1
|
Chen N, Xu Z, Song Z, Liao J, Zhang H, Li J, Wu T, Ma W, Lei T, Liu L, Ma G, Liao H, Ye S, Meng J, Song L, Lai P, Zhu Y, Wong KKY, Zheng H, Zheng W, Liu C. Simultaneous head-mounted imaging of neural and hemodynamic activities at high spatiotemporal resolution in freely behaving mice. SCIENCE ADVANCES 2025; 11:eadu1153. [PMID: 40117369 PMCID: PMC11927632 DOI: 10.1126/sciadv.adu1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Exploring the relationship between neural activity and cerebral hemoglobin-oxygenation responses in freely behaving mice can advance our understanding of neurovascular coupling. Head-mounted microscopes enable neuroimaging in freely behaving mice; however, investigating neurovascular dynamics remains challenging because of a lack of hemodynamic information, especially blood oxygenation, or insufficient resolution. Here, we report a head-mounted microscope for neurovascular imaging that enables the simultaneous recording of neuronal burst firing and multiparametric hemodynamics such as vascular oxygen saturation at high spatiotemporal resolution. The 1.7-gram lightweight microscope integrates confocal fluorescence and photoacoustic microscopy, allowing recordings at 0.78 hertz with 1.5-micrometer lateral resolution across a field of view of 400 micrometers by 400 micrometers. We identified cell type-specific neurovascular responses to hypoxic challenges, observed active regulation of arterioles during sensory stimuli, and detected abnormal oxygen depletion and vasodilation preceding burst neuronal discharges in epileptic disorders. This technique provides valuable insights into neurovascular coupling and holds potential for studying the pathology of neurological brain diseases.
Collapse
Affiliation(s)
- Ningbo Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhiqiang Xu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng Song
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiuling Liao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongdong Zhang
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Computer, Qufu Normal University, Rizhao 276826, China
| | - Jiahao Li
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Taofeng Wu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weilei Ma
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tiancheng Lei
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liangjian Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangying Ma
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Liao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shiwei Ye
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Meng
- School of Computer, Qufu Normal University, Rizhao 276826, China
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kenneth K. Y. Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Angku H, Verma R, Mahalingam K, Naik A, Angmo D, Gupta S, Sihota R, Dada T. Evaluation of Visual Cortex Activity Using Functional Near-Infrared Spectroscopy in Primary Open Angle and Primary Angle Closure Glaucoma: A Pilot Study. J Glaucoma 2024; 33:624-631. [PMID: 38747728 DOI: 10.1097/ijg.0000000000002427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/13/2024] [Indexed: 08/30/2024]
Abstract
PRCIS Functional near-infrared spectroscopy (fNIRS) was used to assess visual cortical activity in patients with primary open angle (POAG) and primary angle closure (PACG) glaucomas. There was decreased activity in the visual cortex of glaucoma patients correlating with the severity of glaucoma. OBJECTIVE To evaluate visual cortex activity using fNIRS in POAG and PACG compared with healthy controls. METHODS A total of 30 POAGs, 31 PACGs, and 30 healthy aged-matched controls from a single centre were recruited in this cross-sectional observational pilot study with purposive sampling. The POAG and PACG groups were age-matched but were not matched for disease severity at recruitment. All participants underwent fNIRS testing using a multichannel continuous-wave near-infrared system NIRSport 8×7 device (NIRx Medizintechnik GmbH). The visual cortex activity was evaluated in terms of the maximum amplitude of change in oxyhemoglobin (OxyHb) concentration over 10 seconds, and a comparison was done among 3 groups. Both POAG and PACG groups were combined (termed as glaucoma group) to assess the relationship of visual cortical activity with disease severity (by visual field defect (mean deviation) and retinal nerve fibre layer thickness). RESULTS All participants showed the characteristic response of increased OxyHb and decreased deoxyhemoglobin during stimulus presentation. The maximum amplitude of change in OxyHb concentration over 10 seconds was significantly lower in both POAG and PACG groups compared with control in the right and left middle occipital gyri ( P < 0.05). There was no significant difference between PACG and POAG. Importantly, there was a negative correlation between the visual cortex activity with the visual field defects (mean deviation; P < 0.05) and a positive correlation with retinal nerve fibre layer thickness in the glaucoma group ( P < 0.05). CONCLUSION In patients with glaucoma, a reduction in visual cortical activity was observed, which may be indicative of neuronal degeneration occurring in the occipital cortex. Disease severity in glaucoma appears to be closely correlated with visual cortex activity. fNIRS can serve as a useful neuroimaging modality for assessing the hemodynamic and neurodegenerative changes in glaucoma.
Collapse
Affiliation(s)
- Hage Angku
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Verma
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Karthikeyan Mahalingam
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Naik
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Dewang Angmo
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Shikha Gupta
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ramanjit Sihota
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Huo C, Xu G, Xie H, Chen T, Shao G, Wang J, Li W, Wang D, Li Z. Functional near-infrared spectroscopy in non-invasive neuromodulation. Neural Regen Res 2024; 19:1517-1522. [PMID: 38051894 PMCID: PMC10883499 DOI: 10.4103/1673-5374.387970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks, which have been widely applied in the field of central neurological diseases, such as stroke, Parkinson's disease, and mental disorders. Although significant advances have been made in neuromodulation technologies, the identification of optimal neurostimulation parameters including the cortical target, duration, and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits. Moreover, the neural mechanism underlying neuromodulation for improved behavioral performance remains poorly understood. Recently, advancements in neuroimaging have provided insight into neuromodulation techniques. Functional near-infrared spectroscopy, as a novel non-invasive optical brain imaging method, can detect brain activity by measuring cerebral hemodynamics with the advantages of portability, high motion tolerance, and anti-electromagnetic interference. Coupling functional near-infrared spectroscopy with neuromodulation technologies offers an opportunity to monitor the cortical response, provide real-time feedback, and establish a closed-loop strategy integrating evaluation, feedback, and intervention for neurostimulation, which provides a theoretical basis for development of individualized precise neurorehabilitation. We aimed to summarize the advantages of functional near-infrared spectroscopy and provide an overview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and brain-computer interfaces. Furthermore, the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized. In conclusion, functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central neural reorganization to achieve better functional recovery from central nervous system diseases.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tiandi Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong Province, China
| | - Jue Wang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Wenhao Li
- School of Rehabilitation Engineering, Beijing College of Social Administration, Beijing, China
| | - Daifa Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
4
|
Song F, Ding K, Sun M, Xia R. Effect of 12-week head-down strong abdominal breathing on cognitive function in patients with stable chronic obstructive pulmonary disease: a single-centre randomised controlled trial protocol. Trials 2024; 25:351. [PMID: 38816733 PMCID: PMC11140949 DOI: 10.1186/s13063-024-08193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) often suffer from a combination of mild cognitive impairment (MCI) and a significant reduction in their quality of life. In the exercise programme of pulmonary rehabilitation (PR), pulmonary rehabilitation intervention is often carried out by enhancing respiratory function. Strong abdominal breathing is a kind of breathing method, through which the diaphragm can be exercised, thereby enhancing the deflection distance of the diaphragm during breathing and improving respiratory function. The inversion trainer can meet the different angles of head-down training and also has the characteristics of low cost, easy to operate, and use a wide range of scenarios. According to currently available data, strong abdominal breathing in combination with head-down position has not yet been used in pulmonary rehabilitation in this type of rehabilitation programme. It is valuable to use this device to study PR of cognitive function in patients with COPD. METHODS This study was a 12-week single-centre randomised controlled trial and blinding the assessors and data processors of the test. Recruitment is planned for January 1, 2024. It is expected that 81 patients with stable COPD combined with MCI will be recruited and randomly assigned to the head-down strong abdominal breathing group (HG), the fitness qigong eight-duanjin group (BDJ), and the control group (CG) in a 1:1:1 ratio. Using fNIRS (functional near-infrared spectroscopy) to assess brain oxygen availability before and after pulmonary rehabilitation in three periods: before, during and after the intervention. Cognitive functioning is also assessed using the Overall Cognitive Assessment Scale, the Specific Cognitive Functioning Assessment Scale and the Cognitive Behavioural Ability Test. TRIAL REGISTRATION The Specialised Committee on Scientific Research and Academic Ethics of the Academic Committee of Anqing Normal University approved the project (ANU2023001). China Clinical Trial Registry approved the study (ChiCTR2300075400) with a registration date of 2023/09/04. DISCUSSION The aim of this study was to explore novel exercise rehabilitation methods to improve cognitive function in COPD patients. It results in a lower financial burden and higher participation in pulmonary rehabilitation and improves the quality of survival of patients with COPD.
Collapse
Affiliation(s)
- Feiyun Song
- Department of Sports Rehabilitation, School of Physical Education, Anqing Normal University, Anhui, China
| | - Kexin Ding
- Department of Sports Rehabilitation, School of Physical Education, Anqing Normal University, Anhui, China
| | - Mingyun Sun
- Department of Sports Rehabilitation, School of Physical Education, Anqing Normal University, Anhui, China.
| | - Rui Xia
- School of Physical Education of Chaohu University, Anhui, China.
| |
Collapse
|
5
|
Simis M, Marques LM, Barbosa SP, Sugawara AT, Sato JR, Pacheco-Barrios K, Battistella LR, Fregni F. Distinct patterns of metabolic motor cortex activity for phantom and residual limb pain in people with amputations: A functional near-infrared spectroscopy study. Neurophysiol Clin 2024; 54:102939. [PMID: 38382136 DOI: 10.1016/j.neucli.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Phantom pain limb (PLP) has gained more attention due to the large number of people with amputations around the world and growing knowledge of the pain process, although its mechanisms are not completely understood. OBJECTIVES The aim of this study was to understand, in patients with amputations, the association between PLP and residual limb pain (RLP), and the brain metabolic response in cortical motor circuits, using functional near-infrared spectroscopy (fNIRS). METHODS Sixty participants were recruited from the rehabilitation program in São Paulo, Brazil. Included patients were aged over 18 years, with traumatic unilateral lower-limb amputation, with PLP for at least 3 months after full recovery from amputation surgery. PLP and RLP levels were measured using visual analogue scales. fNIRS was performed during motor execution and motor mirror tasks for 20 s. In order to highlight possible variables related to variation in pain measures, univariate linear regression analyses were performed for both experimental conditions, resulting in four fNIRS variables (two hemispheres x two experimental conditions). Later, in order to test the topographic specificity of the models, eight multivariate regression analyses were performed (two pain scales x two experimental conditions x two hemispheres), including the primary motor cortex (PMC) related channel as an independent variable as well as five other channels related to the premotor area, supplementary area, and somatosensory cortex. All models were controlled for age, sex, ethnicity, and education. RESULTS We found that: i) there is an asymmetric metabolic activation during motor execution and mirror task between hemispheres (with a predominance that is ipsilateral to the amputated limb), ii) increased metabolic response in the PMC ipsilateral to the amputation is associated with increased PLP (during both experimental tasks), while increased metabolic response in the contralateral PMC is associated with increased RLP (during the mirror motor task only); ii) increased metabolic activity of the ipsilateral premotor region is associated with increased PLP during the motor mirror task; iii) RLP was only associated with higher metabolic activity in the contralateral PMC and lower metabolic activity in the ipsilateral inferior frontal region during motor mirror task, but PLP was associated with higher metabolic activity during both tasks. CONCLUSION These results suggest there is both task and region specificity for the association between the brain metabolic response and the two different types of post-amputation pain. The metabolic predominance that is ipsilateral to the amputated limb during both tasks was associated with higher levels of PLP, suggesting a cortical motor network activity imbalance due to potential interhemispheric compensatory mechanisms. The present work contributes to the understanding of the underlying topographical patterns in the motor-related circuits associated with pain after amputations.
