1
|
Zheng W, Zou M, Hu X, Gao H, Song W, Hou Q, Liu Y, Cheng Z. Human epididymis protein 4-annexin II binding promotes aberrant epithelial-fibroblast crosstalk in pulmonary fibrosis. Commun Biol 2025; 8:93. [PMID: 39833358 PMCID: PMC11756390 DOI: 10.1038/s42003-025-07529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Invasive lung myofibroblasts are the main cause of tissue remodeling in idiopathic pulmonary fibrosis (IPF). A key mechanism contributing to this important feature is aberrant crosstalk between the abnormal/injured lung epithelium and pulmonary fibroblasts. Here, we demonstrate that lungs from patients with IPF and from mice with bleomycin (BLM)-induced pulmonary fibrosis (PF) are characterized by the induction of human epididymis protein 4 (HE4) overexpression in epithelial cells. HE4 knockdown primarily in epithelial cells attenuates BLM-induced PF in mice, whereas the administration of recombinant mouse HE4 exacerbates fibrosis after BLM stimulation. Mechanistic analysis shows that HE4 and annexin II (ANXA2) specific binding enhances the profibrotic phenotype in epithelial cells, and directly promotes lung fibroblast activation, leading to aberrant epithelial-fibroblast crosstalk and the persistent myofibroblast phenotype. The HE4 and ANXA2 binding site is located after the 30th amino acid at the N terminus of the HE4 molecule. Finally, intratracheal administration of HE4 shRNA lentivirus protects mice against BLM-induced PF. These data suggest that HE4 can serve as a potential therapeutic target in the treatment of IPF.
Collapse
Affiliation(s)
- Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Menglin Zou
- Fourth Ward of Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiwei Song
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinhui Hou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| |
Collapse
|
2
|
Song X, Zhu Y, Geng W, Jiao J, Liu H, Chen R, He Q, Wang L, Sun X, Qin W, Geng J, Chen Z. Spatial and single-cell transcriptomics reveal cellular heterogeneity and a novel cancer-promoting Treg cell subset in human clear-cell renal cell carcinoma. J Immunother Cancer 2025; 13:e010183. [PMID: 39755578 PMCID: PMC11748785 DOI: 10.1136/jitc-2024-010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated. METHODS To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue. On the basis, the findings were investigated in vitro using tissue and blood samples from 15 patients with ccRCC and validated in the broader samples on tissue microarrays. RESULTS In this study, we revealed previously unreported subsets of both stromal and immune cells, as well as mapped their spatial location at finer resolution. In addition, we validated the clusters of tumor cells after removing batch effects according to six characterized gene sets, including epithelial-mesenchymal transitionhigh clusters, metastatic clusters and proximal tubulehigh clusters. Importantly, we identified a special regulatory T (Treg) cell subpopulation that has the molecular characteristics of terminal effector Treg cells but expresses multiple cytokines, such as interleukin (IL)-1β and IL-18. This group of Treg cells has stronger immunosuppressive function and was associated with a worse prognosis in ccRCC cohorts. They were colocalized with MRC1 + FOLR2 + tumor-associated macrophages (TAMs) at the tumor-normal interface to form a positive feedback loop, maintaining a synergistic procarcinogenic effect. In addition, we traced the origin of IL-1β+ Treg cells and revealed that IL-18 can induce the expression of IL-1β in Treg cells via the ERK/NF-κB pathway. CONCLUSIONS We demonstrated a novel cancer-promoting Treg cell subset and its interactions with MRC1 + FOLR2 +TAMs, which provides new insight into Treg cell heterogeneity and potential therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Xiyu Song
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenwen Geng
- Department of Breast Surgery, Shandong University, Jinan, Shandong, China
| | - Jianhua Jiao
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Urology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongjiao Liu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qian He
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijuan Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuxuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weijun Qin
- Department of Urology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiejie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xian, Shaanxi, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xian, Shaanxi, China
| |
Collapse
|
3
|
Xiaorong Y, Lu X, Fangyue X, Chao X, Jun G, Qiang W. Integrated multiomics characterization reveals cuproptosis-related hub genes for predicting the prognosis and clinical efficacy of ovarian cancer. Front Immunol 2024; 15:1452294. [PMID: 39600695 PMCID: PMC11588705 DOI: 10.3389/fimmu.2024.1452294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background As a prevalent malignancy in women, ovarian cancer (OC) presents a challenge in clinical practice because of its poor prognosis and poor therapeutic efficacy. The mechanism by which cuproptosis activity is accompanied by immune infiltration in OC remains unknown. Here, we investigated cuproptosis-related OC subtypes and relevant immune landscapes to develop a risk score (RS) model for survival prediction. Methods Cuproptosis-related genes (CRGs) were identified to construct molecular subtypes via an unsupervised clustering algorithm based on the expression profiles of survival-related CRGs in the GEO database. Single-cell datasets were used to estimate immune infiltration among subtypes. The RS oriented from molecular subtypes was developed via LASSO Cox regression in the TCGA OC dataset and independently validated in the GEO and TCGA datasets. Hub markers from RS were identified in tissues and cell lines. The function of the key gene from RS was identified in vitro. Results We investigated cuproptosis activity and immune infiltration to establish three clinical subtypes of OC based the differentially expressed genes (DEGs) from CRGs to create an RS model validated for clinical efficacy and prognosis. Six hub genes from the RS served as ongenic markers in OC tissues and cell lines. The function of GAS1 in the RS model revealed that it exerts oncogenic effects. Conclusions Our study provides a novel RS model including 6 hub genes associated with cuproptosis and immune infiltration to predict OC prognosis as well as clinical efficacy.
Collapse
Affiliation(s)
- Yang Xiaorong
- Department of Gynecologic Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, China
| | - Xu Lu
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Fangyue
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Chao
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Gao Jun
- Department of Gynecologic Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, China
| | - Wen Qiang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
4
|
Nie X, Gao L, Zheng M, Wang S, Wang C, Li X, Liu O, Gou R, Liu J, Lin B. ST14 interacts with TMEFF1 and is a predictor of poor prognosis in ovarian cancer. BMC Cancer 2024; 24:330. [PMID: 38468232 DOI: 10.1186/s12885-024-11958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
TMEFF1 is a new protein involved in the physiological functions of the central nervous system, and we previously reported TMEFF1 can promote ovarian cancer. ST14 was determined to be involved in the processes of epidermal differentiation, epithelial cell integrity, and vascular endothelial cell migration, etc. The relationship between ST14 and TMEFF1 in the ovary remains unknown. In this study, we detected the expression of ST14 and TMEFF1 in 130 different ovarian cancer tissues through immunohistochemistry. We determined ST14 and TMEFF1 were highly expressed in ovarian cancer, indicating a higher degree of tumor malignancy and a worse prognosis. Tissues significantly expressing ST14 also highly expressed TMEFF1, and the expression of the two proteins was positively correlated. Consistently, immunofluorescence double staining demonstrated the co-localization of ST14 and TMEFF1 in the same region, and immunoprecipitation confirmed the interaction between ST14 and TMEFF1. TMEFF1 expression was also reduced after knocking down ST14 through Western blot. MTT, wound healing and Transwell assays results determined that knockdown of ST14 inhibited proliferation, migration and invasion of ovarian cancer cells in vitro, but the inhibitory effect was restored after adding TMEFF1 exogenous protein. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that ST14 and its related genes were enriched in the processes of epithelial formation, intercellular adhesion, protein localization, and mitosis regulation. We also clarified the kinase, microRNA, and transcription factor target networks and the impact of genetic mutations on prognosis. Overall, high expression of ST14 and TMEFF1 in ovarian cancer predicts higher tumor malignancy and a worse prognosis. ST14 and TMEFF1 co-localize and interact with each other in ovarian cancer. ST14 can regulate TMEFF1 expression to promote proliferation, migration and invasion of ovarian cancer cells. We speculate that the relationship between ST14 and TMEFF1 in ovarian cancer could become a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Lingling Gao
- Union Hospital, Tongji Medical College, Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Tianjin Central Gynecology and Obstetrics Hospital Affiliated to Nankai University, Tianjin, China
| | - Caixia Wang
- West China Second University Hospital, Department of Obstetrics and Gynecology, Sichuan University, Sichuan, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.
| |
Collapse
|
5
|
Qi Y, Liu J, Wang X, Zhang Y, Li Z, Qi X, Huang Y. Development and validation of an ultrasound‑based radiomics nomogram to predict lymph node status in patients with high-grade serous ovarian cancer: a retrospective analysis. J Ovarian Res 2024; 17:48. [PMID: 38389075 PMCID: PMC10882775 DOI: 10.1186/s13048-024-01375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Despite advances in medical imaging technology, the accurate preoperative prediction of lymph node status remains challenging in ovarian cancer. This retrospective study aimed to investigate the feasibility of using ultrasound-based radiomics combined with preoperative clinical characteristics to predict lymph node metastasis (LNM) in patients with high-grade serous ovarian cancer (HGSOC). RESULTS Patients with 401 HGSOC lesions from two institutions were enrolled: institution 1 for the training cohort (n = 322) and institution 2 for the external test cohort (n = 79). Radiomics features were extracted from the three preoperative ultrasound images of each lesion. During feature selection, primary screening was first performed using the sample variance F-value, followed by recursive feature elimination (RFE) to filter out the 12 most significant features for predicting LNM. The radscore derived from these 12 radiomic features and three clinical characteristics were used to construct a combined model and nomogram to predict LNM, and subsequent 10-fold cross-validation was performed. In the test phase, the three models were tested with external test cohort. The radiomics model had an area under the curve (AUC) of 0.899 (95% confidence interval [CI]: 0.864-0.933) in the training cohort and 0.855 (95%CI: 0.774-0.935) in the test cohort. The combined model showed good calibration and discrimination in the training cohort (AUC = 0.930) and test cohort (AUC = 0.881), which were superior to those of the radiomic and clinical models alone. CONCLUSIONS The nomogram consisting of the radscore and preoperative clinical characteristics showed good diagnostic performance in predicting LNM in patients with HGSOC. It may be used as a noninvasive method for assessing the lymph node status in these patients.
