mesenchymal stem cells (hBMSCs). Then HP Mg screws were implanted in vivo as load-bearing implant to fix bone fracture and subsequently gross observation, range of motion (ROM), X-ray scanning, qualitative micro-computed tomography (μCT) analysis, histological analysis, bending-force test and SEM morphology of retrieved screws were performed respectively at 4, 8, 16 and 24 weeks. As a result, the retrieved HP Mg screws in fixation of rabbit femoral intracondylar fracture showed uniform degradation morphology and enough bending force. However, part of PLLA screws was broken in bolt, although its screw thread was still intact. Good osseointegration was revealed surrounding HP Mg screws and increased bone volume and bone mineral density were detected at fracture gap, indicating the rigid fixation and enhanced fracture healing process provided by HP Mg screws. Consequently, the HP Mg showed great potential as internal fixation devices in intra-articular fracture operation.
Collapse
Affiliation(s)
- Pei Han
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Pengfei Cheng
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shaoxiang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiahua Ni
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Wanrun Zhong
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Peng Hou
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| | - Yufeng Zheng
- Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Yimin Chai
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
26
|
Martinez Sanchez AH, Luthringer BJC, Feyerabend F, Willumeit R. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater 2015; 13:16-31. [PMID: 25484334 DOI: 10.1016/j.actbio.2014.11.048] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 01/20/2023]
Abstract
Due to their biodegradability, magnesium and magnesium-based alloys could represent the third generation of biomaterials. However, their mechanical properties and time of degradation have to match the needs of applications. Several approaches, such as choice of alloying elements or tailored microstructure, are employed to tailor corrosion behaviour. Due to the high electrochemical activity of Mg, numerous environmental factors (e.g. temperature and surrounding ion composition) influence its corrosion behaviour, making it unpredictable. Nevertheless, the need of reliable in vitro model(s) to predict in vivo implant degradation is increasing. In an attempt to find a correlation between in vitro and vivo corrosion rates, this review presents a systematic literature survey, as well as an attempt to correlate the different results.
Collapse
Affiliation(s)
- Adela Helvia Martinez Sanchez
- Institute of Materials Research, Department for Structural Research on Macromolecules, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany.
| | - Bérengère J C Luthringer
- Institute of Materials Research, Department for Structural Research on Macromolecules, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | - Frank Feyerabend
- Institute of Materials Research, Department for Structural Research on Macromolecules, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | - Regine Willumeit
- Institute of Materials Research, Department for Structural Research on Macromolecules, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| |
Collapse
|
27
|
The biocompatibility of degradable magnesium interference screws: an experimental study with sheep. BIOMED RESEARCH INTERNATIONAL 2015; 2015:943603. [PMID: 25717474 PMCID: PMC4329844 DOI: 10.1155/2015/943603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 12/03/2022]
Abstract
Screws for ligament reconstruction are nowadays mostly made of poly-L-lactide (PLLA). However, magnesium-based biomaterials are gathering increased interest in this research field because of their good mechanical property and osteoanabolic influence on bone metabolism. The aim of this pilot study was to evaluate the biocompatibility of an interference screw for ligament reconstruction made of magnesium alloy W4 by diecasting and milling and using different PEO-coatings with calcium phosphates. PLLA and titanium screws were used as control samples. The screws were implanted in the femur condyle of the hind leg of a merino sheep. The observation period was six and twelve weeks and one year. Histomorphometric, immunohistochemical, immunofluorescence, and molecular biological evaluation were conducted. Further TEM analysis was done. In all magnesium screws a clinically relevant gas formation in the vicinity of the biomaterial was observed. Except for the PLLA and titanium control samples, no screw was fully integrated in the surrounding bone tissue. Regarding the fabrication process, milling seems to produce less gas liberation and has a better influence on bone metabolism than diecasting. Coating by PEO with calcium phosphates could not reduce the initial gas liberation but rather reduced the bone metabolism in the vicinity of the biomaterial.
Collapse
|
28
|
Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2014; 58:7586-91. [PMID: 25288077 DOI: 10.1128/aac.03936-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periprosthetic infection remains a challenging clinical complication. We investigated the antibacterial properties of pure (99.9%) magnesium (Mg) in vitro and in an in vivo rat model of implant-related infection. Mg was highly effective against methicillin-resistant Staphylococcus aureus-induced osteomyelitis and improved new peri-implant bone formation. Bacterial icaA and agr RNAIII transcription levels were also assessed to characterize the mechanism underlying the antibacterial properties of the Mg implant.
Collapse
|
29
|
Wu L, Luthringer BJ, Feyerabend F, Schilling AF, Willumeit R. Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomater 2014; 10:2843-54. [PMID: 24531013 DOI: 10.1016/j.actbio.2014.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment.