Collapse
Affiliation(s)
- Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Lucas Murrins Marques
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Sara Pinto Barbosa
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - André Tadeu Sugawara
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - João Ricardo Sato
- Interdisciplinary Unit for Applied Neuroscience (NINA), Universidade Federal do ABC (UFABC), São Bernardo do Campo, Brazil; Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, Brazil
| | - Kevin Pacheco-Barrios
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Linamara Rizzo Battistella
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
6
|
Fu S, Liu F, Zhi X, Wang Y, Liu Y, Chen H, Wang Y, Luo M. Applications of functional near-infrared spectroscopy in non-drug therapy of traditional Chinese medicine: a review. Front Neurosci 2024; 17:1329738. [PMID: 38333602 PMCID: PMC10851877 DOI: 10.3389/fnins.2023.1329738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Non-drug therapies of traditional Chinese medicine (TCM), including acupuncture, massage, tai chi chuan, and Baduanjin, have emerged as widespread interventions for the treatment of various diseases in clinical practice. In recent years, preliminary studies on the mechanisms of non-drug therapies of TCM have been mostly based on functional near-infrared spectroscopy (fNIRS) technology. FNIRS is an innovative, non-invasive tool to monitor hemodynamic changes in the cerebral cortex. Our review included clinical research conducted over the last 10 years, establishing fNIRS as a reliable and stable neuroimaging technique. This review explores new applications of this technology in the field of neuroscience. First, we summarize the working principles of fNIRS. We then present preventive research on the use of fNIRS in healthy individuals and therapeutic research on patients undergoing non-drug therapies of TCM. Finally, we emphasize the potential for encouraging future advancements in fNIRS studies to establish a theoretical framework for research in related fields.
Collapse
Affiliation(s)
- Shifang Fu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhi
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanguo Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Chen A, Hao S, Han Y, Fang Y, Miao Y. Exploring the effects of different BCI-based attention training games on the brain: A functional near-infrared spectroscopy study. Neurosci Lett 2024; 818:137567. [PMID: 38007085 DOI: 10.1016/j.neulet.2023.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BCI games have been widely employed as non-invasive therapeutic interventions for conditions, but their efficacy remains a subject of debate. This study explores the efficacy of two prevalent forms of Brain-Computer Interface (BCI)-based attention training games: video games (VG) and physical games (PG). The effectiveness of these games has been examined through the lens of neuroscience, using functional Near-Infrared Spectroscopy (fNIRS) to monitor cortical activation. After the fNIRS test, subjects completed an Intrinsic Motivation Inventory (IMI) questionnaire. PG tasks activated six channels (L-PFC, R-PFC and R-TL), while VG tasks activated only one (R-PFC). Furthermore, females exhibited stronger activation during PG tasks, while males had none in either. Our findings suggest that under equivalent game rules and themes, PG may prove more effective for cognitive rehabilitation than VG, with stronger intrinsic motivation. We also found this result may exhibit gender differences. Finally, this research offers valuable insights for the future design of BCI-based games from a neuroscience perspective.
Collapse
Affiliation(s)
- An Chen
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Song Hao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yongpeng Han
- Edinburgh College of Art, The University of Edinburgh, Edinburgh EH3 9DF, UK.
| | - Yang Fang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yibei Miao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
8
|
Qi L, Wang GL, Yang YL, Yang SY, Liu LQ, Zhang JW. Positive effects of brisk walking and Tai Chi on cognitive function in older adults: An fNIRS study. Physiol Behav 2024; 273:114390. [PMID: 37890605 DOI: 10.1016/j.physbeh.2023.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Exercise has shown to have beneficial effects on cognition in older adults. The purpose of this study was to investigate the cortical hemodynamic responses during the word-color Stroop test (WCST) prior and after acute walking and Tai Chi exercise by functional near-infrared spectroscopy (fNIRS). Twenty participants (9 males, mean age 62.8 ± 5.2), first underwent a baseline WCST test, after which they took three WCST tests in a randomized order, (a) after sitting rest (control), (b) after 6 minutes performing Tai Chi Quan, and (c) after a bout of 6 minutes brisk walking. During these four WCST tests cortical hemodynamic changes in the prefrontal area were monitored with fNIRS. Both brisk walking and Tai Chi enhanced hemodynamic activity during the Stroop incongruent tasks, leading to improved cognitive performance (quicker reaction time). Brisk walking induced a greater hemodynamic activity in the right dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) area, whereas Tai Chi induced a greater bilateral hemodynamic activity in the DLPFC and VLPFC areas. The present study provided empirical evidence of enhanced hemodynamic response in task- specific regions of the brain that can be achieved by a mere six minutes of brisk walking or Tai Chi in older adults.
Collapse
Affiliation(s)
- Liping Qi
- School of Artificial intelligence, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Guo-Liang Wang
- School of Artificial intelligence, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu-Long Yang
- Faculty of Physical Education, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shu-Ye Yang
- Faculty of Physical Education, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Li-Qing Liu
- Faculty of Physical Education, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jian-Wei Zhang
- School of Artificial intelligence, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
9
|
Semyachkina-Glushkovskaya O, Fedosov I, Zaikin A, Ageev V, Ilyukov E, Myagkov D, Tuktarov D, Blokhina I, Shirokov A, Terskov A, Zlatogorskaya D, Adushkina V, Evsukova A, Dubrovsky A, Tsoy M, Telnova V, Manzhaeva M, Dmitrenko A, Krupnova V, Kurths J. Technology of the photobiostimulation of the brain's drainage system during sleep for improvement of learning and memory in male mice. BIOMEDICAL OPTICS EXPRESS 2024; 15:44-58. [PMID: 38223185 PMCID: PMC10783921 DOI: 10.1364/boe.505618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
In this study on healthy male mice using confocal imaging of dye spreading in the brain and its further accumulation in the peripheral lymphatics, we demonstrate stronger effects of photobiomodulation (PBM) on the brain's drainage system in sleeping vs. awake animals. Using the Pavlovian instrumental transfer probe and the 2-objects-location test, we found that the 10-day course of PBM during sleep vs. wakefulness promotes improved learning and spatial memory in mice. For the first time, we present the technology for PBM under electroencephalographic (EEG) control that incorporates modern state of the art facilities of optoelectronics and biopotential detection and that can be built of relatively cheap and commercially available components. These findings open a new niche in the development of smart technologies for phototherapy of brain diseases during sleep.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Ivan Fedosov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexey Zaikin
- Department of Mathematics and Institute for Women's Health, University College London, 25 Gordon Street, London, WC1H 0AY, UK
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435 Moscow, Russia
- Institute for Cognitive Neuroscience, University Higher School of Economics, Moscow, Russia
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Vasily Ageev
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Egor Ilyukov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Dmitry Myagkov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Dmitry Tuktarov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Tsoy
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435 Moscow, Russia
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
10
|
Marques LM, Uchida PM, Aguiar FO, Kadri G, Santos RIM, Barbosa SP. Escaping through virtual gaming-what is the association with emotional, social, and mental health? A systematic review. Front Psychiatry 2023; 14:1257685. [PMID: 38025467 PMCID: PMC10663235 DOI: 10.3389/fpsyt.2023.1257685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background The realm of virtual games, video games, and e-sports has witnessed remarkable and substantial growth, captivating a diverse and global audience. However, some studies indicate that this surge is often linked to a desire to escape from real life, a phenomenon known as escapism. Much like substance abuse, escapism has been identified as a significant motivator, leading to adverse outcomes, including addiction. Therefore, it is crucial to comprehend the existing research on the connection between escapism and engagement in virtual gaming. This understanding can shed light on the reasons behind such practices and their potential impact on mental and public health. Purpose The objective of this systematic review is investigate the findings pertaining to association between escapism and the practice of virtual games, such as video-games and e-sport. Methods PUBMED and SCOPUS database were systematically searched. Six independent researchers screened articles for relevance. We extracted data regarding escapism-related measures, emotional/mental health-related measures and demographic information relevant to the review purpose. Results The search yielded 357 articles, 36 were included. Results showed that: (i) Escapist motivation (EM) is one of the main motives for playing virtual games; (ii) EM is related to negative clinical traits; (iii) EM predicts negative psychological/emotional/mental health outcomes; (iv) EM is associated with impaired/negative perception of the real-world life; (v) EM predicts non-adaptive real social life; and (vi) EM is associated with dysfunctional gaming practices in some cases. However, EM can have beneficial effects, fostering confidence, determination, a sense of belonging in virtual communities, and representation through avatars. Furthermore, the reviewed findings suggest that EM was positively linked to mitigating loneliness in anxious individuals and promoting social activities that preserved mental health among typical individuals during the pandemic. Conclusion Our review reinforces the evidence linking EM in the context of virtual games to poor mental health and non-adaptive social behavior. The ensuing discussion explores the intricate connection between escapism and mental health, alongside examining the broad implications of virtual gaming practices on underlying motivations for escapism in the realms of social cognition, health promotion, and public health.