Collapse
Affiliation(s)
- Yue Qi
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China
| | - Jinchi Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China
| | - Yuqing Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China
| | - Zhixun Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China
| | - Xinyu Qi
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
6
|
Liu T, Zhao M, Peng L, Chen J, Xing P, Gao P, Chen L, Qiao X, Wang Z, Di J, Qu H, Jiang B, Su X. WFDC3 inhibits tumor metastasis by promoting the ERβ-mediated transcriptional repression of TGFBR1 in colorectal cancer. Cell Death Dis 2023; 14:425. [PMID: 37443102 PMCID: PMC10345115 DOI: 10.1038/s41419-023-05956-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Estrogen plays a protective role in colorectal cancer (CRC) and primarily functions through estrogen receptor β (ERβ). However, clinical strategies for CRC therapy associated with ERβ are still under investigation. Our discoveries identified WFDC3 as a tumor suppressor that facilitates estrogen-induced inhibition of metastasis through the ERβ/TGFBR1 signaling axis. WFDC3 interacts with ERβ and increases its protein stability by inhibiting its proteasome-dependent degradation. WFDC3 represses TGFBR1 expression through ERβ-mediated transcription. Blocking TGFβ signaling with galunisertib, a drug used in clinical trials that targets TGFBR1, impaired the migration of CRC cells induced by WFDC3 depletion. Moreover, there was clinical significance to WFDC3 in CRC, as CRC patients with high WFDC3 expression in tumor cells had favorable prognoses. Therefore, this work suggests that WFDC3 could be an indicator for therapies targeting the estrogen/ERβ pathway in CRC patients.
Collapse
Affiliation(s)
- Tianqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Sunshine Coast, QLD, 4556, Australia
| | - Lin Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Jiangbo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Pu Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Pin Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Lei Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xiaowen Qiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 100871, Beijing, People's Republic of China.
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| |
Collapse
|
7
|
Preoperative prediction of miliary changes in the small bowel mesentery in advanced high-grade serous ovarian cancer using MRI radiomics nomogram. Abdom Radiol (NY) 2023; 48:1119-1130. [PMID: 36651979 DOI: 10.1007/s00261-023-03802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE To develop and validate an MRI-based radiomics nomogram for the preoperative prediction of miliary changes in the small bowel mesentery (MCSBM) in advanced high-grade serous ovarian cancer (HGSOC). MATERIALS AND METHODS One hundred and twenty-eight patients with pathologically proved advanced HGSOC (training cohort: n = 91; validation cohort: n = 37) were retrospectively included. All patients were initially evaluated as MCSBM-negative by preoperative imaging modalities but were finally confirmed by surgery and histopathology (MCSBM-positive: n = 53; MCSBM-negative: n = 75). Five radiomics signatures were built based on the features from multisequence magnetic resonance images. Independent clinicoradiological factors and radiomics-fusion signature were further integrated to construct a radiomics nomogram. The performance of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves and clinical utility. RESULTS Radiomics signatures, ascites, and tumor size were independent predictors of MCSBM. A nomogram integrating radiomics features and clinicoradiological factors demonstrated satisfactory predictive performance with areas under the curves (AUCs) of 0.871 (95% CI 0.801-0.941) and 0.858 (95% CI 0.739-0.976) in the training and validation cohorts, respectively. The net reclassification index (NRI) and integrated discrimination improvement (IDI) revealed that the nomogram had a significantly improved ability compared with the clinical model in the training cohort (NRI = 0.343, p = 0.002; IDI = 0.299, p < 0.001) and validation cohort (NRI = 0.409, p = 0.015; IDI = 0.283, p = 0.001). CONCLUSION Our proposed nomogram has the potential to serve as a noninvasive tool for the prediction of MCSBM, which is helpful for the individualized assessment of advanced HGSOC patients.
Collapse
|
8
|
Sun ML, Yang ZY, Wu QJ, Li YZ, Li XY, Liu FH, Wei YF, Wen ZY, Lin B, Gong TT. The Role of Human Epididymis Protein 4 in the Diagnosis and Prognosis of Diseases: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. Front Med (Lausanne) 2022; 9:842002. [PMID: 35402435 PMCID: PMC8987291 DOI: 10.3389/fmed.2022.842002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background The application of human epididymis protein 4 (HE4) in diverse health diseases, especially in cancers, has been extensively studied in recent decades. To summarize the existing evidence of the aforementioned topic, we conducted an umbrella review to systematically evaluate the reliability and strength of evidence regarding the role of HE4 in the diagnostic and prognostic estimate of diverse diseases. Methods Electronic searches in PubMed, Web of Science, and Embase databases were conducted from inception to September 16, 2021, for meta-analyses, which focus on the role of HE4 in the diagnosis and prognosis of diseases. This study protocol has been registered at PROSPERO (CRD42021284737). We collected the meta-analysis effect size of sensitivity, specificity, positive predictive value, and negative predictive value from diagnostic studies and gathered the hazard ratio (HR) of disease-free survival, overall survival, and progression-free survival from prognostic studies. For each systematic review and meta-analysis, we used a measurable tool for evaluating systematic reviews and meta-analysis (AMSTAR) to evaluate the methodological quality. Additionally, we assessed the quality of evidence on estimating the ability of HE4 in the diagnosis and prognosis of diverse diseases by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline. Results Overall, 20 meta-analyses including a total of 331 primary studies of different diseases were examined, mainly including ovarian cancer (OC) (n = 9), endometrial cancer (EC) (n = 6), and lung cancer (LC) (n = 4). The methodological qualities of all studies were rated as moderate (45%) or high (55%) by the AMSTAR. According to the GRADE, the certainties of 18 diagnostic pieces of evidence (9 for sensitivity and 9 for specificity) were rated as moderate (34%), low (33%), and very low (33%). Moreover, outcomes from prognosis studies showed evidence (1 for disease-free survival) with high certainty in regard to cancers (such as EC, OC, and LC) with the remaining three being moderate. Conclusion This umbrella review suggested that HE4 was a favored biomarker in the prognosis of cancers, which was supported by high certainty of evidence. Additionally, HE4 could provide a suitable method for the diagnosis of EC, OC, and LC with moderate certainty evidence. Further large prospective cohort studies are needed to better elucidate the diagnostic and prognostic role of HE4 in diseases.
Collapse
Affiliation(s)
- Ming-Li Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi-Yong Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Yu Li
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao-Yan Wen
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bei Lin,
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Ting-Ting Gong,
| |
Collapse
|
9
|
Interaction between TMEFF1 and AHNAK proteins in ovarian cancer cells: Implications for clinical prognosis. Int Immunopharmacol 2022; 107:108726. [PMID: 35338959 DOI: 10.1016/j.intimp.2022.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
TMEFF1 is a newly discovered protein involved in the physiological functions of the central nervous system, embryonic development, and other biological processes. Our previous study revealed that TMEFF1 acts as a tumor-promoting gene in ovarian cancer. AHNAK, as a giant scaffolding protein, plays a role in the formation of the blood-brain barrier, cell architecture and the regulation of cardiac calcium channels. However, its role in ovarian cancer remains poorly researched. In this study, we detected the expression of AHNAK and TMEFF1 in 148 different ovarian cancer tissues, determined their relationship with pathological parameters and prognosis, clarified the interaction between the two proteins, and explored the related cancer-promoting mechanisms through immunohistochemistry, immunoprecipitation, immunofluorescence double staining, western blotting, and bioinformatics. The high expression of ANHAK and TMEFF1 in ovarian cancer indicated a higher degree of tumor malignancy and a worse prognosis. Furthermore, the expression of TMEFF1 and AHNAK was significantly positively correlated. The results also showed that AHNAK and TMEFF1 co-localized and interacted with each other in ovarian cancer tissues and cells. And knockdown of AHNAK promoted proliferation, migration and invasion of ovarian cancer cells in vitro. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that AHNAK and related genes were enriched during mitosis regulation, cytoskeleton formation, gene epigenetics, etc., whereas TMEFF1 and related genes are enriched during immune regulation and other processes. We also clarified the network of kinases, microRNA, and transcription factor targets, and the impact of genetic mutations on prognosis. Notably, AHNAK was regulated by the expression of TMEFF1 and can activate the MAPK pathways. Overall, high expression of AHNAK and TMEFF1 in ovarian cancer cells indicated a higher degree of tumor malignancy and a worse prognosis. Therefore, the interaction between AHNAK and TMEFF1 may become a potential anti-tumor target for ovarian cancer treatment.
Collapse
|
10
|
Yu J, Guo Y, Gu Y, Li F, Song H, Nian R, Fan X, Liu W. Targeting and neutralizing human epididymis protein 4 by novel nanobodies to suppress ovarian cancer cells and attenuate cisplatin resistance. Int J Biol Macromol 2022; 199:298-306. [PMID: 35016970 DOI: 10.1016/j.ijbiomac.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Abstract
Human epididymis protein 4 (HE4) is a glycoprotein secreted by epithelial ovarian cancer (EOC) cells and is a novel and specific biomarker for diagnosing and prognosing EOC. Previous studies have shown that overexpression of HE4 is correlated with EOC tumorigenesis and chemoresistance. However, less has been reported regarding the direct effect of the secreted HE4 protein as an autocrine factor in EOC cells. Here, we investigated the molecular mechanism of the secretory form of HE4 on the growth of EOC cells by applying nanobodies with a targeted interaction of free HE4. Three anti-HE4 nanobodies were selected from an immune library by phage display. HE4 secreted by serum-free cultured OVCAR3 cells increased and was effectively neutralized by anti-HE4 nanobodies, which inhibited cell viability. Treatment with the anti-HE4 nanobody 1G8 decreased Bcl-2 expression and increased BAX, cleaved PARP, and p53 levels, resulting in apoptosis of OVCAR3 cells. Moreover, 1G8 significantly improved the cisplatin response of OVCAR3 cells. Our data suggest that secretory HE4 played a novel pro-survival autocrine role and was a target of the anti-HE4 nanobody to improve the therapeutic effects of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Jianli Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Yang Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd., No. 1301 Guanguang Road, Shenzhen 518110, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd., No. 1301 Guanguang Road, Shenzhen 518110, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
11
|
Gao J, Zhu L, Zhuang H, Lin B. Human Epididymis Protein 4 and Lewis y Enhance Chemotherapeutic Resistance in Epithelial Ovarian Cancer Through the p38 MAPK Pathway. Adv Ther 2022; 39:360-378. [PMID: 34739698 DOI: 10.1007/s12325-021-01941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Ovarian cancer has a high mortality rate due to difficulties in early detection and chemotherapy resistance. Human epididymal protein 4 (HE4) has been adopted as a novel serum biomarker for early ovarian cancer diagnosis, and the presence of Lewis y antigen modifications on HE4 in ovarian cancer cell lines has been detected in previous studies. The aim of this study was to analyze the expression of HE4 and Lewis y antigen in human ovarian cancer in order to find a correlation between them, as well as with the clinical pathological parameters of patients with ovarian cancer. METHODS Immunohistochemistry was used to detect the respective expression of these compounds in two patient groups (chemotherapy-resistant and chemotherapy-sensitive) containing a total of 95 patients. Then, a bioinformatic approach was adopted and online large sample databases (TCGA, CCLE, and GTEx; Metascape, Cytoscape) were used to explore the potential mechanisms of action of these compounds. RESULTS The results of this study demonstrate that high HE4 and Lewis y expression could be used as markers for chemotherapy resistance and poor prognosis in patients with ovarian cancer. These two expression events were widely correlated in various cancer tissues and are thought to act by activating the p38 mitogen-activated protein kinases (MAPK) pathway and inducing Vascular Endothelial Growth Factor A (VEGFA), Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Early Growth Response 1 (EGR1), and Hypoxia-Inducible Factor 1-Alpha (HIFI1A), thereby promoting malignant biological behavior and resistance in ovarian cancer. CONCLUSIONS These findings not only reveal the possible mechanism by which HE4 and Lewis y antigen affect ovarian cancer but also identify a four-gene signature that could be very useful in ovarian cancer detection and/or the development of new targeted therapies.