Collapse
|
30
|
Henderson SE, Verdelis K, Maiti S, Pal S, Chung WL, Chou DT, Kumta PN, Almarza AJ. Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater 2014; 10:2323-32. [PMID: 24384125 DOI: 10.1016/j.actbio.2013.12.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Recently, magnesium (Mg) alloys have received significant attention as potential biomaterials for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available pure Mg and alloy AZ31 in vivo in a rabbit mandible. First, Mg and AZ31 screws were compared to stainless steel screws in an in vitro pull-out test and determined to have a similar holding strength (∼40N). A finite-element model of the screw was created using the pull-out test data, and this model can be used for future Mg alloy screw design. Then, Mg and AZ31 screws were implanted for 4, 8 and 12weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12weeks. Microcomputed tomography was used to assess bone remodeling and Mg/AZ31 degradation, both visually and qualitatively through volume fraction measurements for all time points. Histological analysis was also completed for the Mg and AZ31 at 12weeks. The results showed that craniofacial bone remodeling occurred around both Mg and AZ31 screws. Pure Mg had a different degradation profile than AZ31; however, bone growth occurred around both screw types. The degradation rate of both Mg and AZ31 screws in the bone marrow space and the muscle were faster than in the cortical bone space at 12weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg alloys for craniofacial applications.
Collapse
|
31
|
Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J Biomed Mater Res B Appl Biomater 2014; 102:1316-31. [DOI: 10.1002/jbm.b.33113] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/22/2013] [Accepted: 01/07/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Jemimah Walker
- Department of Anatomy and Structural Biology; University of Otago; Dunedin New Zealand
| | - Shaylin Shadanbaz
- Department of Anatomy and Structural Biology; University of Otago; Dunedin New Zealand
| | | | - Mark P. Staiger
- Department of Mechanical Engineering; University of Canterbury; Christchurch New Zealand
| | - George J. Dias
- Department of Anatomy and Structural Biology; University of Otago; Dunedin New Zealand
| |
Collapse
|
32
|
Weizbauer A, Modrejewski C, Behrens S, Klein H, Helmecke P, Seitz JM, Windhagen H, Möhwald K, Reifenrath J, Waizy H. Comparative in vitro study and biomechanical testing of two different magnesium alloys. J Biomater Appl 2013; 28:1264-73. [PMID: 24105427 DOI: 10.1177/0885328213506758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this in vitro study, magnesium plates of ZEK100 and MgCa0.8 alloy similar to common titanium alloy osteosynthesis plates were investigated as degradable biomedical materials with a focus on primary stability. Immersion tests were performed in Hank's Balanced Salt Solution at 37. The bending strength of the samples was determined using the four-point bending test according to ISO 9585:1990. The initial strength of the noncorroded ZEK100 plate was 11% greater than that of the MgCa0.8 plate; both were approximately 65% weaker than a titanium plate. The bending strength was determined after 48 and 96 h of immersion in Hank's Balanced Salt Solution; both magnesium alloys decreased by approximately 7% after immersion for 96 h. The degradation rate and the Mg(2+) release of ZEK100 were lower than those of MgCa0.8. Strong pitting and filiform corrosion were observed in the MgCa0.8 samples after 96 h of immersion. The surface of the ZEK100 plates exhibited only small areas of filiform corrosion. The results of this in vitro study indicate that the ZEK100 alloy may be more suitable for biomedical applications.
Collapse
Affiliation(s)
- Andreas Weizbauer
- 1Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mushahary D, Sravanthi R, Li Y, Kumar MJ, Harishankar N, Hodgson PD, Wen C, Pande G. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int J Nanomedicine 2013; 8:2887-902. [PMID: 23976848 PMCID: PMC3746735 DOI: 10.2147/ijn.s47378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Dolly Mushahary
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Reifenrath J, Angrisani N, Erdmann N, Lucas A, Waizy H, Seitz JM, Bondarenko A, Meyer-Lindenberg A. Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model. Biomed Mater 2013; 8:045012. [DOI: 10.1088/1748-6041/8/4/045012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Bondarenko A, Angrisani N, Meyer-Lindenberg A, Seitz JM, Waizy H, Reifenrath J. Magnesium-based bone implants: immunohistochemical analysis of peri-implant osteogenesis by evaluation of osteopontin and osteocalcin expression. J Biomed Mater Res A 2013; 102:1449-57. [PMID: 23765602 DOI: 10.1002/jbm.a.34828] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 05/07/2013] [Accepted: 05/31/2013] [Indexed: 11/08/2022]
Abstract
The functions of some bone proteins, as osteopontin (OPN) and osteocalcin (OC), have been discovered by the latest studies. This fact suggests the possibility of their immunodetection to characterize peri-implant osteogenesis and implant impact on it. Cylindrical pins of Mg alloys (MgCa0.8, LAE442, ZEK100, LANd442) and titanium alloy (TiAl6V4) were implanted into the tibial medullae of 46 rabbits. Each group was divided regarding to implant duration (3 and 6 months). Bone samples adjacent to the implants were decalcified and treated with routine histological and immunohistochemical protocols using OC and OPN-antibodies. OC was detected in matrix of compact bone, but very rarely in osteoid and bone cells. OPN was detected intracellularly and in osteoid. After 3 months, the highest level of both markers was found in titanium group, followed by LAE442-group. In contrast to LAE442 and TiAl6V4, the other Mg alloys showed increasing levels of OC after 6 months. Lower levels of OP and OC compared to the control group are related to the continuous implant degradation and instability of bone-implant interface in early post-surgical period. Reduced marker's expression in LAE442 and TiAl6V4 groups after 6 months may indicate stabilization of bone-implant interface and completion of peri-implant neo-osteogenesis. Declining characters of OC and OPN expression over the implantation time, as well as their lowest levels in late post-surgical term, suggest a more appropriate biocompatibility of LAE442, which therefore seems to be the most preferable of the tested materials for the use in orthopaedic applications.