Collapse
Affiliation(s)
- Lucas M. Marques
- Faculdade de Medicina, Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro M. Uchida
- Pontifícia Universidade Católica de Campinas, Campinas, São Paulo, Brazil
| | - Felipe O. Aguiar
- Department of Psychiatry, Santa Casa of São Paulo Medical Science School, São Paulo, São Paulo, Brazil
| | - Gabriel Kadri
- Department of Psychiatry, Santa Casa of São Paulo Medical Science School, São Paulo, São Paulo, Brazil
| | - Raphael I. M. Santos
- Department of Psychiatry, Santa Casa of São Paulo Medical Science School, São Paulo, São Paulo, Brazil
| | - Sara P. Barbosa
- Faculdade de Medicina, Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Sorkpor SK, Montero-Hernandez S, Miao H, Pollonini L, Ahn H. Assessing the impact of preferred web app-based music-listening on pain processing at the central nervous level in older black adults with low back pain: An fNIRS study. Geriatr Nurs 2023; 54:135-143. [PMID: 37782976 DOI: 10.1016/j.gerinurse.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Low back pain (LBP) disproportionately affects older black adults, often leading to inadequate treatment due to clinician biases. Objective pain measures are imperative, and Functional Near-Infrared Spectroscopy (fNIRS) shows promise for pain detection. AIM To determine the impact of listening to home-based preferred web app-based music on underlying pain processing mechanisms at the central nervous level in older black adults aged ≥65 with LBP. METHODS Twenty older black adults with LBP listened to preferred music twice daily for four days using the MUSIC CARE® app. Neuroimaging data were collected using fNIRS. Data were transformed to changes in oxy-hemoglobin and deoxy-hemoglobin concentrations and analyzed. RESULTS Significant cortical activation pattern differences were observed between pre-and post-intervention scans, particularly in somatosensory regions. Post-intervention scans showed significantly reduced hemodynamic activities. CONCLUSION Preferred music listening has the potential to alleviate pain, and fNIRS emerges as a promising tool for exploring cortical-level pain-related neural circuits.
Collapse
Affiliation(s)
- Setor K Sorkpor
- Florida State University, College of Nursing, Tallahassee, FL, USA.
| | | | - Hongyu Miao
- Florida State University, College of Nursing, Tallahassee, FL, USA
| | - Luca Pollonini
- Departments of Engineering Technology, University of Houston, TX, USA
| | - Hyochol Ahn
- University of Arizona College of Nursing, Tucson, AZ, USA
| |
Collapse
|
12
|
Mahler S, Huang YX, Liang M, Avalos A, Tyszka JM, Mertz J, Yang C. Assessing depth sensitivity in laser interferometry speckle visibility spectroscopy (iSVS) through source-to-detector distance variation and cerebral blood flow monitoring in humans and rabbits. BIOMEDICAL OPTICS EXPRESS 2023; 14:4964-4978. [PMID: 37791277 PMCID: PMC10545208 DOI: 10.1364/boe.498815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023]
Abstract
Recently, speckle visibility spectroscopy (SVS) was non-invasively applied on the head to monitor cerebral blood flow. The technique, using a multi-pixel detecting device (e.g., camera), allows the detection of a larger number of speckles, increasing the proportion of light that is detected. Due to this increase, it is possible to collect light that has propagated deeper through the brain. As a direct consequence, cerebral blood flow can be monitored. However, isolating the cerebral blood flow from the other layers, such as the scalp or skull components, remains challenging. In this paper, we report our investigations on the depth-sensitivity of laser interferometry speckle visibility spectroscopy (iSVS). Specifically, we varied the depth of penetration of the laser light into the head by tuning the source-to-detector distance, and identified the transition point at which cerebral blood flow in humans and rabbits starts to be detected.
Collapse
Affiliation(s)
- Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yu Xi Huang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mingshu Liang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alan Avalos
- Office of Laboratory Animal Resources (OLAR), California Institute of Technology, Pasadena, California 91125, USA
| | - Julian M. Tyszka
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
13
|
Wang Y, Tsytsarev V, Liao LD. In vivo laser speckle contrast imaging of 4-aminopyridine- or pentylenetetrazole-induced seizures. APL Bioeng 2023; 7:036119. [PMID: 37781728 PMCID: PMC10541235 DOI: 10.1063/5.0158791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Clinical and preclinical studies on epileptic seizures are closely linked to the study of neurovascular coupling. Obtaining reliable information about cerebral blood flow (CBF) in the area of epileptic activity through minimally invasive techniques is crucial for research in this field. In our studies, we used laser speckle contrast imaging (LSCI) to gather information about the local blood circulation in the area of epileptic activity. We used two models of epileptic seizures: one based on 4-aminopyridine (4-AP) and another based on pentylenetetrazole (PTZ). We verified the duration of an epileptic seizure using electrocorticography (ECoG). We applied the antiepileptic drug topiramate (TPM) to both models, but its effect was different in each case. However, in both models, TPM had an effect on neurovascular coupling in the area of epileptic activity, as shown by both LSCI and ECoG data. We demonstrated that TPM significantly reduced the amplitude of 4-AP-induced epileptic seizures (4-AP+TPM: 0.61 ± 0.13 mV vs 4-AP: 1.08 ± 0.19 mV; p < 0.05), and it also reduced gamma power in ECoG in PTZ-induced epileptic seizures (PTZ+TPM: 38.5% ± 11.9% of the peak value vs PTZ: 59.2% ± 3.0% of peak value; p < 0.05). We also captured the pattern of CBF changes during focal epileptic seizures induced by 4-AP. Our data confirm that the system of simultaneous cortical LSCI and registration of ECoG makes it possible to evaluate the effectiveness of pharmacological agents in various types of epileptic seizures in in vivo models and provides spatial and temporal information on the process of ictogenesis.
Collapse
Affiliation(s)
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Baltimore, Maryland 21201, USA
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County 350, Taiwan
| |
Collapse
|
14
|
Wu Y, Dong Y, Tang Y, Wang W, Bo Y, Zhang C. Relationship between motor performance and cortical activity of older neurological disorder patients with dyskinesia using fNIRS: A systematic review. Front Physiol 2023; 14:1153469. [PMID: 37051020 PMCID: PMC10083370 DOI: 10.3389/fphys.2023.1153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Neurological disorders with dyskinesia would seriously affect older people’s daily activities, which is not only associated with the degeneration or injury of the musculoskeletal or the nervous system but also associated with complex linkage between them. This study aims to review the relationship between motor performance and cortical activity of typical older neurological disorder patients with dyskinesia during walking and balance tasks.Methods: Scopus, PubMed, and Web of Science databases were searched. Articles that described gait or balance performance and cortical activity of older Parkinson’s disease (PD), multiple sclerosis, and stroke patients using functional near-infrared spectroscopy were screened by the reviewers. A total of 23 full-text articles were included for review, following an initial yield of 377 studies.Results: Participants were mostly PD patients, the prefrontal cortex was the favorite region of interest, and walking was the most popular test motor task, interventional studies were four. Seven studies used statistical methods to interpret the relationship between motor performance and cortical activation. The motor performance and cortical activation were simultaneously affected under difficult walking and balance task conditions. The concurrent changes of motor performance and cortical activation in reviewed studies contained the same direction change and different direction change.Conclusion: Most of the reviewed studies reported poor motor performance and increased cortical activation of PD, stroke and multiple sclerosis older patients. The external motor performance such as step speed were analyzed only. The design and results were not comprehensive and profound. More than 5 weeks walking training or physiotherapy can contribute to motor function promotion as well as cortices activation of PD and stroke patients. Thus, further study is needed for more statistical analysis on the relationship between motor performance and activation of the motor-related cortex. More different type and program sports training intervention studies are needed to perform.
Collapse
Affiliation(s)
- Yunzhi Wu
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yuqi Dong
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yunqi Tang
- College of Art and Design, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Weiran Wang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Yulong Bo
- Graduate School, Shandong Sport University, Jinan, Shandong, China
| | - Cui Zhang
- Graduate School, Shandong Sport University, Jinan, Shandong, China
- Laboratory of Sports Biomechanics, Shandong Institute of Sport Science, Jinan, Shandong, China
- *Correspondence: Cui Zhang,
| |
Collapse
|
15
|
Gao F, Hua L, He Y, Xu J, Li D, Zhang J, Yuan Z. Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex. Bioengineering (Basel) 2023; 10:bioengineering10030288. [PMID: 36978679 PMCID: PMC10044899 DOI: 10.3390/bioengineering10030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023] Open
Abstract
To date, it is still unclear how word structure might impact lexical processing in the brain for languages with an impoverished system of grammatical morphology such as Chinese. In this study, concurrent electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) recordings were performed to inspect the temporal and spatial brain activities that are related to Chinese word structure (compound vs. derivation vs. non-morphological) effects. A masked priming paradigm was utilized on three lexical conditions (compound constitute priming, derivation constitute priming, and non-morphological priming) to tap Chinese native speakers' structural sensitivity to differing word structures. The compound vs. derivation structure effect was revealed by the behavioral data as well as the temporal and spatial brain activation patterns. In the masked priming task, Chinese derivations exhibited significantly enhanced brain activation in the frontal cortex and involved broader brain networks as compared with lexicalized compounds. The results were interpreted by the differing connection patterns between constitute morphemes within a given word structure from a spreading activation perspective. More importantly, we demonstrated that the Chinese word structure effect showed a distinct brain activation pattern from that of the dual-route mechanism in alphabetic languages. Therefore, this work paved a new avenue for comprehensively understanding the underlying cognitive neural mechanisms associated with Chinese derivations and coordinate compounds.
Collapse
Affiliation(s)
- Fei Gao
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China
| | - Lin Hua
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yuwen He
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jie Xu
- Faculty of Arts and Humanities, University of Macau, Macau SAR 999078, China
| | - Defeng Li
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
- Faculty of Arts and Humanities, University of Macau, Macau SAR 999078, China
| | - Juan Zhang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
- Faculty of Education, University of Macau, Macau SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
16
|
Plachez C, Tsytsarev V, Zhao S, Erzurumlu RS. Amyloid Deposition and Dendritic Complexity of Corticocortical Projection Cells in Five Familial Alzheimer's Disease Mouse. Neuroscience 2023; 512:85-98. [PMID: 36549605 PMCID: PMC10112867 DOI: 10.1016/j.neuroscience.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In Alzheimer's disease and related dementias, amyloid beta (Aβ) and amyloid plaques can disrupt long-term synaptic plasticity, learning and memory and cognitive function. Plaque accumulation can disrupt corticocortical circuitry leading to abnormalities in sensory, motor, and cognitive processing. In this study, using 5xFAD (five Familial Alzheimer's Disease - FAD - mutations) mice, we evaluated amyloid plaque formation in different cortical areas, and whether differential amyloid accumulation across cortical fields correlates with changes in dendritic complexity of layer 3 corticocortical projection neurons and functional responses in the primary somatosensory cortex following whisker stimulation. We focused on three cortical areas: the primary somatosensory cortex (S1), the primary motor cortex (M1), and the prefrontal cortex (PFC including the anterior cingulate, prelimbic, and infralimbic subdivisions). We found that Aβ and amyloid plaque accumulation is not uniform across 5xFAD cortical areas, while there is no expression in littermate controls. We also found that there are differential layer 3 pyramidal cell dendritic complexity changes across the three areas in 5xFAD mice, compared to same age controls, with no apparent relation to differential amyloid accumulation. We used voltage-sensitive dye imaging (VSDi) to visualize neural activity in S1, M1 and PFC following whisker activation. Control mice show normal physiological responses in all three cortical areas, whereas 5xFAD mice only display physiological responses in S1. Taken together our results show that 5xFAD mutation affects the overall dendritic morphology of layer 3 pyramidal cells across sensory-motor and association cortex irrespective of the density and distribution of the Aβ amyloid proteins. Corticocortical circuitry between the sensory and motor/association areas is most likely disrupted in 5xFAD mice as cortical responses to whisker stimulation are altered.