Collapse
Affiliation(s)
- Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, Liaoning, China
| | - Huiyu Zhuang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated To Capital Medical University, Beijing, 100043, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, Liaoning, China.
| |
Collapse
|
12
|
Ding S, Li H, Zhang YH, Zhou X, Feng K, Li Z, Chen L, Huang T, Cai YD. Identification of Pan-Cancer Biomarkers Based on the Gene Expression Profiles of Cancer Cell Lines. Front Cell Dev Biol 2021; 9:781285. [PMID: 34917619 PMCID: PMC8669964 DOI: 10.3389/fcell.2021.781285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
There are many types of cancers. Although they share some hallmarks, such as proliferation and metastasis, they are still very different from many perspectives. They grow on different organ or tissues. Does each cancer have a unique gene expression pattern that makes it different from other cancer types? After the Cancer Genome Atlas (TCGA) project, there are more and more pan-cancer studies. Researchers want to get robust gene expression signature from pan-cancer patients. But there is large variance in cancer patients due to heterogeneity. To get robust results, the sample size will be too large to recruit. In this study, we tried another approach to get robust pan-cancer biomarkers by using the cell line data to reduce the variance. We applied several advanced computational methods to analyze the Cancer Cell Line Encyclopedia (CCLE) gene expression profiles which included 988 cell lines from 20 cancer types. Two feature selection methods, including Boruta, and max-relevance and min-redundancy methods, were applied to the cell line gene expression data one by one, generating a feature list. Such list was fed into incremental feature selection method, incorporating one classification algorithm, to extract biomarkers, construct optimal classifiers and decision rules. The optimal classifiers provided good performance, which can be useful tools to identify cell lines from different cancer types, whereas the biomarkers (e.g. NCKAP1, TNFRSF12A, LAMB2, FKBP9, PFN2, TOM1L1) and rules identified in this work may provide a meaningful and precise reference for differentiating multiple types of cancer and contribute to the personalized treatment of tumors.
Collapse
Affiliation(s)
- ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Han C, Chen R, Wu X, Shi N, Duan T, Xu K, Huang T. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots. Anal Chim Acta 2021; 1187:339160. [PMID: 34753571 DOI: 10.1016/j.aca.2021.339160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Rapid and sensitive detection of tumor biomarkers and cancer cells is of crucial importance for the early diagnosis and prognosis prediction of cancer. The present report describes a target-induced fluorescence enhancement immunosensor that utilizes the optical property of carbon dots (CDs) and the metal-enhanced fluorescence effect (MEF) property of silver nanoparticles (AgNPs) for the sensitive detection of the cancer biomarker human epididymis protein 4 (HE4) and ovarian cancer cells. Nitrogen and sulfur co-doped CDs with a quantum yield of 85.6% were prepared and served as the fluorophore in MEF. The HE4 antibody (Ab) specific to the HE4 antigen was linked covalently to the surface of the synthesized CDs as the capture. The HE4 Ab-conjugated AgNPs (AgNPs-Ab) were prepared and utilized as signal amplification elements. In the presence of the target HE4, composite sandwich structures were formed between the labeled CDs-Ab and AgNPs-Ab, which brought the CDs and AgNPs into proximity, resulting in the fluorescence of CDs enhancement owing to MEF. The intensity of fluorescence enhancement was positively correlated with the HE4 concentration in the clinically important range of 0.01-200 nM with a limit detection of 2.3 pM. Moreover, the immunosensor was also successfully applied to specific fluorescence labeling and quantitative determination of HE4-positive ovarian cancer cells. The proposed target-triggered MEF sensor platform demonstrated high sensitivity, excellent anti-interference ability, along with successful validation in complex biological matrices, providing a new approach for HE4 detection in early diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ruoyu Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xueqing Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Nian Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tengfei Duan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Tonghui Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
14
|
Gao L, Nie X, Gou R, Hu Y, Dong H, Li X, Lin B. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial-mesenchymal plasticity of human peritoneal mesothelial cells. J Cell Mol Med 2021; 25:10916-10929. [PMID: 34725902 PMCID: PMC8642686 DOI: 10.1111/jcmm.16983] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023] Open
Abstract
Ovarian cancer, one of the malignant gynaecological tumours with the highest mortality rate among female reproductive system, is prone to metastasis, recurrence and chemotherapy resistance, causing a poor prognosis. Exosomes can regulate the epithelial‐mesenchymal plasticity of tumour cells, remodel surrounding tumour microenvironment, and affect tumour cell proliferation, invasion and metastasis. However, the function and mechanism of exosomes in the intraperitoneal implantation of ovarian cancer remain unclear. In this study, exosomal annexin A2 (ANXA2) derived from ovarian cancer cells was co‐cultured with human peritoneal mesothelial (HMrSV5) cells; functional experiments were conducted to explore the effects of exosomal ANXA2 on the biological behaviour of HMrSV5 and the related mechanisms. This study showed that ANXA2 in ovarian cancer cells can be transferred to HMrSV5 cells through exosomes, exosomal ANXA2 can not only promote the migration, invasion and apoptosis of HMrSV5 cells, but also regulates morphological changes and fibrosis of HMrSV5 cells. Furthermore, ANXA2 promotes the mesothelial‐mesenchymal transition (MMT) and degradation of the extracellular matrix of HMrSV5 cells through PI3K/AKT/mTOR pathway, finally affects pre‐metastasis microenvironment of ovarian cancer, which provides a new theoretical basis for the mechanism of intraperitoneal implantation and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
15
|
Zhang C, Hu H, Wang X, Zhu Y, Jiang M. WFDC Protein: A Promising Diagnosis Biomarker of Ovarian Cancer. J Cancer 2021; 12:5404-5412. [PMID: 34405003 PMCID: PMC8364637 DOI: 10.7150/jca.57880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
An initial diagnosis of cancer is usually based on symptoms, abnormal physical examination and imaging tests. Ovarian cancer is difficult to be diagnosed timely due to the nonspecific symptoms, thus resulting in the high-risk mortality. Despite of the various diagnostic methods, there is still no reliable diagnostic test. Clinically, carbohydrate antigen 125(CA125) is widely recognized as a diagnosis biomarker of ovary cancer. However, CA125 is not sensitive to detect the ovary cancer at the early stage. It is essential to explore other potential biomarkers. Human epididymis protein 4 (HE4) in the whey/four-disulfide core (WFDC) proteins family shows satisfactory sensitivity in the early diagnosis of ovary cancer. In this present review, we summarized the important effects of WFDC family proteins on the proliferation, apoptosis and migration of ovary cancer and intended to provide more evidence to explore the possibility of WFDC protein as a diagnosis biomarker.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haoyue Hu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yajuan Zhu
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Jiang
- West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Li X, Wang C, Wang S, Hu Y, Jin S, Liu O, Gou R, Nie X, Liu J, Lin B. YWHAE as an HE4 interacting protein can influence the malignant behaviour of ovarian cancer by regulating the PI3K/AKT and MAPK pathways. Cancer Cell Int 2021; 21:302. [PMID: 34107979 PMCID: PMC8190858 DOI: 10.1186/s12935-021-01989-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Malignant tumours of the female reproductive system threaten the lives and health of women worldwide, with ovarian cancer having the highest mortality rate. Based on previous work, this study analysed the expression and role of YWHAE in ovarian epithelial tumours. Methods The interaction between YWHAE and HE4 was evaluated via immunoprecipitation, western blot analysis, and cellular immunofluorescence. Immunohistochemistry was used to address the relationship between YWHAE expression, clinicopathological parameters, and patient prognosis. Changes in cell invasion, epithelial–mesenchymal transition, migration, proliferation, apoptosis, and cell cycle before and after differential expression of YWHAE were also explored in ovarian cancer cell lines and via in vivo experiments. Results YWHAE was found to interact with HE4, and its expression was positively correlated with HE4 expression. Moreover, YWHAE upregulation was associated with advanced stages of ovarian cancer and poor patient prognosis. In addition, YWHAE enhanced invasion, migration, and proliferation, but inhibited the apoptosis of ovarian cancer cells. These biological effects were found to be mediated by the AKT and MAPK signalling pathways. Conclusions Altogether, this study demonstrates that YWHAE is substantially upregulated in ovarian cancer tissues, representing a risk factor for the prognosis of ovarian cancer that is positively correlated with HE4 expression. Furthermore, YWHAE and its downstream pathways may represent new therapeutic targets for ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01989-7.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Shan Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China MedicalUniversity, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
17
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Liu Q, Liu DW, Zheng MJ, Deng L, Wang HM, Jin S, Liu JJ, Hao YY, Zhu LC, Lin B. Human epididymis protein 4 promotes P‑glycoprotein‑mediated chemoresistance in ovarian cancer cells through interactions with Annexin II. Mol Med Rep 2021; 24:496. [PMID: 33955501 PMCID: PMC8127061 DOI: 10.3892/mmr.2021.12135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the effects of human epididymis protein 4 (HE4) on drug resistance and its underlying mechanisms. The associations among proteins were detected by immunoprecipitation and immunofluorescence assays. Then, stably transfected cell lines CAOV3-HE4-L and CAOV3-A2-L expressing HE4 short hairpin (sh)RNAs and ANXA2 shRNAs, respectively, were constructed. MTT assay, immunocytochemistry, western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry were employed to examine drug sensitivity, as well as the expression and activity of P-glycoprotein (P-gp). HE4 and P-gp in epithelial ovarian cancer tissues were assessed via immunohistochemistry. MicroRNAs that targeted the P-gp gene, ABCB1, were predicted using bioinformatics methods, and their expression was evaluated by RT-qPCR. The common signaling pathways shared by HE4, ANXA2 and P-gp were selected by Gene Set Enrichment Analysis (GSEA). The interaction of HE4, ANXA2 and P-gp were confirmed. P-gp expression was positively associated with HE4 and ANXA2 expression, respectively. Moreover, it was observed that there was no significant rescue of P-gp expression in CAOV3-A2-L cells following the administration of active HE4 protein. In addition, the expression of HE4 and P-gp in ovarian cancer tissues of drug-resistant patients were higher compared with that of the drug-sensitive group (P<0.05). Furthermore, the results revealed that hsa-miR-129-5p was significantly increased accompanied by decreased HE4 or ANXA2 expression and P-gp expression in CAOV3-HE4-L and CAOV3-A2-L cells. GSEA analyses disclosed that HE4, ANXA2 and P-gp genes were commonly enriched in the signaling pathway involved in regulating the actin cytoskeleton. These results indicated that HE4 promotes P-gp-mediated drug resistance in ovarian cancer cells through the interactions with ANXA2, and the underlying mechanism may be associated with decreased expression of hsa-miR-129-5p and dysregulation of the actin cytoskeleton signaling pathway.