Collapse
Affiliation(s)
- A Bondarenko
- Department of Pathology, Dnipropetrovsk State Medical Academy, Ukraine, Dnipropetrovsk, Zhovtneva Ploshcha 14, 49005
| | | | | | | | | | | |
Collapse
|
36
|
Schumann P, Lindhorst D, Wagner MEH, Schramm A, Gellrich NC, Rücker M. Perspectives on resorbable osteosynthesis materials in craniomaxillofacial surgery. Pathobiology 2013; 80:211-7. [PMID: 23652285 DOI: 10.1159/000348328] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since introduction to the clinics in the 1990s, resorbable osteosynthesis systems have undergone extensive improvements in order to establish their use as a standard treatment, especially in craniomaxillofacial surgery. However, the development of osteosynthesis systems made of poly(α-hydroxy acid) polymers has been hindered by the lack of information on the mechanical properties and biocompatibility of these materials. Moreover, magnesium-based degredable osteosynthesis materials have not yet been integrated into clinical practice owing to biocompatibility problems. Osteosynthesis systems made from nonresorbable titanium alloys have shown excellent biocompatibility, stability and individual fitting to the implant bed, so these materials are currently considered the 'gold standard'. The procedure of plate removal has been subjected to intense scrutiny and controversy. Bioresorbable materials are indicated for special conditions, such as osteosynthesis of the growing skull or orbital floor reconstructions. This paper presents an overview of the currently available and investigated resorbable osteosynthesis materials in comparison with the nonresorbable 'gold standard' titanium. The main problem areas such as sterilization, biocompatibility and stability are highlighted and perspectives for further improvements are provided.
Collapse
Affiliation(s)
- Paul Schumann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Lalk M, Reifenrath J, Angrisani N, Bondarenko A, Seitz JM, Mueller PP, Meyer-Lindenberg A. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:417-436. [PMID: 23160911 DOI: 10.1007/s10856-012-4812-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.
Collapse
Affiliation(s)
- Mareike Lalk
- Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Fischerauer S, Kraus T, Wu X, Tangl S, Sorantin E, Hänzi A, Löffler J, Uggowitzer P, Weinberg A. In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. Acta Biomater 2013; 9:5411-20. [PMID: 23022544 DOI: 10.1016/j.actbio.2012.09.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 11/27/2022]
Abstract
Biodegradable Mg alloys are of great interest for osteosynthetic applications because they do not require surgical removal after they have served their purpose. In this study, fast-degrading ZX50 Mg-based implants were surface-treated by micro-arc oxidation (MAO), to alter the initial degradation, and implanted along with untreated ZX50 controls in the femoral legs of 20 male Sprague-Dawley rats. Their degradation was monitored by microfocus computed tomography (μCT) over a total observation period of 24weeks, and histological analysis was performed after 4, 12 and 24weeks. While the MAO-treated samples showed almost no corrosion in the first week, they revealed an accelerated degradation rate after the third week, even faster than that of the untreated ZX50 implants. This increase in degradation rate can be explained by an increase in the surface-area-to-volume ratio of MAO-treated implants, which degrade inhomogeneously via localized corrosion attacks. The histological analyses show that the initially improved corrosion resistance of the MAO implants has a positive effect on bone and tissue response: The reduced hydrogen evolution (due to reduced corrosion) makes possible increased osteoblast apposition from the very beginning, thus generating a stable bone-implant interface. As such, MAO treatment appears to be very interesting for osteosynthetic implant applications, as it delays implant degradation immediately after implantation, enhances fracture stabilization, minimizes the burden on the postoperatively irritated surrounding tissue and generates good bone-implant connections, followed by accelerated degradation in the later stage of bone healing.
Collapse
|
39
|
Denkena B, Köhler J, Stieghorst J, Turger A, Seitz J, Fau D, Wolters L, Angrisani N, Reifenrath J, Helmecke P. Influence of Stress on the Degradation Behavior of Mg LAE442 Implant Systems. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.procir.2013.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|