Collapse
Affiliation(s)
- Celine Plachez
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| | - Shuxin Zhao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| |
Collapse
|
17
|
You Y, Liu J, Wang D, Fu Y, Liu R, Ma X. Cognitive Performance in Short Sleep Young Adults with Different Physical Activity Levels: A Cross-Sectional fNIRS Study. Brain Sci 2023; 13:171. [PMID: 36831714 PMCID: PMC9954673 DOI: 10.3390/brainsci13020171] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Short sleep is a common issue nowadays. The purpose of this study was to investigate prefrontal cortical hemodynamics by evaluating changes in concentrations of oxygenated hemoglobin (HbO) in cognitive tests among short-sleep young adults and to explore the relationship between sleep duration, physical activity level, and cognitive function in this specific population. A total of 46 participants (25 males and 21 females) were included in our study, and among them, the average sleep duration was 358 min/day. Stroop performance in the short sleep population was linked to higher levels cortical activation in distinct parts of the left middle frontal gyrus. This study found that moderate-to-vigorous physical activity (MVPA) was significantly associated with lower accuracy of incongruent Stroop test. The dose-response relationship between sleep duration and Stroop performance under different levels of light-intensity physical activity (LPA) and MVPA was further explored, and increasing sleep time for different PA level was associated with better Stroop performance. In summary, this present study provided neurobehavioral evidence between cortical hemodynamics and cognitive function in the short sleep population. Furthermore, our findings indicated that, in younger adults with short sleep, more MVPA was associated with worse cognitive performance. Short sleep young adults should increase sleep time, rather than more MVPA, to achieve better cognitive function.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- School of Social Sciences, Tsinghua University, Beijing 100084, China
| | - Jianxiu Liu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Dizhi Wang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- School of Social Sciences, Tsinghua University, Beijing 100084, China
| | - Yingyao Fu
- Beijing Jianhua Experimental Etown School, Beijing 100176, China
| | - Ruidong Liu
- Sports Coaching College, Beijing Sport University, Beijing 100091, China
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Wang Y, Chen YL, Huang CM, Chen LT, Liao LD. Visible CCD Camera-Guided Photoacoustic Imaging System for Precise Navigation during Functional Rat Brain Imaging. BIOSENSORS 2023; 13:107. [PMID: 36671941 PMCID: PMC9856069 DOI: 10.3390/bios13010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No.75 Po-Ai St., Hsinchu 300, Taiwan
| | - Li-Tzong Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, No.100, Tzyou 1st Road, Sanmin Dist., Kaohsiung City 80756, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
19
|
Zhang K, Yuan J, Pei X, Fu Z, Zhao Y, Hu N, Wang Y, Yang L, Cao Q. Cerebral blood flow characteristics of drug-naïve attention-deficit/hyperactivity disorder with social impairment: Evidence for region-symptom specificity. Front Neurosci 2023; 17:1149703. [PMID: 37025372 PMCID: PMC10070692 DOI: 10.3389/fnins.2023.1149703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background Social deficits are among the most important functional impairments in attention-deficit/hyperactivity disorder (ADHD). However, the relationship between social impairment and ADHD core symptoms as well as the underlying cerebral blood flow (CBF) characteristics remain unclear. Methods A total of 62 ADHD subjects with social deficits (ADHD + SD), 100 ADHD subjects without social deficits (ADHD-SD) and 81 age-matched typically developing controls (TDC) were enrolled. We first examined the correlation between the Social Responsiveness Scale (SRS-1) and ADHD core symptoms (inattention, hyperactivity, and impulsion) and then explored categorical and dimensional ADHD-related regional CBF by arterial spin labeling (ASL). For the categorical analysis, a voxel-based comparison of CBF maps between the ADHD + SD, ADHD-SD, and TDC groups was performed. For the dimensional analysis, the whole-brain voxel-wise correlation between CBF and ADHD symptoms (inattention, hyperactivity/impulsivity, and total scores) was evaluated in three groups. Finally, correlations between the SRS-1 and ADHD-related regional CBF were investigated. We applied Gaussian random field (GRF) for the correction of multiple comparisons in imaging results (voxel-level P < 0.01, and cluster-level P < 0.05). Results The clinical characteristics analysis showed that social deficits positively correlated with ADHD core symptoms, especially in social communication and autistic mannerisms domains. In the categorical analysis, we found that CBF in the left middle/inferior temporal gyrus in ADHD groups was higher than TDCs and was negatively correlated with the social motivation scores. Moreover, in dimensional analysis, we found that CBF in the left middle frontal gyrus was negatively correlated with the inattention scores, SRS total scores and autistic mannerisms scores in ADHD + SD subjects. Conclusion The present study shows that inattention, hyperactivity, and impulsivity may be responsible for the occurrence of social deficits in ADHD, with autistic traits being another significant contributing factor. Additionally, CBF in the left middle/inferior temporal gyrus and the left middle frontal gyrus might represent the corresponding physiological mechanisms underlying social deficits in ADHD.
Collapse
|
20
|
Bonilauri A, Sangiuliano Intra F, Rossetto F, Borgnis F, Baselli G, Baglio F. Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson's Disease Patients at Different Stages. Int J Mol Sci 2022; 23:14897. [PMID: 36499223 PMCID: PMC9736501 DOI: 10.3390/ijms232314897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson's disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson's Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas-primarily the prefrontal cortex area-provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
- Faculty of Education, Free University of Bolzano-Bozen, 39042 Brixen, Italy
| | - Federica Rossetto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Francesca Borgnis
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| |
Collapse
|
21
|
Wang Y, Tsai CH, Chu TS, Hung YT, Lee MY, Chen HH, Chen LT, Ger TR, Wang YH, Chiang NJ, Liao LD. Revisiting the cerebral hemodynamics of awake, freely moving rats with repeated ketamine self-administration using a miniature photoacoustic imaging system. NEUROPHOTONICS 2022; 9:045003. [PMID: 36338453 PMCID: PMC9623815 DOI: 10.1117/1.nph.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. AIM We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. APPROACH The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). RESULTS We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. CONCLUSIONS The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.
Collapse
Affiliation(s)
- Yuhling Wang
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Tsung-Sheng Chu
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yun-Ting Hung
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Yi Lee
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Hwei-Hsien Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Tzong-Rong Ger
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yung-Hsuan Wang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Nai-Jung Chiang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
- Taipei Veterans General Hospital, Department of Oncology, Taipei City, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
22
|
Matsuura H, Kawakami R, Isoe M, Hoshihara M, Minami Y, Yatsuzuka K, Tsuda T, Murakami M, Suzuki Y, Kawamata J, Imamura T, Hadano S, Watanabe S, Niko Y. NIR-II-Excitable Dye-Loaded Nanoemulsions for Two-Photon Microscopy Imaging of Capillary Blood Vessels in the Entire Hippocampal CA1 Region of Living Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40481-40490. [PMID: 36063083 DOI: 10.1021/acsami.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For in vivo two-photon fluorescence microscopy (2PM) imaging, the development of techniques that can improve the observable depth and temporal resolution is an important challenge to address biological and biomedical concerns such as vascular dynamics in the deep brain (typically the hippocampal region) of living animals. Improvements have been achieved through two approaches: an optical approach using a highly tissue-penetrating excitation laser oscillating in the second near-infrared wavelength region (NIR-II, 1100-1350 nm) and a chemical approach employing fluorescent probes with high two-photon brightness (characterized by the product of the two-photon absorption cross section, σ2, and the fluorescence quantum yield, Φ). To integrate these two approaches, we developed a fluorescent dye exhibiting a sufficiently high σ2Φ value of 68 Goeppert-Mayer units at 1100 nm. When a nanoemulsion encapsulating >1000 dye molecules per particle and a 1100 nm laser were employed for 2PM imaging, capillary blood vessels in almost the entire hippocampal CA1 region of the mouse brain (approximately 1.1-1.5 mm below the surface) were clearly visualized at a frame rate of 30 frames s-1 (averaged over eight frames, practically 3.75 frames s-1). This observable depth and frame rate are much higher than those in previous reports on 2PM imaging. Furthermore, this nanoemulsion allowed for the visualization of blood vessels at a depth of 1.8 mm, corresponding to the hippocampal dentate gyrus. These results highlight the advantage of combining bright probes with NIR-II lasers. Our probe is a promising tool for studying the vascular dynamics of living animals and related diseases.
Collapse
Affiliation(s)
- Hitomi Matsuura
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
- TOSA Innovative Human Development Programs, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Maki Isoe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Masaharu Hoshihara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Yuya Minami
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Kazuki Yatsuzuka
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Teruko Tsuda
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masamoto Murakami
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shingo Hadano
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Shigeru Watanabe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| |
Collapse
|
23
|
Abstract
Pain is an unpleasant sensory and emotional experience. Understanding the neural mechanisms of acute and chronic pain and the brain changes affecting pain factors is important for finding pain treatment methods. The emergence and progress of non-invasive neuroimaging technology can help us better understand pain at the neural level. Recent developments in identifying brain-based biomarkers of pain through advances in advanced imaging can provide some foundations for predicting and detecting pain. For example, a neurologic pain signature (involving brain regions that receive nociceptive afferents) and a stimulus intensity-independent pain signature (involving brain regions that do not show increased activity in proportion to noxious stimulus intensity) were developed based on multivariate modeling to identify processes related to the pain experience. However, an accurate and comprehensive review of common neuroimaging techniques for evaluating pain is lacking. This paper reviews the mechanism, clinical application, reliability, strengths, and limitations of common neuroimaging techniques for assessing pain to promote our further understanding of pain.