Collapse
Affiliation(s)
- Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Da-Wo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Ming-Jun Zheng
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, D‑80337 Munich, Germany
| | - Lu Deng
- Department of Obstetrics and Gynecology, Hospital of Fudan University, Shanghai 200000, P.R. China
| | - Hui-Min Wang
- Department of Obstetrics and Gynecology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110000, P.R. China
| | - Shan Jin
- Department of Obstetrics and Gynecology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110000, P.R. China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Ying-Ying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Lian-Cheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
19
|
Rowswell-Turner RB, Singh RK, Urh A, Yano N, Kim KK, Khazan N, Pandita R, Sivagnanalingam U, Hovanesian V, James NE, Ribeiro JR, Kadambi S, Linehan DC, Moore RG. HE4 Overexpression by Ovarian Cancer Promotes a Suppressive Tumor Immune Microenvironment and Enhanced Tumor and Macrophage PD-L1 Expression. THE JOURNAL OF IMMUNOLOGY 2021; 206:2478-2488. [PMID: 33903172 DOI: 10.4049/jimmunol.2000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
Ovarian cancer is a highly fatal malignancy characterized by early chemotherapy responsiveness but the eventual development of resistance. Immune targeting therapies are changing treatment paradigms for numerous cancer types but have had minimal success in ovarian cancer. Through retrospective patient sample analysis, we have determined that high human epididymis protein 4 (HE4) production correlates with multiple markers of immune suppression in ovarian cancer, including lower CD8+ T cell infiltration, higher PD-L1 expression, and an increase in the peripheral monocyte to lymphocyte ratio. To further understand the impact that HE4 has on the immune microenvironment in ovarian cancer, we injected rats with syngeneic HE4 high- and low-expressing cancer cells and analyzed the differences in their tumor and ascites immune milieu. We found that high tumoral HE4 expression promotes an ascites cytokine profile that is rich in myeloid-recruiting and differentiation factors, with an influx of M2 macrophages and increased arginase 1 production. Additionally, CTL activation is significantly reduced in the ascites fluid, and there is a trend toward lower CTL infiltration of the tumor, whereas NK cell recruitment to the ascites and tumor is also reduced. PD-L1 expression by tumor cells and macrophages is increased by HE4 through a novel posttranscriptional mechanism. Our data have identified HE4 as a mediator of tumor-immune suppression in ovarian cancer, highlighting this molecule as a potential therapeutic target for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Rachael B Rowswell-Turner
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY .,Division of Hematology and Oncology, Department of Internal Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Rakesh K Singh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Anze Urh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, East Garden City, NY
| | - Naohiro Yano
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Kyu Kwang Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Negar Khazan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Ravina Pandita
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Umayal Sivagnanalingam
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | | | - Nicole E James
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Jennifer R Ribeiro
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Sindhuja Kadambi
- Division of Hematology and Oncology, Department of Internal Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David C Linehan
- Division of Surgical Oncology, Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Richard G Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
20
|
Zhang Y, Wang K, Zhao Y, Fan J, Han T, Si YA, Zhou B, Zhang J, Hu Z, Xie M. Dual-label time-resolved fluoroimmunoassay for simultaneous measurement of human epidermal growth factor receptor 2 and human epididymis protein 4 in serum. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-019-0201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractIn this study, a novel dual-label time-resolved fluoroimmunoassay (TRFIA) is described for simultaneous quantification of human epidermal growth factor receptor 2 (HER-2) and human epididymis protein 4 (HE4) in serum to screen gynecologic cancers. A double-antibody sandwich TRFIA was introduced with europium and samarium chelates to simultaneously detect the concentrations of HER-2 and HE4. Under optimal conditions, the proposed method exhibited wide linear ranges for HER-2 of 0.07–500 ng ml−1 and for HE4 of 0.32–1000 pmol l−1 with the average coefficient of variation below 10%. The specificity was satisfied through determining the other common tumor markers. The recovery rates were 94.5% and 96.6% on average for HER-2 and HE4, respectively. Good correlations were observed in clinical samples between developed method and commercial chemiluminescence immunoassay kits. The results demonstrated that dual-label TRFIA for HER-2 and HE4 was rapid and precise, and therefore could have a promising use in large sample detection for gynecological cancer screening.
Collapse
|
21
|
WFDC2 suppresses prostate cancer metastasis by modulating EGFR signaling inactivation. Cell Death Dis 2020; 11:537. [PMID: 32678075 PMCID: PMC7366654 DOI: 10.1038/s41419-020-02752-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022]
Abstract
WAP four-disulfide core domain 2 (WFDC2) is a small secretory protein that has been widely studied in ovarian cancer. It has been proven that WFDC2 promotes proliferation and metastasis in ovarian cancer, and serves as a diagnostic biomarker. However, the specific function of WFDC2 in prostate cancer has not been reported. Here, we first screened the diagnostic marker and favorable prognostic factor WFDC2 in prostate cancer by bioinformatics. WFDC2 expression was negatively correlated with Gleason score and metastasis in prostate cancer. Then, we revealed that overexpression of WFDC2, and addition of recombinant protein HE4 can significantly inhibit prostate cancer metastasis in vivo and in vitro. By co-immunoprecipitation and co-localization assays, we proved that WFDC2 binds to the extracellular domain of epidermal growth factor receptor (EGFR). Immunoblot showed that WFDC2 overexpression and recombinant protein HE4 addition inactivated the EGFR/AKT/GSK3B/Snail signaling pathway, and then restrained the progression of epithelial-mesenchymal transition. In conclusion, our study identified that the tumor suppressor WFDC2 can suppress prostate cancer metastasis by inactivating EGFR signaling.
Collapse
|
22
|
Zhu L, Gou R, Guo Q, Wang J, Liu Q, Lin B. High expression and potential synergy of human epididymis protein 4 and Annexin A8 promote progression and predict poor prognosis in epithelial ovarian cancer. Am J Transl Res 2020; 12:4017-4030. [PMID: 32774755 PMCID: PMC7407702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most common cause of gynecological cancer-related deaths. Aberrant expression of human epididymis protein 4 (HE4) and Annexin A8 (ANXA8) plays crucial roles in some malignancies; however, their functions in EOC remain unclear. In this study, we utilized immunohistochemistry, real-time PCR, western blotting, immunofluorescence labeling, and gene interaction and enrichment pathway analyses to explore the roles of HE4 and ANXA8 in EOC. They were highly expressed in EOC tissues, which significantly correlated with higher tumor burden, advanced FIGO stages, poor differentiation, presence of > 1 cm residual tumor, and tumor recurrence. The expression patterns of HE4 and ANXA8 were similar, and Spearman's correlation analysis showed that they were positively correlated (r=0.671, P < 0.001). Large sample database analyses also showed significant positive correlation between their mRNA expression (R=0.304, 0.321, and 0.304 in TCGA, CCLE and GTEx, respectively, all P < 0.001). Kaplan-Meier survival analysis demonstrated that advanced FIGO stages, lymph node metastasis, residual tumor size > 1 cm, and high HE4 and ANXA8 expression were significantly associated with poor overall survival (all P < 0.05). Moreover, multivariate Cox analysis showed that advanced FIGO stages and HE4 expression were independent factors for poor survival (P < 0.001, 0.012, respectively). Interaction network analysis of genes associated with ANXA8, expressed in response to HE4, revealed that these genes participated in TP53 expression, autophagy regulation, and the PID FOXO pathway. In conclusion, the potential synergy between HE4 and ANXA8 may exacerbate the disease condition. Thus, targeting HE4 and ANXA8 could be a novel therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Jing Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Qing Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| |
Collapse
|
23
|
James NE, Emerson JB, Borgstadt AD, Beffa L, Oliver MT, Hovanesian V, Urh A, Singh RK, Rowswell-Turner R, DiSilvestro PA, Ou J, Moore RG, Ribeiro JR. The biomarker HE4 (WFDC2) promotes a pro-angiogenic and immunosuppressive tumor microenvironment via regulation of STAT3 target genes. Sci Rep 2020; 10:8558. [PMID: 32444701 PMCID: PMC7244765 DOI: 10.1038/s41598-020-65353-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal gynecologic malignancy arising from the fallopian tubes that has a high rate of chemoresistant recurrence and low five-year survival rate. The ovarian cancer biomarker HE4 is known to promote proliferation, metastasis, chemoresistance, and suppression of cytotoxic lymphocytes. In this study, we sought to examine the effects of HE4 on signaling within diverse cell types that compose the tumor microenvironment. HE4 was found to activate STAT3 signaling and promote upregulation of the pro-angiogenic STAT3 target genes IL8 and HIF1A in immune cells, ovarian cancer cells, and endothelial cells. Moreover, HE4 promoted increases in tube formation in an in vitro model of angiogenesis, which was also dependent upon STAT3 signaling. Clinically, HE4 and IL8 levels positively correlated in ovarian cancer patient tissue. Furthermore, HE4 serum levels correlated with microvascular density in EOC tissue and inversely correlated with cytotoxic T cell infiltration, suggesting that HE4 may cause deregulated blood vessel formation and suppress proper T cell trafficking in tumors. Collectively, this study shows for the first time that HE4 has the ability to affect signaling events and gene expression in multiple cell types of the tumor microenvironment, which could contribute to angiogenesis and altered immunogenic responses in ovarian cancer.
Collapse
Affiliation(s)
- Nicole E James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA
| | - Jenna B Emerson
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Ashley D Borgstadt
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Lindsey Beffa
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew T Oliver
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Virginia Hovanesian
- Rhode Island Hospital, Digital Imaging and Analysis Core Facility, Providence, RI, USA
| | - Anze Urh
- Northwell Health Physician Partners Gynecologic Oncology, Brightwaters, NY, USA
| | - Rakesh K Singh
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Paul A DiSilvestro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Joyce Ou
- Warren-Alpert Medical School of Brown University, Providence, RI, USA.,Women and Infants Hospital, Department of Pathology, Providence, RI, USA
| | | | - Jennifer R Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA. .,Warren-Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
24
|
Qin YY, Huang SN, Chen G, Pang YY, Li XJ, Xing WW, Wei DM, He Y, Rong MH, Tang XZ. Clinicopathological value and underlying molecular mechanism of annexin A2 in 992 cases of thyroid carcinoma. Comput Biol Chem 2020; 86:107258. [PMID: 32304977 DOI: 10.1016/j.compbiolchem.2020.107258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid carcinoma (THCA) is one of the most frequent endocrine cancers and has increasing morbidity. Annexin A2 (ANXA2) has been found to be highly expressed in various cancers; however, its expression level and potential mechanism in THCA remain unknown. This study investigated the clinicopathological value and primary molecular machinery of ANXA2 in THCA. MATERIAL AND METHODS Public RNA-sequencing and microarray data were obtained and analyzed with ANXA2 expression in THCA and corresponding non-cancerous thyroid tissue. A Pearson correlation coefficient calculation was used for the acquisition of ANXA2 coexpressed genes, while edgR, limma, and Robust Rank Aggregation were employed for differentially expressed gene (DEG) in THCA. The probable mechanism of ANXA2 in THCA was predicted by gene ontology and pathway enrichment. A dual-luciferase reporter assay was employed to confirm the targeting relationships between ANXA2 and its predicted microRNA (miRNA). RESULTS Expression of ANXA2 was significantly upregulated in THCA tissues with a summarized standardized mean difference of 1.09 (P < 0.0001) based on 992 THCA cases and 589 cases of normal thyroid tissue. Expression of ANXA2 was related to pathologic stage. Subsequently, 1442 genes were obtained when overlapping 4542 ANXA2 coexpressed genes with 2248 DEGs in THCA; these genes were mostly enriched in pathways of extracellular matrix-receptor interaction, cell adhesion molecules, and complement and coagulation cascades. MiR-23b-3p was confirmed to target ANXA2 by dual-luciferase reporter assay. CONCLUSIONS Upregulated expression of ANXA2 may promote the malignant biological behavior of THCA by affecting the involving pathways or being targeted by miR-23b-3p.
Collapse
Affiliation(s)
- Yong-Ying Qin
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xiao-Jiao Li
- Department of PET/CT, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wen-Wen Xing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yun He
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
25
|
El Bairi K, Afqir S, Amrani M. Is HE4 Superior over CA-125 in the Follow-up of Patients with Epithelial Ovarian Cancer? Curr Drug Targets 2020; 21:1026-1033. [PMID: 32334501 DOI: 10.2174/1389450121666200425211732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Notwithstanding important advances in the treatment of epithelial ovarian cancer (EOC), this disease is still a leading cause of global high mortality from gynecological malignancies. Recurrence in EOC is inevitable and it is responsible for poor survival rates. There is a critical need for novel effective biomarkers with improved accuracy compared to the standard carbohydrate antigen-125 (CA-125) for follow-up. The human epididymis protein 4 (HE4) is used for early detection of EOC (ROMA algorithm) as well as for predicting optimal cytoreduction after neoadjuvant chemotherapy and survival outcomes. Notably, the emerging HE4 is a promising prognostic biomarker that has displayed better accuracy in various recent studies for detecting recurrent disease. In this mini-review, we discussed the potential of HE4 as an accurate predictor of EOC recurrence.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohamed Ist University, Oujda, Morocco
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohamed Ist University, Oujda, Morocco
| | - Mariam Amrani
- Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco
| |
Collapse
|
26
|
Gao L, Zheng M, Guo Q, Nie X, Li X, Hao Y, Liu J, Zhu L, Lin B. Downregulation of Rab23 inhibits proliferation, invasion, and metastasis of human ovarian cancer. Int J Biochem Cell Biol 2019; 116:105617. [PMID: 31550546 DOI: 10.1016/j.biocel.2019.105617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 02/03/2023]
Abstract
Previously, we reported that the expression of human epididymis protein (HE4) was correlated with the expression of RAB23 in ovarian cancer cells. Rab23 is a member of the Ras-related small GTPase superfamily, which plays a key role in the Sonic Hedgehog (Shh) signaling pathway. However, the function of Rab23 in ovarian cancer remains unclear. In this study, we explored the location and expression of Rab23 in ovarian cancer tissues and cells (CaoV3 and A2780), and further investigated the function and potential mechanism of Rab23 in malignant biological behaviors including the epithelial-mesenchymal transition (EMT) process in ovarian cancer for the first time. Rab23 is highly expressed in ovarian cancer tissues and associated with advanced stage, and shortened overall survival time of ovarian cancer patients. We are the first to report that human epididymis protein (HE4) can regulate the expression of the Rab23 protein, and that knockdown of RAB23 decreases the proliferation, invasion, and migration abilities as well as inhibits the epithelial-mesenchymal transition (EMT) process in ovarian cancer cells. Furthermore, downregulation of Rab23 significantly inhibited Shh-Gli1 and PI3K-AKT signaling pathways. Collectively, our results indicate that Rab23 plays a critical role in the malignant biological behavior of ovarian cancer and may serve as a potential biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
27
|
Gou R, Zhu L, Zheng M, Guo Q, Hu Y, Li X, Liu J, Lin B. Annexin A8 can serve as potential prognostic biomarker and therapeutic target for ovarian cancer: based on the comprehensive analysis of Annexins. J Transl Med 2019; 17:275. [PMID: 31474227 PMCID: PMC6717992 DOI: 10.1186/s12967-019-2023-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Annexins are involved in vesicle trafficking, cell proliferation and apoptosis, but their functional mechanisms in ovarian cancer remain unclear. In this study, we analyzed Annexins in ovarian cancer using different databases and selected Annexin A8 (ANXA8), which showed the greatest prognostic value, for subsequent validation in immunohistochemical (IHC) assays. METHODS The mRNA expression levels, genetic variations, prognostic values and gene-gene interaction network of Annexins in ovarian cancer were analyzed using the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, Kaplan-Meier plotter and GeneMANIA database. ANXA8 was selected for analyzing the biological functions and pathways of its co-expressed genes, and its correlation with immune system responses via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and the TISIDB database, respectively. We validated the expression of ANXA8 in ovarian cancer via IHC assays and analyzed its correlation with clinicopathological parameters and prognosis. RESULTS ANXA2/3/8/11 mRNA expression levels were significantly upregulated in ovarian cancer, and ANXA5/6/7 mRNA expression levels were significantly downregulated. Prognostic analysis suggested that significant correlations occurred between ANXA2/4/8/9 mRNA upregulation and poor overall survival, and between ANXA8/9/11 mRNA upregulation and poor progression-free survival in patients with ovarian serous tumors. Taken together, results suggested that ANXA8 was most closely associated with ovarian cancer tumorigenesis and progression. Further analyses indicated that ANXA8 may be involved in cell migration, cell adhesion, and vasculature development, as well as in the regulation of PI3K-Akt, focal adhesion, and proteoglycans. Additionally, ANXA8 expression was significantly correlated with lymphocytes and immunomodulators. The IHC results showed that ANXA8 expression was higher in the malignant tumor group than in the borderline and benign tumor groups and normal ovary group, and high ANXA8 expression was an independent risk factor for survival and prognosis of ovarian cancer patients (P = 0.013). CONCLUSIONS Members of the Annexin family display varying degrees of abnormal expressions in ovarian cancer. ANXA8 was significantly highly expressed in ovarian cancer, and high ANXA8 expression was significantly correlated with poor prognosis. Therefore, ANXA8 is a high candidate as a novel biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
28
|
Wang J, Deng L, Zhuang H, Liu J, Liu D, Li X, Jin S, Zhu L, Wang H, Lin B. Interaction of HE4 and ANXA2 exists in various malignant cells-HE4-ANXA2-MMP2 protein complex promotes cell migration. Cancer Cell Int 2019; 19:161. [PMID: 31210752 PMCID: PMC6567406 DOI: 10.1186/s12935-019-0864-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background The interaction between human epididymis protein 4 (HE4) and annexin A2 (Annexin A2) has been found in ovarian cancer. However, it is dimness whether
the interaction exists in other malignant tumors. Methods Real-time PCR, western blotting and immunocytochemistry were used to detect mRNA and proteins expression. Co-immunoprecipitation and double-labeling immunofluorescence were used to detect the interaction among HE4, ANXA2 and MMP2. MTS assay was used to test cell proliferation. Adhesion test was used to test cell adhesion. Flow cytometry was applied to examine cell cycle. The scratch test and Transwell assay was performed to detect the migration and invasion of various malignant cell lines. Results Here we show that the overexpression of HE4 and ANXA2 in various malignant cells is a common phenomenon. HE4 and ANXA2 are co-localized in the cytoplasm and membrane of various tumor cells. ES-2 cells which had both high expression of HE4 and ANXA2 were much stronger in proliferation, adhesion, invasion, and migration than other tumor cells. HE4–ANXA2–MMP2 could form a triple protein complex. HE4 could mediate the expression of MMP2 via ANXA2 to promote cell migration progress. Conclusions The interaction of HE4 and ANXA2 exists in various types of cancer cells. HE4 and ANXA2 can promote the proliferation, adhesion, invasion, and migration of cancer cells. HE4–ANXA2–MMP2 form a protein complex and ANXA2 plays the role of “bridge”. They performed together to promote cell migration.