Collapse
Affiliation(s)
- Jing Luo
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Bo Gou
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China.
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
24
|
Guinto MC, Haruta M, Kurauchi Y, Saigo T, Kurasawa K, Ryu S, Ohta Y, Kawahara M, Takehara H, Tashiro H, Sasagawa K, Katsuki H, Ohta J. Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:026501. [PMID: 35166087 PMCID: PMC8843356 DOI: 10.1117/1.jbo.27.2.026501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Intrinsic optical signals (IOS) generated in the cortical tissue as a result of various interacting metabolic processes are used extensively to elucidate the underlying mechanisms that govern neurovascular coupling. However, current IOS measurements still often rely on bulky, tabletop imaging systems, and there remains a dearth of studies in freely moving subjects. Lightweight, miniature head-mounted imaging devices provide unique opportunities for investigating cortical dynamics in small animals under a variety of naturalistic behavioral settings. AIM The aim of this work was to monitor IOS in the somatosensory cortex of wild-type mice by developing a lightweight, biocompatible imaging device that readily lends itself to animal experiments in freely moving conditions. APPROACH Herein we describe a method for realizing long-term IOS imaging in mice using a 0.54-g, compact, CMOS-based, head-mounted imager. The two-part module, consisting of a tethered sensor plate and a base plate, allows facile assembly prior to imaging sessions and disassembly when the sensor is not in use. LEDs integrated into the device were chosen to illuminate the cortical mantle at two different wavelengths in the visible regime (λcenter: 535 and 625 nm) for monitoring volume- and oxygenation state-dependent changes in the IOS, respectively. To test whether the system can detect robust cortical responses, we recorded sensory-evoked IOS from mechanical stimulation of the hindlimbs (HL) of anesthetized mice in both acute and long-term implantation conditions. RESULTS Cortical IOS recordings in the primary somatosensory cortex hindlimb receptive field (S1HL) of anesthetized mice under green and red LED illumination revealed robust, multiphasic profiles that were time-locked to the mechanical stimulation of the contralateral plantar hindpaw. Similar intrinsic signal profiles observed in S1HL at 40 days postimplantation demonstrated the viability of the approach for long-term imaging. Immunohistochemical analysis showed that the brain tissue did not exhibit appreciable immune response due to the device implantation and operation. A proof-of-principle imaging session in a freely behaving mouse showed minimal locomotor impediment for the animal and also enabled estimation of blood flow speed. CONCLUSIONS We demonstrate the utility of a miniature cortical imaging device for monitoring IOS and related hemodynamic processes in both anesthetized and freely moving mice, cueing potential for applications to some neuroscientific studies of sensation and naturalistic behavior.
Collapse
Affiliation(s)
- Mark Christian Guinto
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Makito Haruta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Yuki Kurauchi
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Taisuke Saigo
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Kazuki Kurasawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Sumika Ryu
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Yasumi Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Mamiko Kawahara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hironari Takehara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroyuki Tashiro
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
- Kyushu University, Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Kiyotaka Sasagawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroshi Katsuki
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Jun Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| |
Collapse
|
25
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
26
|
Wang Y, Chu TS, Lin YR, Tsao CH, Tsai CH, Ger TR, Chen LT, Chang WSW, Liao LD. Assessment of Brain Functional Activity Using a Miniaturized Head-Mounted Scanning Photoacoustic Imaging System in Awake and Freely Moving Rats. BIOSENSORS 2021; 11:bios11110429. [PMID: 34821645 PMCID: PMC8615926 DOI: 10.3390/bios11110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
Understanding the relationship between brain function and natural behavior remains a significant challenge in neuroscience because there are very few convincing imaging/recording tools available for the evaluation of awake and freely moving animals. Here, we employed a miniaturized head-mounted scanning photoacoustic imaging (hmPAI) system to image real-time cortical dynamics. A compact photoacoustic (PA) probe based on four in-house optical fiber pads and a single custom-made 48-MHz focused ultrasound transducer was designed to enable focused dark-field PA imaging, and miniature linear motors were included to enable two-dimensional (2D) scanning. The total dimensions and weight of the proposed hmPAI system are only approximately 50 × 64 × 48 mm and 58.7 g (excluding cables). Our ex vivo phantom experimental tests revealed that a spatial resolution of approximately 0.225 mm could be achieved at a depth of 9 mm. Our in vivo results further revealed that the diameters of cortical vessels draining into the superior sagittal sinus (SSS) could be clearly imaged and continuously observed in both anesthetized rats and awake, freely moving rats. Statistical analysis showed that the full width at half maximum (FWHM) of the PA A-line signals (relative to the blood vessel diameter) was significantly increased in the selected SSS-drained cortical vessels of awake rats (0.58 ± 0.17 mm) compared with those of anesthetized rats (0.31 ± 0.09 mm) (p < 0.01, paired t-test). In addition, the number of pixels in PA B-scan images (relative to the cerebral blood volume (CBV)) was also significantly increased in the selected SSS-drained blood vessels of awake rats (107.66 ± 23.02 pixels) compared with those of anesthetized rats (81.99 ± 21.52 pixels) (p < 0.01, paired t-test). This outcome may result from a more active brain in awake rats than in anesthetized rats, which caused cerebral blood vessels to transport more blood to meet the increased nutrient demand of the tissue, resulting in an obvious increase in blood vessel volume. This hmPAI system was further validated for utility in the brains of awake and freely moving rats, showing that their natural behavior was unimpaired during vascular imaging, thereby providing novel opportunities for studies of behavior, cognition, and preclinical models of brain diseases.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
| | - Tsung-Sheng Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Yan-Ren Lin
- Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua County 50006, Taiwan;
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hui Tsao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
| | - Chia-Hua Tsai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
- Correspondence: (W.-S.W.C.); (L.-D.L.)
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (Y.W.); (T.-S.C.); (C.-H.T.); (C.-H.T.)
- Correspondence: (W.-S.W.C.); (L.-D.L.)
| |
Collapse
|
27
|
An Adjustable Dark-Field Acoustic-Resolution Photoacoustic Imaging System with Fiber Bundle-Based Illumination. BIOSENSORS-BASEL 2021; 11:bios11080262. [PMID: 34436064 PMCID: PMC8391745 DOI: 10.3390/bios11080262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Photoacoustic (PA) imaging has become one of the major imaging methods because of its ability to record structural information and its high spatial resolution in biological tissues. Current commercialized PA imaging instruments are limited to varying degrees by their bulky size (i.e., the laser or scanning stage) or their use of complex optical components for light delivery. Here, we present a robust acoustic-resolution PA imaging system that consists of four adjustable optical fibers placed 90° apart around a 50 MHz high-frequency ultrasound (US) transducer. In the compact design concept of the PA probe, the relative illumination parameters (i.e., angles and fiber size) can be adjusted to fit different imaging applications in a single setting. Moreover, this design concept involves a user interface built in MATLAB. We first assessed the performance of our imaging system using in vitro phantom experiments. We further demonstrated the in vivo performance of the developed system in imaging (1) rat ear vasculature, (2) real-time cortical hemodynamic changes in the superior sagittal sinus (SSS) during left-forepaw electrical stimulation, and (3) real-time cerebral indocyanine green (ICG) dynamics in rats. Collectively, this alignment-free design concept of a compact PA probe without bulky optical lens systems is intended to satisfy the diverse needs in preclinical PA imaging studies.
Collapse
|
28
|
Park Y, Park SY, Eom K. Current Review of Optical Neural Interfaces for Clinical Applications. MICROMACHINES 2021; 12:925. [PMID: 34442547 PMCID: PMC8400671 DOI: 10.3390/mi12080925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Neural interfaces, which enable the recording and stimulation of living neurons, have emerged as valuable tools in understanding the brain in health and disease, as well as serving as neural prostheses. While neural interfaces are typically based on electrical transduction, alternative energy modalities have been explored to create safe and effective approaches. Among these approaches, optical methods of linking neurons to the outside world have gained attention because light offers high spatial selectivity and decreased invasiveness. Here, we review the current state-of-art of optical neural interfaces and their clinical applications. Optical neural interfaces can be categorized into optical control and optical readout, each of which can be divided into intrinsic and extrinsic approaches. We discuss the advantages and disadvantages of each of these methods and offer a comparison of relative performance. Future directions, including their clinical opportunities, are discussed with regard to the optical properties of biological tissue.
Collapse
Affiliation(s)
| | - Sung-Yun Park
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan 46241, Korea;
| | - Kyungsik Eom
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
29
|
In Vivo Assessment of Hypoxia Levels in Pancreatic Tumors Using a Dual-Modality Ultrasound/Photoacoustic Imaging System. MICROMACHINES 2021; 12:mi12060668. [PMID: 34200388 PMCID: PMC8229757 DOI: 10.3390/mi12060668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Noninvasive anatomical and functional imaging has become an essential tool to evaluate tissue oxygen saturation dynamics in preclinical or clinical studies of hypoxia. Our dual-wavelength technique for photoacoustic (PA) imaging based on the differential absorbance spectrum of oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) can quantify tissue oxygen saturation using the intrinsic contrast property. PA imaging of tissue oxygen saturation can be used to monitor tumor-related hypoxia, which is a particularly relevant functional parameter of the tumor microenvironment that has a strong influence on tumor aggressiveness. The simultaneous acquisition of anatomical and functional information using dual-modality ultrasound (US) and PA imaging technology enhances the preclinical applicability of the method. Here, the developed dual-modality US/PA system was used to measure relative tissue oxygenation using the dual-wavelength technique. Tissue oxygen saturation was quantified in a pancreatic tumor mouse model. The differences in tissue oxygenation were detected by comparing pancreatic samples from normal and tumor-bearing mice at various time points after implantation. The use of an in vivo pancreatic tumor model revealed changes in hypoxia at various stages of tumor growth. The US/PA imaging data positively correlated with the results of immunohistochemical staining for hypoxia. Thus, our dual-modality US/PA imaging system can be used to reliably assess and monitor hypoxia in pancreatic tumor mouse models. These findings enable the use of a combination of US and PA imaging to acquire anatomical and functional information on tumor growth and to evaluate treatment responses in longitudinal preclinical studies.