Collapse
Affiliation(s)
- Jing Wang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Lu Deng
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,3Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Huiyu Zhuang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,4Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020 China
| | - Juanjuan Liu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Dawo Liu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Xiao Li
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Shan Jin
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Liancheng Zhu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Huimin Wang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,5Department of Gynecology, Liaoning Cancer Hospital & Institute China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110000 Liaoning China
| | - Bei Lin
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| |
Collapse
|
29
|
Wang J, Zhao H, Xu F, Zhang P, Zheng Y, Jia N. Human epididymis protein 4 (HE4) protects against cystic pulmonary fibrosis associated-inflammation through inhibition of NF-κB and MAPK singnaling. Genes Genomics 2019; 41:1045-1053. [PMID: 31165362 DOI: 10.1007/s13258-019-00836-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cystic pulmonary fibrosis (CF) affects mostly the lung of the newborns. Chronic infection and inflammation become the major causes of morbidity and mortality in CF. However, the underlying molecular mechanisms causing CF still remain unclear. METHODS ELISA assay was used to examine the expression of HE4 and pro-inflammatory cytokines in W126VA4 cells supernatant fluid. qRT-PCR was applicable to determine the mRNA level of HE4, α-SMA, collagen 1, MMP2, MMP9 and various interleukins. Immunofluorescent assay was used to test the expression of HE4 in WI-26 VA4 cells. Major elements of MAPK and NF-κB signals pathways were examined by western blot. RESULTS We found higher expression of HE4 in CF patients serum and lung biopsy. Interestingly, HE4 expression was positively correlated with fibrosis markers expression. In addition,HE4 overexpression increased inflammatory cytokines secretion and fibrosis markers expression in WI-26 VA4 cells. And NF-κB pathways were responsible for elevated inflammation. In addition, HE4/MAPK/MMPs signaling cascades destroyed the normal extracellular matrix (ECM) and promoted fibrosis. CONCLUSIONS Overall, we first identified that HE4 promoted CF-associated inflammation. Additionally, NF-κB and MAPK signalings were further validated to be responsible for CF-associated inflammation and ECM destruction. Characterization of lumacaftor/ivacaftor in CF-associated inflammation may provide a novel insight into clinical CF treatment.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Piaopiao Zhang
- Graduate School of Taishan Medical University, Tai'an, China
| | - Yuan Zheng
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Nan Jia
- Department of Neonatal, The Second Affiliated Hospital of Xi'an Medical College, No. 167, Textile City East Street, Baqiao District, Xi'an, 710038, Shanxi, China.
| |
Collapse
|
30
|
James NE, Beffa L, Oliver MT, Borgstadt AD, Emerson JB, Chichester CO, Yano N, Freiman RN, DiSilvestro PA, Ribeiro JR. Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget 2019; 10:3315-3327. [PMID: 31164954 PMCID: PMC6534361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/14/2019] [Indexed: 11/05/2022] Open
Abstract
Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6's role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC.
Collapse
Affiliation(s)
- Nicole E. James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
- Department of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lindsey Beffa
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Matthew T. Oliver
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Ashley D. Borgstadt
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Jenna B. Emerson
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | | | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Richard N. Freiman
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Paul A. DiSilvestro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Jennifer R. Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| |
Collapse
|
31
|
Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget 2019. [DOI: 10.18632/oncotarget.26915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:133. [PMID: 30898167 PMCID: PMC6427903 DOI: 10.1186/s13046-019-1132-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive form of astrocytoma among adult brain tumors. Multiple studies have shown that long non-coding RNAs (lncRNAs) play important roles in acting as molecular sponge for competing with microRNAs (miRNAs) to regulate downstream molecules in tumor progression. We previously reported that miR155 host gene (miR155HG), an lncRNA, and its derivative miR-155 promote epithelial-to-mesenchymal transition in glioma. However, the other biological functions and mechanisms of miR155HG sponging miRNAs have been unknown. Considering ANXA2 has been generally accepted as oncogene overexpressed in a vast of cancers correlated with tumorigenesis, which might be the target molecule of miR155HG sponging miRNA via bioinformatics analysis. We designed this study to explore the interaction of miR155HG and ANXA2 to reveal the malignancy of them in GBM development. Methods The expression of miR155HG was analyzed in three independent databases and clinical GBM specimens. Bioinformatics analysis was performed to assess the potential tumor-related functions of miR155HG. The interaction of miR155HG and miR-185 and the inhibition of ANXA2 by miR-185 were analyzed by luciferase reporter experiments, and biological effects in GBM were explored by colony formation assays, EDU cell proliferation assays, flow cytometric analysis and intracranial GBM mouse model. Changes in protein expression were analyzed using western blot. We examined the regulatory mechanism of ANXA2 on miR155HG in GBM by gene expression profiling analysis, double immunofluorescence staining, chromatin immunoprecipitation and luciferase reporter assays. Results We found that miR155HG was upregulated in GBM tissues and cell lines. Bioinformatic analyses of three GBM databases showed that miR155HG expression levels were closely associated with genes involved in cell proliferation and apoptosis. Knocking down miR155HG suppressed GBM cell proliferation in vitro, induced a G1/S-phase cell cycle arrest, and increased apoptosis. We also found that miR155HG functions as a competing endogenous RNA for miR-185. Moreover, miR-185 directly targets and inhibits ANXA2, which exhibits oncogenic functions in GBM. We also found that ANXA2 promoted miR155HG expression via STAT3 phosphorylation. Conclusion Our results demonstrated that overexpressed miR155HG in GBM can sponge miR-185 to promote ANXA2 expression, and ANXA2 stimulates miR155HG level through phosphorylated STAT3 binding to the miR155HG promoter. We establish the miR155HG/miR185/ANXA2 loop as a mechanism that underlies the biological functions of miR155HG and ANXA2 in GBM and further suggest this loop may serve as a therapeutic target and/or prognostic biomarker for GBM. Electronic supplementary material The online version of this article (10.1186/s13046-019-1132-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Youzhi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tian
- Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
33
|
Role of Annexin A2 isoform 2 on the aggregative growth of dermal papillae cells. Biosci Rep 2018; 38:BSR20180971. [PMID: 30341243 PMCID: PMC6435533 DOI: 10.1042/bsr20180971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
The dermal papilla is a major component of hair, which signals the follicular epithelial cells to prolong the hair growth process. Human Annexin A2 was preliminarily identified by two-dimensional gel electrophoresis (2-DE), MALDI-TOF-MS and database searching. The aim of the present study was to explore the role of Annexin A2 in the aggregative growth of dermal papillae cells (DPC). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were adopted to detect the expression of Annexin A2. And siRNA technique was used to suppress the expression of Annexin A2. Construction of over-expression vector was used to up-regulate the expression of Annexin A2. Cell Counting Kit 8 (CCK-8) and proliferating cell nuclear antigen (PCNA) were taken to detect the proliferation of DPC. The expression of Annexin A2 mRNA was up-regulated in passage 3 DPC compared with passage 10 DPC by RT-PCR. In line with the results at the mRNA level, Western blot analysis revealed that Annexin A2 isoform 2 was up-regulated significantly in passage 3 DPC compared with passage 10 DPC. The Annexin A2 isoform 2 siRNA was synthesized and transfected into passage 3 DPC. RT-PCR data showed the mRNA expression of Annexin A2 isoform 2 was suppressed in passage 3 DPC. Western blot results showed the expression level of Annexin A2 isoform 2 and PCNA were suppressed in passage 3 DPC. CCK-8 results showed that the proliferation of passage 3 DPC was suppressed (P < 0.05). Recombinant plasmid PLJM-Annexin A2 isoform 2-expression vector were constructed and were transfected into passage 10 DPC. RT-PCR data showed the mRNA expression of Annexin A2 isoform 2 was up-regulated in passage 10 DPC. Western blot results showed the expression level of annexin A2 isoform 2 and PCNA were up-regulated in passage 10 DPC. CCK-8 assay showed the proliferation of DPC was stimulated compared with control group (*P < 0.05). Our study proved that Annexin A2 isoform 2 may participate in regulating the proliferation of DPC and may be related to aggregative growth of dermal papilla cells. Therefore, our study suggests that Annexin A2 may be linked to hair follicle growth cycle.
Collapse
|
34
|
Understanding Ovarian Cancer: iTRAQ-Based Proteomics for Biomarker Discovery. Int J Mol Sci 2018; 19:ijms19082240. [PMID: 30065196 PMCID: PMC6121953 DOI: 10.3390/ijms19082240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Despite many years of studies, ovarian cancer remains one of the top ten cancers worldwide. Its high mortality rate is mainly due to lack of sufficient diagnostic methods. For this reason, our research focused on the identification of blood markers whose appearance would precede the clinical manifestation of the disease. ITRAQ-tagging (isobaric Tags for Relative and Absolute Quantification) coupled with mass spectrometry technology was applied. Three groups of samples derived from patients with: ovarian cancer, benign ovarian tumor, and healthy controls, were examined. Mass spectrometry analysis allowed for highlighting the dysregulation of several proteins associated with ovarian cancer. Further validation of the obtained results indicated that five proteins (Serotransferrin, Amyloid A1, Hemopexin, C-reactive protein, Albumin) were differentially expressed in ovarian cancer group. Interestingly, the addition of Albumin, Serotransferrin, and Amyloid A1 to CA125 (cancer antigen 125) and HE4 (human epididymis protein4) improved the diagnostic performance of the model discriminating between benign and malignant tumors. Identified proteins shed light on the molecular signaling pathways that are associated with ovarian cancer development and should be further investigated in future studies. Our findings indicate five proteins with a strong potential to use in a multimarker test for screening and detection of ovarian cancer.
Collapse
|
35
|
James NE, Chichester C, Ribeiro JR. Beyond the Biomarker: Understanding the Diverse Roles of Human Epididymis Protein 4 in the Pathogenesis of Epithelial Ovarian Cancer. Front Oncol 2018; 8:124. [PMID: 29740539 PMCID: PMC5928211 DOI: 10.3389/fonc.2018.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Human epididymis protein 4 (HE4) is an important clinical biomarker used for the detection of epithelial ovarian cancer (EOC). While much is known about the predictive power of HE4 clinically, less has been reported regarding its molecular role in the progression of EOC. A deeper understanding of HE4’s mechanistic functions may help contribute to the development of novel targeted therapies. Thus far, it has been difficult to recommend HE4 as a therapeutic target owing to the fact that its role in the progression of EOC has not been extensively evaluated. This review summarizes what is collectively known about HE4 signaling and how it functions to promote tumorigenesis, chemoresistance, and metastasis in EOC, with the goal of providing valuable insights that will have the potential to aide in the development of new HE4-targeted therapies.
Collapse
Affiliation(s)
- Nicole E James
- Division of Gynecologic Oncology, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
| | - Clinton Chichester
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
| | - Jennifer R Ribeiro
- Division of Gynecologic Oncology, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, United States
| |
Collapse
|
36
|
Ribeiro JR, Gaudet HM, Khan M, Schorl C, James NE, Oliver MT, DiSilvestro PA, Moore RG, Yano N. Human Epididymis Protein 4 Promotes Events Associated with Metastatic Ovarian Cancer via Regulation of the Extracelluar Matrix. Front Oncol 2018; 7:332. [PMID: 29404274 PMCID: PMC5786890 DOI: 10.3389/fonc.2017.00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/26/2017] [Indexed: 01/06/2023] Open
Abstract
Human epididymis protein 4 (HE4) has received much attention recently due to its diagnostic and prognostic abilities for epithelial ovarian cancer. Since its inclusion in the Risk of Ovarian Malignancy Algorithm (ROMA), studies have focused on its functional effects in ovarian cancer. Here, we aimed to investigate the role of HE4 in invasion, haptotaxis, and adhesion of ovarian cancer cells. Furthermore, we sought to gain an understanding of relevant transcriptional profiles and protein kinase signaling pathways mediated by this multifunctional protein. Exposure of OVCAR8 ovarian cancer cells to recombinant HE4 (rHE4) promoted invasion, haptotaxis toward a fibronectin substrate, and adhesion onto fibronectin. Overexpression of HE4 or treatment with rHE4 led to upregulation of several transcripts coding for extracellular matrix proteins, including SERPINB2, GREM1, LAMC2, and LAMB3. Gene ontology indicated an enrichment of terms related to extracellular matrix, cell migration, adhesion, growth, and kinase phosphorylation. LAMC2 and LAMB3 protein levels were constitutively elevated in cells overexpressing HE4 and were upregulated in a time-dependent manner in cells exposed to rHE4 in the media. Deposition of laminin-332, the heterotrimer comprising LAMC2 and LAMB3 proteins, was increased in OVCAR8 cells treated with rHE4 or conditioned media from HE4-overexpressing cells. Enzymatic activity of matriptase, a serine protease that cleaves laminin-332 and contributes to its pro-migratory functional activity, was enhanced by rHE4 treatment in vitro. Proteomic analysis revealed activation of focal adhesion kinase signaling in OVCAR8 cells treated with conditioned media from HE4-overexpressing cells. Focal adhesions were increased in cells treated with rHE4 in the presence of fibronectin. These results indicate a direct role for HE4 in mediating malignant properties of ovarian cancer cells and validate the need for HE4-targeted therapies that will suppress activation of oncogenic transcriptional activation and signaling cascades.
Collapse
Affiliation(s)
- Jennifer R. Ribeiro
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Hilary M. Gaudet
- Department of Chemistry, Wheaton College, Norton, MA, United States
| | - Mehreen Khan
- Department of Chemistry, Wheaton College, Norton, MA, United States
| | - Christoph Schorl
- Center for Genomics and Proteomics, Genomics Core Facility, Brown University, Providence, RI, United States
| | - Nicole E. James
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
| | - Matthew T. Oliver
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Paul A. DiSilvestro
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Richard G. Moore
- Department of Obstetrics and Gynecology, Wilmot Cancer Institute, Division of Gynecologic Oncology, University of Rochester Medical Center, Rochester, NY, United States
| | - Naohiro Yano
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Roger Williams Medical Center, Department of Surgery, Boston University Medical School, Providence, RI, United States
| |
Collapse
|
37
|
Christensen M, H�gdall C, Jochumsen K, H�gdall E. Annexin A2 and cancer: A systematic review. Int J Oncol 2017; 52:5-18. [DOI: 10.3892/ijo.2017.4197] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Christensen
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus H�gdall
- Department of Gynaecology, Juliane Maria Centre (JMC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jochumsen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Estrid H�gdall
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Bao J, Xu Y, Wang Q, Zhang J, Li Z, Li D, Li J. miR-101 alleviates chemoresistance of gastric cancer cells by targeting ANXA2. Biomed Pharmacother 2017; 92:1030-1037. [PMID: 28609840 DOI: 10.1016/j.biopha.2017.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chemoresistance remains a main clinical obstacle in the treatment of gastric cancer (GC). microRNAs have been revealed to participate in the regulation of drug resistance in a variety of cancers. However, little is known about the function and detailed molecular mechanism of miR-101 in GC chemoresistance. METHODS The expressions of miR-101 and Annexin A2 (ANXA2) in GC tissues and cells were detected by qRT-PCR and western blot. The effects of miR-101 overexpression on P-glycoprotein (P-gp) at mRNA and protein levels, cell viability, and apoptosis in drug-resistant GC cells were examined by qRT-PCR, western blot, MTT and flow cytometry analysis, respectively. Luciferase reporter assay, RNA immunoprecipitation (RIP) and qRT-PCR were applied to confirm whether miR-101 could target ANXA2 and regulate its expression. Rescue experiment was performed to verify the mechanism by which miR-101 involved in chemoresistance. RESULTS miR-101 was downregulated in GC tissues and drug-resistant GC cells. A negative correlation between miR-101 and ANXA2 expression was observed in GC tissues. Forced expression of miR-101 significantly reduced P-gp expression at mRNA and protein levels in drug-resistant GC cells. Overexpression of miR-101 enhanced sensitivity to cisplatin (DDP) or vincristine (VCR) via viability inhibition and apoptosis promotion. ANXA2 was identified as a direct target of miR-101 and miR-101 negatively regulated ANXA2 expression. Moreover, ectopic expression of ANXA2 reversed the effect of miR-101 on P-gp expression, cell viability and apoptosis. CONCLUSION miR-101 alleviated chemoresistance of gastric cancer cells by targeting ANXA2. Therefore, targeting miR-101 may be a potential therapeutic approach for drug-resistant GC.
Collapse
Affiliation(s)
- Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qunying Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Dongying Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jiansheng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
39
|
Shen L, Dong X, Yu M, Luo Z, Wu S. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147. J Cancer 2017; 8:314-322. [PMID: 28243336 PMCID: PMC5327381 DOI: 10.7150/jca.16526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxia Dong
- Department of pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Institute of Cancer Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
40
|
Stine JE, Guo H, Sheng X, Han X, Schointuch MN, Gilliam TP, Gehrig PA, Zhou C, Bae-Jump VL. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget 2016; 7:946-60. [PMID: 26503475 PMCID: PMC4808044 DOI: 10.18632/oncotarget.5834] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is the 5th leading cause of cancer death among women in the United States. The mevalonate pathway is thought to be a potential oncogenic pathway in the pathogenesis of ovarian cancer. Simvastatin, a 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) inhibitor, is a widely used drug for inhibiting the synthesis of cholesterol and may also have anti-tumorigenic activity. Our goal was to evaluate the effects of simvastatin on ovarian cancer cell lines, primary cultures of ovarian cancer cells and in an orthotopic ovarian cancer mouse model. Simvastatin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, and caused cellular stress via reduction in the enzymatic activity of HMGCR and inhibition of the MAPK and mTOR pathways in ovarian cancer cells. Furthermore, simvastatin induced DNA damage and reduced cell adhesion and invasion. Simvastatin also exerted anti-proliferative effects on primary cell cultures of ovarian cancer. Treatment with simvastatin in an orthotopic mouse model reduced ovarian tumor growth, coincident with decreased Ki-67, HMGCR, phosphorylated-Akt and phosphorylated-p42/44 protein expression. Our findings demonstrate that simvastatin may have therapeutic benefit for ovarian cancer treatment and be worthy of further exploration in clinical trials.
Collapse
Affiliation(s)
- Jessica E Stine
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Hui Guo
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, ShanDong Cancer Hospital & Institute, Jinan University, Jinan, P.R. China
| | - Xiugui Sheng
- Department of Gynecologic Oncology, ShanDong Cancer Hospital & Institute, Jinan University, Jinan, P.R. China
| | - Xiaoyun Han
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, ShanDong Cancer Hospital & Institute, Jinan University, Jinan, P.R. China
| | - Monica N Schointuch
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy P Gilliam
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Paola A Gehrig
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Gao S, Zhu L, Feng H, Hu Z, Jin S, Song Z, Liu D, Liu J, Hao Y, Li X, Lin B. Gene expression profile analysis in response to α1,2-fucosyl transferase (FUT1) gene transfection in epithelial ovarian carcinoma cells. Tumour Biol 2016; 37:12251-12262. [PMID: 27240592 DOI: 10.1007/s13277-016-5080-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/15/2016] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to identify differentially expressed genes (DEGs) in response to α1,2-fucosyl transferase (FUT1) gene transfection in epithelial ovarian cancer cells. Human whole-genome oligonucleotide microarrays were used to determine whether gene expression profile may differentiate the epithelial ovarian cell line Caov-3 transfected with FUT1 from the empty plasmid-transfected cells. Quantitative real-time PCR and immunohistochemical staining validated the microarray results. Gene expression profile identified 215 DEGs according to the selection criteria, in which 122 genes were upregulated and 93 genes were downregulated. Gene Ontology (GO) and canonical pathway enrichment analysis were applied, and we found that these DEGs are involved in BioCarta mammalian target of rapamycin (mTOR) pathway, BioCarta eukaryotic translation initiation factor 4 (EIF4) pathway, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in cancer. Interaction network analysis predicted genes participating in the regulatory connection. Highly differential expression of TRIM46, PCF11, BCL6, PTEN, and FUT1 genes was validated by quantitative real-time PCR in two cell line samples. Finally, BCL6 and Lewis Y antigen were validated at the protein level by immunohistochemistry in 103 paraffin-embedded ovarian cancer tissues. The identification of genes in response to FUT1 may provide a theoretical basis for the investigations of the molecular mechanism of ovarian cancer.
Collapse
Affiliation(s)
- Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Huilin Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Zhenhua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shan Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Zuofei Song
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
- Department of Obstetrics and Gynecology, China General Hospital of Shenyang Military Region, Shenyang, Liaoning, 110015, China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
42
|
Zhu L, Guo Q, Jin S, Feng H, Zhuang H, Liu C, Tan M, Liu J, Li X, Lin B. Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells. Oncol Rep 2016; 36:1592-604. [PMID: 27430660 DOI: 10.3892/or.2016.4926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/30/2016] [Indexed: 11/05/2022] Open
Abstract
Currently, there are emerging multiple studies on human epididymis protein 4 (HE4) in ovarian cancer. HE4 possesses higher sensitivity and specificity than CA125 in the confirmative early diagnosis for ovarian cancer. Although much attention has been given to explore its clinical application, research of the basic mechanisms of HE4 in ovarian cancer are still unclear. In the present study, we provide fundamental data to identify full-scale differentially expressed genes (DEGs) in response to HE4 by use of human whole-genome microarrays in human epithelial ovarian cancer cell line ES-2 following overexpression and silencing of HE4. We found that a total of 717 genes were upregulated and 898 genes were downregulated in the HE4-overexpressing cells vs. the HE4-Mock cells, and 166 genes were upregulated and 285 were downregulated in the HE4-silenced cells vs. the HE4-Mock cells. An overlap of 16 genes consistently upregulated and 8 genes downregulated in response to HE4 were noted. These DEGs were involved in MAPK, steroid biosynthesis, cell cycle, the p53 hypoxia pathway, and focal adhesion pathways. Interaction network analysis predicted that the genes participated in the regulatory connection. Highly differential expression of the FOXA2, SERPIND1, BDKRD1 and IL1A genes was verified by quantitative real-time PCR in 4 cell line samples. Finally, SERPIND1 (HCII) was validated at the protein level by immunohistochemistry in 107 paraffin-embedded ovarian tissues. We found that SERPIND1 may act as a potential oncogene in the development of ovarian cancer. The present study displayed the most fundamental and full-scale data to show DEGs in response to HE4. These identified genes may provide a theoretical basis for investigations of the underlying molecular mechanism of HE4 in ovarian cancer.