Collapse
|
30
|
Khan H, Naseer N, Yazidi A, Eide PK, Hassan HW, Mirtaheri P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review. Front Hum Neurosci 2021; 14:613254. [PMID: 33568979 PMCID: PMC7868344 DOI: 10.3389/fnhum.2020.613254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain-computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Noman Naseer
- Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan
| | - Anis Yazidi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Hafiz Wajahat Hassan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Biomedical Engineering, Michigan Technological University, Michigan, MI, United States
| |
Collapse
|
31
|
In Vitro and In Vivo Study of the Short-Term Vasomotor Response during Epileptic Seizures. Brain Sci 2020; 10:brainsci10120942. [PMID: 33297329 PMCID: PMC7762235 DOI: 10.3390/brainsci10120942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Epilepsy remains one of the most common brain disorders, and the different types of epilepsy encompass a wide variety of physiological manifestations. Clinical and preclinical findings indicate that cerebral blood flow is usually focally increased at seizure onset, shortly after the beginning of ictal events. Nevertheless, many questions remain about the relationship between vasomotor changes in the epileptic foci and the epileptic behavior of neurons and astrocytes. To study this relationship, we performed a series of in vitro and in vivo experiments using the 4-aminopyridine model of epileptic seizures. It was found that in vitro pathological synchronization of neurons and the depolarization of astrocytes is accompanied by rapid short-term vasoconstriction, while in vivo vasodilation during the seizure prevails. We suggest that vasomotor activity during epileptic seizures is a correlate of the complex, self-sustained response that includes neuronal and astrocytic oscillations, and that underlies the clinical presentation of epilepsy.
Collapse
|
32
|
Karunakaran KD, Peng K, Berry D, Green S, Labadie R, Kussman B, Borsook D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci Biobehav Rev 2020; 120:335-353. [PMID: 33159918 DOI: 10.1016/j.neubiorev.2020.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Current pain assessment techniques based only on clinical evaluation and self-reports are not objective and may lead to inadequate treatment. Having a functional biomarker will add to the clinical fidelity, diagnosis, and perhaps improve treatment efficacy in patients. While many approaches have been deployed in pain biomarker discovery, functional near-infrared spectroscopy (fNIRS) is a technology that allows for non-invasive measurement of cortical hemodynamics. The utility of fNIRS is especially attractive given its ability to detect specific changes in the somatosensory and high-order cortices as well as its ability to measure (1) brain function similar to functional magnetic resonance imaging, (2) graded responses to noxious and innocuous stimuli, (3) analgesia, and (4) nociception under anesthesia. In this review, we evaluate the utility of fNIRS in nociception/pain with particular focus on its sensitivity and specificity, methodological advantages and limitations, and the current and potential applications in various pain conditions. Everything considered, fNIRS technology could enhance our ability to evaluate evoked and persistent pain across different age groups and clinical populations.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States; Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, QC, Canada
| | - Delany Berry
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Stephen Green
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Robert Labadie
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Barry Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
33
|
Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, Matlashov ME, Li X, Yang W, Nie L, Shcherbakova DM, Kozorovitskiy Y, Yao J, Ji N, Verkhusha VV. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat Biotechnol 2020; 39:368-377. [PMID: 33106681 PMCID: PMC7956128 DOI: 10.1038/s41587-020-0710-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
While calcium imaging has become a mainstay of modern neuroscience, the spectral properties of current fluorescent calcium indicators limit deep tissue imaging as well as simultaneous use with other probes. Using two monomeric near-infrared fluorescent proteins, we engineered a near-infrared FRET-based genetically encoded calcium indicator (iGECI). iGECI exhibits high brightness, high photostability, and up to 600% increase in fluorescence response to calcium. In dissociated neurons, iGECI detects spontaneous neuronal activity, and electrically and optogenetically induced firing. We validated iGECI performance up to a depth of almost 400 μm in acute brain slices using one-photon light-sheet imaging. Applying hybrid photoacoustic and fluorescence microscopy, we simultaneously monitored neuronal and hemodynamic activities in the mouse brain through an intact skull, with ~3 μm lateral and ~25–50 μm axial resolution. Using two-photon imaging, we detected evoked and spontaneous neuronal activity in the mouse visual cortex, with fluorescence changes of up to 25%. iGECI allows biosensors and optogenetic actuators to be multiplexed without spectral crosstalk.
Collapse
Affiliation(s)
- Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Autonomous Therapeutics, Inc., New York, NY, USA
| | - Mikhail V Monakhov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Ernesto Canton-Josh
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Manish Kumar
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuan Li
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Department of Radiology and Optical Imaging Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Bu L, Xu N, Wang Y, Liu H. Decreased low-frequency brain effective connectivity in seafarers during voyages: a functional near-infrared spectroscopy study. Physiol Meas 2020; 41:095003. [PMID: 32759489 DOI: 10.1088/1361-6579/abad13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE During voyages, seafarers experience psychological problems that act to decrease operational safety. Psychological problems in seafarers can lead to changes in functional brain networks. This study investigated the low-frequency brain effective connectivity (EC) in seafarers during voyages by using the coupling strength (CS) of functional near-infrared spectroscopy (fNIRS) imaging. APPROACH This study recruited 15 seafarers (seafarer group) working on a container ship and 15 healthy age-matched controls (control group). The EC was assessed using dynamic Bayesian inference (DBI) of the oxygenated hemoglobin concentration (delta HbO2) as measured through a 14-channel fNIRS system. These channels covered the left and right prefrontal cortices (LPFC/RPFC), left and right motor cortices (LMC/RMC), and left and right occipital lobes (LOL/ROL). MAIN RESULTS The EC levels of LPFC to RMC (F = 4.239, p = 0.049), LPFC to ROL (F = 5.385, p = 0.028), LOL to RPFC (F = 11.128, p = 0.002), ROL to RPFC (F = 10.714, p = 0.003) and LMC to ROL (F= 6.136, p = 0.02) were significantly lower in the seafarer group than in the control group. Correlation analysis revealed that the patient health questionnaire-9 (PHQ-9) scores were positively correlated with the systolic blood pressure (SBP) values, delta HbO2 values and EC levels, respectively. Meanwhile, the correlation analysis revealed that the SBP values significantly positively correlated with the CS values. SIGNIFICANCE Decreased EC levels may be a marker of psychological subhealth in seafarers. The approach combines fNIRS and PHQ-9 scores, providing a quantitative method for the assessment of mental health problems and further help with better rehabilitation designs in seafarers during voyages.
Collapse
Affiliation(s)
- Lingguo Bu
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | | | | | | |
Collapse
|
35
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|
36
|
Premilovac D, Blackwood SJ, Ramsay CJ, Keske MA, Howells DW, Sutherland BA. Transcranial contrast-enhanced ultrasound in the rat brain reveals substantial hyperperfusion acutely post-stroke. J Cereb Blood Flow Metab 2020; 40:939-953. [PMID: 32063081 PMCID: PMC7181087 DOI: 10.1177/0271678x20905493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Direct and real-time assessment of cerebral hemodynamics is key to improving our understanding of cerebral blood flow regulation in health and disease states such as stroke. While a number of sophisticated imaging platforms enable assessment of cerebral perfusion, most are limited either spatially or temporally. Here, we applied transcranial contrast-enhanced ultrasound (CEU) to measure cerebral perfusion in real-time through the intact rat skull before, during and after ischemic stroke, induced by intraluminal filament middle cerebral artery occlusion (MCAO). We demonstrate expected decreases in cortical and striatal blood volume, flow velocity and perfusion during MCAO. After filament retraction, blood volume and perfusion increased two-fold above baseline, indicative of acute hyperperfusion. Adjacent brain regions to the ischemic area and the contralateral hemisphere had increased blood volume during MCAO. We assessed our data using wavelet analysis to demonstrate striking vasomotion changes in the ischemic and contralateral cortices during MCAO and reperfusion. In conclusion, we demonstrate the application of CEU for real-time assessment of cerebral hemodynamics and show that the ischemic regions exhibit striking hyperemia post-MCAO. Whether this post-stoke hyperperfusion is sustained long-term and contributes to stroke severity is not known.
Collapse
Affiliation(s)
- Dino Premilovac
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sarah J Blackwood
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Ciaran J Ramsay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David W Howells
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
37
|
Seidel-Marzi O, Ragert P. Neurodiagnostics in Sports: Investigating the Athlete's Brain to Augment Performance and Sport-Specific Skills. Front Hum Neurosci 2020; 14:133. [PMID: 32327988 PMCID: PMC7160821 DOI: 10.3389/fnhum.2020.00133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
38
|
Kim JB, Phillips Z, Paik SH, Kang SY, Jeon NJ, Kim BJ, Kim BM. Cerebral hemodynamic monitoring of Parkinson's disease patients with orthostatic intolerance during head-up tilt test. NEUROPHOTONICS 2020; 7:025002. [PMID: 32411811 PMCID: PMC7202364 DOI: 10.1117/1.nph.7.2.025002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Significance: Monitoring of cerebral perfusion rather than blood pressure changes during a head-up tilt test (HUTT) is proposed to understand the pathophysiological effect of orthostatic intolerance (OI), including orthostatic hypotension (OH), in Parkinson's disease (PD) patients. Aim: We aim to characterize and distinguish the cerebral perfusion response to a HUTT for healthy controls (HCs) and PD patients with OI symptoms. Approach: Thirty-nine PD patients with OI symptoms [10 PD patients with OH (PD-OH) and 29 PD patients with normal HUTT results (PD-NOR)], along with seven HCs participated. A 108-channel diffuse optical tomography (DOT) system was used to reconstruct prefrontal oxyhemoglobin (HbO), deoxyhemoglobin (Hb), and total hemoglobin (HbT) changes during dynamic tilt (from supine to 70-deg tilt) and static tilt (remained tilted at 70 deg). Results: HCs showed rapid recovery of cerebral perfusion in the early stages of static tilt. PD-OH patients showed decreasing HbO and HbT during dynamic tilt, continuing into the static tilt period. The rate of HbO change from dynamic tilt to static tilt is the distinguishing feature between HCs and PD-OH patients. Accordingly, PD-NOR patients were subgrouped based on positive-rate and negative-rate of HbO change. PD patients with a negative rate of HbO change were more likely to report severe OI symptoms in the COMPASS questionnaire. Conclusions: Our findings showcase the usability of DOT for sensitive detection and quantification of autonomic dysfunction in PD patients with OI symptoms, even those with normal HUTT results.
Collapse
Affiliation(s)
- Jung Bin Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
| | - Zephaniah Phillips
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Seung-ho Paik
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
- KLIEN Inc., Seoul Biohub, Seoul, Republic of Korea
| | - Shin-young Kang
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Nam-Joon Jeon
- Korea University Anam Hospital, Neurophysiology Laboratory, Seoul, Republic of Korea
| | - Byung-Jo Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
- Korea University Anam Hospital, Brain Convergence Research Center, Seoul, Republic of Korea
| | - Beop-Min Kim
- Korea University Anam Hospital, Department of Neurology, Seoul, Republic of Korea
| |
Collapse
|
39
|
The Contribution of Functional Magnetic Resonance Imaging to the Understanding of the Effects of Acute Physical Exercise on Cognition. Brain Sci 2020; 10:brainsci10030175. [PMID: 32197357 PMCID: PMC7139910 DOI: 10.3390/brainsci10030175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
The fact that a single bout of acute physical exercise has a positive impact on cognition is well-established in the literature, but the neural correlates that underlie these cognitive improvements are not well understood. Here, the use of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), offers great potential, which is just starting to be recognized. This review aims at providing an overview of those studies that used fMRI to investigate the effects of acute physical exercises on cerebral hemodynamics and cognition. To this end, a systematic literature survey was conducted by two independent reviewers across five electronic databases. The search returned 668 studies, of which 14 studies met the inclusion criteria and were analyzed in this systematic review. Although the findings of the reviewed studies suggest that acute physical exercise (e.g., cycling) leads to profound changes in functional brain activation, the small number of available studies and the great variability in the study protocols limits the conclusions that can be drawn with certainty. In order to overcome these limitations, new, more well-designed trials are needed that (i) use a more rigorous study design, (ii) apply more sophisticated filter methods in fMRI data analysis, (iii) describe the applied processing steps of fMRI data analysis in more detail, and (iv) provide a more precise exercise prescription.
Collapse
|
40
|
Bu L, Qi L, Yan W, Yan Q, Tang Z, Li F, Liu X, Diao C, Li K, Dong G. Acute kick-boxing exercise alters effective connectivity in the brain of females with methamphetamine dependencies. Neurosci Lett 2020; 720:134780. [PMID: 31978497 DOI: 10.1016/j.neulet.2020.134780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Methamphetamine (METH) dependence, especially among women, is a serious global health problem. Kick-boxing exercise can be used to reduce cue-induced craving and develop a healthy lifestyle for female with METH dependencies. This study aimed to assess acute kick-boxing related changes in effective connectivity (EC) in the brain of females with METH dependencies by using functional near-infrared spectroscopy (fNIRS) signals. METHODS The fNIRS signals were continuously recorded from the left and right prefrontal cortices (LPFC/RPFC) and left and right motor cortices (LMC/RMC) of 30 female subjects with methamphetamine dependencies (METH group) and 30 age-matched controls (control group) during resting and kick-boxing exercise (training) periods. EC was calculated in the frequency range of 0.01-0.08 Hz. RESULTS In both resting and training state, the EC levels of METH group were significantly lower than the control group (p < 0.05). The EC levels of control group showed more significantly increased connection types than that of the METH group. CONCLUSION Acute kick-boxing exercise altered EC in the brain of females with METH dependencies. Furthermore, the efficiency of the information flow between different brain regions in the control group was significantly higher than that in the METH group. This study provides a novel and portable assessment technique for METH rehabilitation in females on the basis of fNIRS signals.
Collapse
Affiliation(s)
- Lingguo Bu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Liping Qi
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wu Yan
- Shandong Sport University, Jinan, 250102, China
| | - Qian Yan
- Shandong Sport University, Jinan, 250102, China
| | - Zekun Tang
- Shandong Sport University, Jinan, 250102, China
| | - Furong Li
- Female Compulsory Isolation Drug Rehabilitation Center of Shandong Province, Zibo, 255311, China
| | - Xin Liu
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, China
| | - Chunfeng Diao
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, China
| | - Kefeng Li
- Shandong Sport University, Jinan, 250102, China.
| | - Guijun Dong
- Shandong Sport University, Jinan, 250102, China.
| |
Collapse
|
41
|
Leng H, Wang Y, Jhang DF, Chu TS, Tsao CH, Tsai CH, Giamundo S, Chen YY, Liao KW, Chuang CC, Ger TR, Chen LT, Liao LD. Characterization of a Fiber Bundle-Based Real-Time Ultrasound/Photoacoustic Imaging System and Its In Vivo Functional Imaging Applications. MICROMACHINES 2019; 10:mi10120820. [PMID: 31783545 PMCID: PMC6953120 DOI: 10.3390/mi10120820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Photoacoustic (PA) imaging is an attractive technology for imaging biological tissues because it can capture both functional and structural information with satisfactory spatial resolution. Current commercially available PA imaging systems are limited by their bulky size or inflexible user interface. We present a new handheld real-time ultrasound/photoacoustic imaging system (HARP) consisting of a detachable, high-numerical-aperture (NA) fiber bundle-based illumination system integrated with an array-based ultrasound (US) transducer and a data acquisition platform. In this system, different PA probes can be used for different imaging applications by switching the transducers and the corresponding jackets to combine the fiber pads and transducer into a single probe. The intuitive user interface is a completely programmable MATLAB-based platform. In vitro phantom experiments were conducted to test the imaging performance of the developed PA system. Furthermore, we demonstrated (1) in vivo brain vasculature imaging, (2) in vivo imaging of real-time stimulus-evoked cortical hemodynamic changes during forepaw electrical stimulation, and (3) in vivo imaging of real-time cerebral pharmacokinetics in rats using the developed PA system. The overall purpose of this design concept for a customizable US/PA imaging system is to help overcome the diverse challenges faced by medical researchers performing both preclinical and clinical PA studies.
Collapse
Affiliation(s)
- He Leng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - De-Fu Jhang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Tsung-Sheng Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Chia-Hui Tsao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - Chia-Hua Tsai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | | | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chiung-Cheng Chuang
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Correspondence:
| |
Collapse
|
42
|
Bu L, Wu Y, Yan Q, Tang L, Liu X, Diao C, Li K, Dong G. Effects of physical training on brain functional connectivity of methamphetamine dependencies as assessed using functional near-infrared spectroscopy. Neurosci Lett 2019; 715:134605. [PMID: 31698028 DOI: 10.1016/j.neulet.2019.134605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study aims to assess the effects of physical training based on the functional near-infrared spectroscopy (fNIRS) and heart rate signals. METHODS The oxygenated hemoglobin concentration (Delta [HbO2]) signals were recorded from the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left motor cortex (LMC) and right motor cortex (RMC) of 23 subjects with methamphetamine (METH) dependencies at resting, spinning training and strength training states. The wavelet phase coherence (WPCO) values were calculated in four frequency intervals: I, 0.6-2; II, 0.145-0.6; III, 0.052-0.145; and IV, 0.021-0.052 Hz. During the spinning training and strength training states, heart rate signals were recorded at 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 min, respectively. RESULTS After physical training, the brain regions of LPFC, RPFC and LMC showed different degrees of activation in the subjects with METH dependencies (p < 0.05). The WPCO values between the brain regions significantly altered after spinning training and strength training (p < 0.05) in frequency intervals I, II, III and IV. CONCLUSIONS The altered WPCO values indicated physical training could affect brain functional connectivity (FC) to a certain extent in the subjects with METH dependencies. These findings provide a method for the assessment of the effects of physical training in FC and will contribute to the development of drug rehabilitation methods in subjects with METH dependencies.
Collapse
Affiliation(s)
- Lingguo Bu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Yan Wu
- Shandong Sport University, Jinan, 250102, PR China
| | - Qian Yan
- Shandong Sport University, Jinan, 250102, PR China
| | - Lei Tang
- Luzhong Compulsory Isolation Drug Rehabilitation Center of Shandong Province, Zibo, 255311, PR China
| | - Xin Liu
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, PR China
| | - Chunfeng Diao
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, PR China
| | - Kefeng Li
- Shandong Sport University, Jinan, 250102, PR China.
| | - Guijun Dong
- Shandong Sport University, Jinan, 250102, PR China.
| |
Collapse
|
43
|
Seidel O, Carius D, Roediger J, Rumpf S, Ragert P. Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls. Exp Brain Res 2019; 237:2957-2972. [PMID: 31506708 PMCID: PMC6794243 DOI: 10.1007/s00221-019-05646-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023]
Abstract
It is well known that endurance exercise modulates the cardiovascular, pulmonary, and musculoskeletal system. However, knowledge about its effects on brain function and structure is rather sparse. Hence, the present study aimed to investigate exercise-dependent adaptations in neurovascular coupling to different intensity levels in motor-related brain regions. Moreover, expertise effects between trained endurance athletes (EA) and active control participants (ACP) during a cycling test were investigated using multi-distance functional near-infrared spectroscopy (fNIRS). Initially, participants performed an incremental cycling test (ICT) to assess peak values of power output (PPO) and cardiorespiratory parameters such as oxygen consumption volume (VO2max) and heart rate (HRmax). In a second session, participants cycled individual intensity levels of 20, 40, and 60% of PPO while measuring cardiorespiratory responses and neurovascular coupling. Our results revealed exercise-induced decreases of deoxygenated hemoglobin (HHb), indicating an increased activation in motor-related brain areas such as primary motor cortex (M1) and premotor cortex (PMC). However, we could not find any differential effects in brain activation between EA and ACP. Future studies should extend this approach using whole-brain configurations and systemic physiological augmented fNIRS measurements, which seems to be of pivotal interest in studies aiming to assess neural activation in a sports-related context.
Collapse
Affiliation(s)
- Oliver Seidel
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany.
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Julia Roediger
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Sebastian Rumpf
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
44
|
Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Deán-Ben XL, Shoham S, Razansky D. Isolated Murine Brain Model for Large-Scale Optoacoustic Calcium Imaging. Front Neurosci 2019; 13:290. [PMID: 31068768 PMCID: PMC6491858 DOI: 10.3389/fnins.2019.00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Real-time visualization of large-scale neural dynamics in whole mammalian brains is hindered with existing neuroimaging methods having limited capacity when it comes to imaging large tissue volumes at high speeds. Optoacoustic imaging has been shown to be capable of real-time three-dimensional imaging of multiple cerebral hemodynamic parameters in rodents. However, optoacoustic imaging of calcium activity deep within the mammalian brain is hampered by strong blood absorption in the visible light spectrum as well as a lack of activity labels excitable in the near-infrared window. We have developed and validated an isolated whole mouse brain preparation labeled with genetically encoded calcium indicator GCaMP6f, which can closely resemble in vivo conditions. An optoacoustic imaging system coupled to a superfusion system was further designed and used for rapid volumetric monitoring of stimulus-evoked calcium dynamics in the brain. These new imaging setup and isolated preparation's protocols and characteristics are described here in detail. Our new technique captures calcium fluxes as true three-dimensional information across the entire brain with temporal resolution of 10 ms and spatial resolution of 150 μm, thus enabling large-scale neural recording at penetration depths and spatio-temporal resolution scales not covered with any existing neuroimaging techniques.