Collapse
Affiliation(s)
- Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qian Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shan Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Huilin Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Huiyu Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Cong Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
43
|
Lokman NA, Pyragius CE, Ruszkiewicz A, Oehler MK, Ricciardelli C. Annexin A2 and S100A10 are independent predictors of serous ovarian cancer outcome. Transl Res 2016; 171:83-95.e1-2. [PMID: 26925708 DOI: 10.1016/j.trsl.2016.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Annexin A2, a calcium phospholipid binding protein, has been shown to play an important role in ovarian cancer metastasis. This study examined whether annexin A2 and S100A10 can be used as prognostic markers in serous ovarian cancer. ANXA2 and S100A10 gene expressions were assessed in publicly available ovarian cancer data sets and annexin A2 and S100A10 protein expressions were assessed by immunohistochemistry in a uniform cohort of stage III serous ovarian cancers (n = 109). Kaplan-Meier and Cox regression analyses were performed to assess the relationship between annexin A2 or S100A10 messenger RNA (mRNA) and protein expressions with clinical outcome. High ANXA2 mRNA levels in stage III serous ovarian cancers were associated with reduced progression-free survival (PFS; P = 0.023) and overall survival (OS; P = 0.0038), whereas high S100A10 mRNA levels predicted reduced OS (P = 0.0019). Using The Cancer Genome Atlas data sets, ANXA2 but not S100A10 expression was associated with higher clinical stage (P = 0.005), whereas both ANXA2 and S100A10 expressions were associated with the mesenchymal molecular subtype (P < 0.0001). Kaplan-Meier and Cox regression analyses showed that high stromal annexin A2 immunostaining was significantly associated with reduced PFS (P = 0.013) and OS (P = 0.044). Moreover, high cytoplasmic S100A10 staining was significantly associated with reduced OS (P = 0.027). Multivariate Cox regression analysis showed stromal annexin A2 (P = 0.009) and cytoplasmic S100A10 (P = 0.016) levels to be independent predictors of OS. Patients with high stromal annexin A2 and high cytoplasmic S100A10 expressions had a 3.4-fold increased risk of progression (P = 0.02) and 7.9-fold risk of ovarian cancer death (P = 0.04). Our findings indicate that together annexin A2 and S100A10 expressions are powerful predictors of serous ovarian cancer outcome.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carmen E Pyragius
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Ruszkiewicz
- Centre of Cancer Biology, University of South Australia, Adelaide, South Australia, Australia; Department of Anatomical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
44
|
Chen Y, Chen Q, Liu Q, Gao F. Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer. Tumour Biol 2016; 37:8359-65. [PMID: 26733162 DOI: 10.1007/s13277-015-4672-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological malignancy-related mortality. Human epididymis protein 4 (HE4) is a useful biomarker for ovarian cancer when either used alone or in combination with carbohydrate antigen 125 (CA125). What is more, aberrant expression of microRNA-21 (miR-21) has been shown to be involved in oncogenesis, but the relationship between miR-21 and HE4 in ovarian cancer is not clear. Tumor and adjacent tumor tissues from 43 patients with ovarian cancer were examined. Real-time polymerase chain reaction (RT-PCR) was used to detect the expression of HE4 in the carcinoma and adjacent tissues. The associations between HE4 and tumor biological characters were discussed. TaqMan(®) MicroRNA (miRNA) assays were employed to detect the expression of miR-21 in the ovarian carcinoma. In ovarian cancer, the expression of HE4 messenger RNA (mRNA) in cancer tissues was higher than adjacent tumor tissues (P < 0.0001), which was 1.299-fold of adjacent tumor tissues. And, the expression of miR-21 was also up-regulated which was significantly different in the ovarian cancer (the positive rate was 76.74 %). There was a significantly positive correlation between miR-21 and HE4 expression (r = 0.283 and P = 0.066 for HE4 mRNA, r = 0.663 and P < 0.0001 for serum HE4). There was also a significant correlation between miR-21 and tumor grade (r = 0.608, P < 0.0001). Significantly, patients with recent recurrence (less than 6 months, n = 17) have a higher miR-21 expression than those with no recent recurrence. Therefore, HE4 and miR-21 may play an important role in the development and progression of ovarian cancer and they may serve as prognostic indicators in ovarian cancer.
Collapse
Affiliation(s)
- Yong Chen
- Department of Laboratory Medicine, Mindong Affiliated Hospital, Fujian Medical University, Fu'an, China.
| | - Qingquan Chen
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, Fuzhou, China
| | - Qicai Liu
- Department of Laboratory Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Feng Gao
- Department of Pathology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Deng L, Gao Y, Li X, Cai M, Wang H, Zhuang H, Tan M, Liu S, Hao Y, Lin B. Expression and clinical significance of annexin A2 and human epididymis protein 4 in endometrial carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:96. [PMID: 26362938 PMCID: PMC4567805 DOI: 10.1186/s13046-015-0208-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/19/2015] [Indexed: 01/30/2023]
Abstract
Background It is well-known that the treatment and monitoring methods are limited for advanced stage of endometrial carcinoma. Biological molecules with expression changes during tumor progression become potential therapeutic targets for advanced stage endometrial carcinoma. Annexin A2 (ANXA2) has been reported to be overexpressed in recurrent endometrial carcinoma, and the expression of human epididymis protein 4 (HE4) is upregulated in endometrial carcinoma. What’s more, ANXA2 and HE4 interacted in ovarian cancer and promoted the malignant biological behavior. We speculated that their interaction may exist in endometrial carcinoma as well. We evaluated the expression and the correlation relationship of ANXA2 and HE4 in endometrial carcinoma. Methods The expression of ANXA2 and HE4 protein in 84 endometrial carcinoma, 30 endometrial atypical hyperplasia, and 18 normal endometrial tissue samples were then measured using an immunohistochemical assay in paraffin embedded endometrial tissues. The structural relationship between ANXA2 and HE4 was explored by immunoprecipitation and double immunofluorescent staining. Results ANXA2 and HE4 co-localized in both endometrial tissues and endometrial carcinoma cells. ANXA2 and HE4 were expressed in 95.2 % and 85.7 % of the the endometrial carcinoma, respectively, which were significantly higher than normal endometrium (55.6 % and 16.7 %, both p < 0.05). The expression of ANXA2 and HE4 was significantly correlated with FIGO stage, degree of differentiation, myometrial invasion, and lymph node metastasis. ANXA2 was an independent risk factor for the prognosis of endometrial carcinoma (p < 0.05, hazard ratio [HR] = 8.004). The expression of ANXA2 and HE4 was positively correlated (Spearman correlation coefficient = 0.228, p < 0.05). HE4 was an independent factor for ANXA2 in multivariate linear regression model (p < 0.05). Conclusion We revealed the co-localization of ANXA2 and HE4 in endometrial carcinoma. Expression levels of ANXA2 and HE4 were closely related to the malignant biological behavior of endometrial carcinoma, and ANXA2 was an independent risk factor for poor prognosis. The expression of ANXA2 and HE4 can affect each other. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0208-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Deng
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Yiping Gao
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China. .,Tianjin Central Hospital of Gynaecology and Obstetrics, Tianjin, China.
| | - Xiao Li
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Mingbo Cai
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China. .,Department of Obstetrics and Gynecology, Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Huimin Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Huiyu Zhuang
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China. .,Department of Gynecology and Obstetrics, Beijing chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Mingzi Tan
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Shuice Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Yingying Hao
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Bei Lin
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
46
|
Tan M, Zhu L, Zhuang H, Hao Y, Gao S, Liu S, Liu Q, Liu D, Liu J, Lin B. Lewis Y antigen modified CD47 is an independent risk factor for poor prognosis and promotes early ovarian cancer metastasis. Am J Cancer Res 2015; 5:2777-2787. [PMID: 26609483 PMCID: PMC4633904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023] Open
Abstract
CD47 is a membrane receptor that belongs to the immunoglobulin superfamily and plays an important role in the mechanisms of tumor immune escape. CD47 participates in tumor immune escape by combining with SIRPα to reduce the phagocytic activity of macrophages. There are six potential N-glycosylation sites on CD47, and glycosylation is known to be necessary for its membrane localization. However, it is still unknown to what extent glycosylation influences CD47 ligand binding properties and subsequent signaling. By using immunoprecipitation and confocal laser scanning microscopy, we showed that CD47 contains Lewis y antigen. Immunohistochemical analysis demonstrated that both the positive expression and the overexpression of CD47 and Lewis y antigen in cancer tissues and borderline tumors were significantly higher than those in benign ovarian tumors and normal ovarian tissues (P < 0.05). A linear correlation between the expression patterns of CD47 and Lewis y antigen was evident (r = 0.47, P < 0.01). The high expression of CD47 and Lewis y antigen showed significant correlations with the clinical pathological parameters of ovarian cancer [International Federation of Gynecology and Obstetrics (FIGO) standards, lymph node metastasis, and degree of differentiation] (P < 0.05). The Cox model and Kaplan-Meier tests showed that high expression of CD47 was an independent adverse risk factor for the prognosis of ovarian cancer. Cases with both high CD47 and Lewis y antigen expression had poor prognoses. Our study demonstrates that Lewis y antigens of CD47 may play a crucial role in the development of ovarian cancer, and could be new targets for immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Mingzi Tan
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Liancheng Zhu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Huiyu Zhuang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Yingying Hao
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Song Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Shuice Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Qing Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Dawo Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Juanjuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| |
Collapse
|
47
|
Yang K, Wang F, Han JJ. TRAF4 promotes the growth and invasion of colon cancer through the Wnt/β-catenin pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1419-1426. [PMID: 25973026 PMCID: PMC4396239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The tumor necrosis factor receptor-associated factor 4 (TRAF4) has been linked to carcinogenesis. However, the role of TRAF4 in colon cancer is still unclear. Therefore, we investigated the role of TRAF4 in colon cancer and the underlying mechanism. In the present study, we found that TRAF4 was overexpressed in colon cancer tissues and cells, and small interfering RNA (siRNA)-mediated gene knockdown of TRAF4 significantly inhibited cell proliferation, invasion and tumorigenesis, both in vitro and in vivo, but induced apoptosis in colon cancer cells. Furthermore, siRNA-TRAF4 significantly inhibited the expression levels of β-catenin, cyclinD1, and c-myc proteins in colon cancer cells. Taken together, these results suggest that TRAF4 promoted colon cancer cell growth and invasion by potentiating the Wnt/β-catenin pathway, suggesting that TRAF4 may be a potential molecular target for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Ke Yang
- Department of Liver General Surgery, Nan Yang Central HospitalNan Yang 473003, Henan Province, China
| | - Feng Wang
- Department of General Surgery, Zoucheng People’s HospitalJining 273500, Shandong Province, China
| | - Jian-Jun Han
- Department of Breast, The Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei Province, China
| |
Collapse
|