Collapse
Affiliation(s)
- Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Oleksiy Degtyaruk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Benedict Mc Larney
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Rebling
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luis Deán-Ben
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Shy Shoham
- Tech4Health and Neuroscience Institutes and Department of Ophthalmology, New York University Langone Health, New York, NY, United States
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Liu W, Li B, Gao H, Wang D, Wang L, Yang Z, Cao H, He W, Wang H, Zhang J, Xing Y. The application of small organic π-conjugated discotic derivatives in photoacoustic imaging and photothermal conversion. NANOTECHNOLOGY 2019; 30:035705. [PMID: 30444728 DOI: 10.1088/1361-6528/aaea25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-infrared absorbing dyes are catching people's attention as they are committed to find materials with greater photoacoustic (PA) and photothermal (PT) effect. In this study, a new series of organic π-conjugated discotic derivatives synthesized via [2 + 2] click chemistry were introduced. The PA intensity and PT conversion effect of the derivatives were monitored. It was found that the π-conjugated discotic derivatives had a proper absorption peak and PA intensity by introducing the click regents. Furthermore, the PA intensity remained relatively high, while B12 molecules were embedded in hydrophobic phospholipid bilayer of liposomes (B12⊂L). The application in biological therapy for tumors become possible as the toxicity of B12⊂L was low. What's more, when B12 molecules embedded in poly (N-isopropylacrylamide)-block-poly (2-nitrobenzyl methacrylate) (PNIPAM-b-PNBM) thermosensitive micelles were irradiated by laser, the molecules could take the place of direct temperature stimulus. This work affords us a way to solve the problem in which direct temperature stimulus is inapplicable.
Collapse
Affiliation(s)
- Wenyan Liu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Prasad A, Chaichi A, Kelley DP, Francis J, Gartia MR. Current and future functional imaging techniques for post-traumatic stress disorder. RSC Adv 2019; 9:24568-24594. [PMID: 35527877 PMCID: PMC9069787 DOI: 10.1039/c9ra03562a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma and stressor related psychiatric disorder associated with structural, metabolic, and molecular alternations in several brain regions including diverse cortical areas, neuroendocrine regions, the striatum, dopaminergic, adrenergic and serotonergic pathways, and the limbic system. We are in critical need of novel therapeutics and biomarkers for PTSD and a deep understanding of cutting edge imaging and spectroscopy methods is necessary for the development of promising new approaches to better diagnose and treat the disorder. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) criterion, all forms of traumatic stress-induced disorder are considered acute stress disorder for the first month following the stressor. Only after symptoms do not remit for one month can the disorder be deemed PTSD. It would be particularly useful to differentiate between acute stress disorder and PTSD during the one month waiting period so that more intensive treatments can be applied early on to patients with a high likelihood of developing PTSD. This would potentially enhance treatment outcomes and/or prevent the development of PTSD. Comprehension of the qualities and limitations of currently applied methods as well as the novel emerging techniques provide invaluable knowledge for fast paced development. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression. As the field currently stands, there is no diagnostic biomarker available for any psychiatric disease, PTSD included. Currently, emerging and available technologies are not utilized to their full capacity and in appropriate experimental designs for the most fruitful possible studies in this area. Therefore, there is an apparent need for improved methods in PTSD research. This review demonstrates the current state of the literature in PTSD, including molecular, cellular, and behavioral indicators, possible biomarkers and clinical and pre-clinical imaging techniques relevant to PTSD, and through this, elucidate the void of current practical imaging and spectroscopy methods that provide true biomarkers for the disorder and the significance of devising new techniques for future investigations. We are unlikely to develop a single biomarker for any psychiatric disorder however. As psychiatric disorders are incomparably complex compared to other medical diagnoses, its most likely that transcriptomic, metabolomic and structural and connectomic imaging data will have to be analyzed in concert in order to produce a dependable non-behavioral marker of PTSD. This can explain the necessity of bridging conventional approaches to novel technologies in order to create a framework for further discoveries in the treatment of PTSD. Conventional methods of studying posttraumatic stress disorder (PTSD) have proven to be insufficient for diagnosis. We have reviewed clinical and preclinical imaging techniques as well as molecular, cellular, and behavioral indicators for PTSD.![]()
Collapse
Affiliation(s)
- Alisha Prasad
- Department of Mechanical and Industrial Engineering
- Louisiana State University
- Baton Rouge
- USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering
- Louisiana State University
- Baton Rouge
- USA
| | - D. Parker Kelley
- Comparative Biomedical Sciences
- School of Veterinary Medicine
- Louisiana State University
- Baton Rouge
- USA
| | - Joseph Francis
- Comparative Biomedical Sciences
- School of Veterinary Medicine
- Louisiana State University
- Baton Rouge
- USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|
47
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|
48
|
Hu S, Zheng T, Dong Y, Du J, Liu L. Effect of Anodal Direct-Current Stimulation on Cortical Hemodynamic Responses With Laser-Speckle Contrast Imaging. Front Neurosci 2018; 12:503. [PMID: 30140201 PMCID: PMC6094971 DOI: 10.3389/fnins.2018.00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct-current stimulation (DCS) offers a method for noninvasive neuromodulation usable in basic and clinical human neuroscience. Laser-speckle contrast imaging (LSCI), a powerful, low-cost method for obtaining images of dynamic systems, can detect regional blood-flow distributions with high spatial and temporal resolutions. Here, we used LSCI for measuring DCS-induced cerebral blood flow in real-time. Results showed that the change-rate of cerebral blood flow could reach approximately 10.1 ± 5.1% by DCS, indicating that DCS can increase cerebral blood flow and alter cortical hemodynamic responses. Thus, DCS shows potential for the clinical treatment and rehabilitation of ischemic strokes.
Collapse
Affiliation(s)
- Shuo Hu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yanchao Dong
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
49
|
Kuo WC, Kuo YM, Syu JP, Wang HL, Lai CM, Chen JW, Lo YC, Chen YY. The use of intensity-based Doppler variance method for single vessel response to functional neurovascular activation. JOURNAL OF BIOPHOTONICS 2018; 11:e201800017. [PMID: 29688625 DOI: 10.1002/jbio.201800017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/19/2018] [Indexed: 05/09/2023]
Abstract
This study presents 1 use of optical coherence tomography (OCT) angiography technique to examine neurovascular coupling effect. Repeated B-scans OCT recording is performed on the rat somatosensory cortex with cranial window preparation while its contralateral forepaw is electrically stimulated to activate the neurons in rest. We use an intensity-based Doppler variance (IBDV) algorithm mapped cerebral blood vessels in the cortex, and the temporal alteration in blood perfusion during neurovascular activation is analyzed using the proposed IBDV quantitative parameters. By using principal component analysis-based Fuzzy C Means clustering method, the stimulus-evoked vasomotion patterns were classified into 3 categories. We found that the response time of small vessels (resting diameter 14.9 ±6.6 μm), middle vessels (resting diameter 21.1 ±7.9 μm) and large vessels (resting diameter 50.7 ±6.5 μm) to achieve 5% change of vascular dilation after stimulation was 1.5, 2 and 5.5 seconds, respectively. Approximately 5% peak change of relative blood flow (RBF) in both small and middle vessels was observed. The large vessels react slowly and their responses nearly 4 seconds delayed, but no significant change in RBF of the large vessels was seen.
Collapse
Affiliation(s)
- Wen-Chuan Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yue-Ming Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Pu Syu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ming Lai
- Department of Electronic Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Bandla A, Liao LD, Chan SJ, Ling JM, Liu YH, Shih YYI, Pan HC, Wong PTH, Lai HY, King NKK, Chen YY, Ng WH, Thakor NV. Simultaneous functional photoacoustic microscopy and electrocorticography reveal the impact of rtPA on dynamic neurovascular functions after cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:980-995. [PMID: 28685662 PMCID: PMC5999003 DOI: 10.1177/0271678x17712399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advance of thrombolytic therapy has been hampered by the lack of optimization of the therapy during the hyperacute phase of focal ischemia. Here, we investigate neurovascular dynamics using a custom-designed hybrid electrocorticography (ECoG)-functional photoacoustic microscopy (fPAM) imaging system during the hyperacute phase (first 6 h) of photothrombotic ischemia (PTI) in male Wistar rats following recombinant tissue plasminogen activator (rtPA)-mediated thrombolysis. We reported, for the first time, the changes in neural activity and cerebral hemodynamic responses following rtPA infusion at different time points post PTI. Interestingly, very early administration of rtPA (< 1 h post PTI) resulted in only partial recovery of neurovascular dynamics (specifically , neural activity recovered to 71 ± 3.5% of baseline and hemodynamics to only 52 ± 2.6% of baseline) and late administration of rtPA (> 4 h post PTI) resulted in the deterioration of neurovascular function. A therapeutic window between 1 and 3 h post PTI was found to improve recovery of neurovascular function (i.e. significant restoration of neural activity to 93 ± 4.2% of baseline and hemodynamics to 81 ± 2.1% of baseline, respectively). The novel combination of fPAM and ECoG enables direct mapping of neurovascular dynamics and serves as a platform to evaluate potential interventions for stroke.
Collapse
Affiliation(s)
- Aishwarya Bandla
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,2 Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Lun-De Liao
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,3 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, R.O.C
| | - Su Jing Chan
- 4 Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA.,5 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ji Min Ling
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,6 Department of Neurosurgery, National Neuroscience Institute, Singapore.,7 SingHealth Duke-NUS Neuroscience Academic Clinical Program, National Neuroscience Institute, Singapore
| | - Yu-Hang Liu
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,8 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Yen-Yu Ian Shih
- 9 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han-Chi Pan
- 3 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, R.O.C
| | - Peter Tsun-Hon Wong
- 5 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hsin-Yi Lai
- 10 Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, China
| | | | - You-Yin Chen
- 11 Department of Biomedical Engineering, National Yang Ming University, Taiwan, R.O.C
| | - Wai Hoe Ng
- 6 Department of Neurosurgery, National Neuroscience Institute, Singapore.,7 SingHealth Duke-NUS Neuroscience Academic Clinical Program, National Neuroscience Institute, Singapore
| | - Nitish V Thakor
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,2 Department of Biomedical Engineering, National University of Singapore, Singapore.,8 Department of Electrical and Computer Engineering, National University of Singapore, Singapore.,12 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|