1
|
Walter NM, Yde Ohki CM, Ruhstaller S, Del Campana L, Salazar Campos JM, Smigielski L, Rubio B, Walitza S, Grünblatt E. Neurodevelopmental effects of omega-3 fatty acids and its combination with Methylphenidate in iPSC models of ADHD. J Psychiatr Res 2025; 184:78-90. [PMID: 40043588 DOI: 10.1016/j.jpsychires.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) has been linked to altered neurodevelopmental processes, including proliferation and differentiation of neural stem cells (NSC). We aimed to investigate the role of Wnt signaling, a pathway critical for brain development, in ADHD and to determine if modulation of this pathway using ω-3/6 polyunsaturated fatty acids (PUFAs) may provide a beneficial treatment approach. Given the symptom heterogeneity in ADHD and the limited response to conventional therapies for some patients, we examined the effects of ω-3/6 PUFA treatment combined with Methylphenidate (MPH) on neurodevelopmental mechanisms using induced pluripotent stem cell (iPSC)-derived NSCs, comparing controls to ADHD patients. Our results show that ω-3/6 PUFAs differentially regulate Wnt activity in NSCs depending on the patient's condition and the composition of the treatments. These findings highlight the potential of ω-3 PUFA treatment as personalized support for neurodevelopmental processes in ADHD. They also emphasize the importance of investigating ADHD subgroups, including those unresponsive to stimulant treatments, as they may exhibit distinct phenotypes.
Collapse
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Sina Ruhstaller
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Letizia Del Campana
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - José Maria Salazar Campos
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Belén Rubio
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Wu X, Shen J, Zhong Y, Zhao X, Zhou W, Gao P, Wang X, An W. Large-Scale Isolation of Milk Exosomes for Skincare. Pharmaceutics 2024; 16:930. [PMID: 39065627 PMCID: PMC11279399 DOI: 10.3390/pharmaceutics16070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small membrane vesicles in a cell culture. They are secreted by most cells and originate from the endosomal pathway. A variety of proteins, lipids, and genetic materials have been shown to be carried by exosomes. Once taken up by neighboring or distant cells, the bioactive compounds in exosomes can regulate the condition of recipient cells. Typically, producing exosomes in large quantities requires cell culture, resulting in high production costs. However, exosomes are abundant in milk and can be isolated on a large scale at a low cost. In our study, we found that milk exosomes can promote the synthesis and reconstruction of stratum corneum lipids, enhance skin barrier function, and provide greater protection for the skin. Furthermore, milk exosomes have anti-inflammatory properties that can reduce skin irritation, redness, and other symptoms, giving immediate relief. They also exhibit antioxidant activity, which helps neutralize free radicals and slows down the skin aging process. Additionally, milk exosomes inhibit melanin production, aiding in skin whitening. Ongoing research has uncovered the benefits of milk exosomes for skin improvement and their application in cosmetics, skin healthcare, and other fields, and these applications are continuing to expand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xudong Wang
- China National Biotech Group (CNBG), Sinopharm Group, National Vaccine & Serum Institute (NVSI), No. 38 Jing Hai Second Road, Beijing 101111, China; (X.W.); (J.S.); (Y.Z.); (X.Z.); (W.Z.); (P.G.)
| | - Wenlin An
- China National Biotech Group (CNBG), Sinopharm Group, National Vaccine & Serum Institute (NVSI), No. 38 Jing Hai Second Road, Beijing 101111, China; (X.W.); (J.S.); (Y.Z.); (X.Z.); (W.Z.); (P.G.)
| |
Collapse
|
3
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
4
|
Luteoloside Induces G0/G1 Phase Arrest of Neuroblastoma Cells by Targeting p38 MAPK. Molecules 2023; 28:molecules28041748. [PMID: 36838737 PMCID: PMC9966487 DOI: 10.3390/molecules28041748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Luteoloside has shown anti-inflammatory, antiviral, and antitumor properties. However, the effect and mechanism of luteoloside on neuroblastoma cells remain unknown. The proliferation of human neuroblastoma cells (SH-SY5Y and SK-N-AS) treated with different concentrations of luteoloside (0, 12.5, 25, and 50 μM) was detected by the MTT assay and colony formation assay. Cell apoptosis and cell cycle were examined by Hoechst staining and flow cytometry. A subcutaneous tumorigenesis model was established in nude mice to evaluate the effect of luteoloside on tumor growth in vivo. Bioinformatics, molecular docking techniques, and cellular thermal shift assays were utilized to predict the potential targets of luteoloside in neuroblastoma. The p38 MAPK inhibitor SB203580 was used to confirm the role of p38 MAPK. Luteoloside inhibited the proliferation of neuroblastoma cells in vitro and in vivo. Luteoloside slightly induced cellular G0/G1 phase arrest and reduced the expression levels of G0/G1 phase-related genes and the proteins cyclin D1, CDK4, and C-myc, which are downregulated by p38 MAPK pathways. Meanwhile, p38 was identified as the target of luteoloside, and inhibition of p38 MAPK reversed the inhibitory effect of luteoloside on neuroblastoma cells. Luteoloside is a potential anticancer drug for treating neuroblastoma by activating p38 MAPK.
Collapse
|
5
|
Berger A. Delta-5 ® oil, containing the anti-inflammatory fatty acid sciadonic acid, improves skin barrier function in a skin irritation model in healthy female subjects. Lipids Health Dis 2022; 21:40. [PMID: 35443694 PMCID: PMC9019283 DOI: 10.1186/s12944-022-01643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sciadonic acid (SA) is an anti-inflammatory fatty acid displacing arachidonic acid (ARA) from specific phospholipid pools, thus modulating downstream pro-inflammatory lipid mediators. Its novel anti-inflammatory actions have been studied in vitro, in pre-clinical models, and stemming from testimonials, after topical- and oral application. It has not been tested in a formal clinical study for topical benefits previously. Skin barrier layer was our focus as it has a critically important role in maintaining skin moisture balance. Methods Herein, forearm skin was left undamaged; or barrier layer was chemically-damaged with 2% sodium lauryl sulfate (SLS) for 24 h. SLS-damaged skin was left untreated or treated with Delta-5® oil containing 24% SA twice daily for 27 days. Barrier function was assessed by open chamber transepidermal water loss (TEWL) and skin surface impedance on days 0 (clear skin), -1 (1-day post-SLS), -2 (2-days post-SLS, 1-day post-Delta-5), -3, -7, and − 28. Results Relative to day 1, Delta-5 oil statistically significantly decreased TEWL vs. untreated damaged sites, on days 3 (125% more reduced), -7 (74% more reduced), and − 28 (69% more reduced). Decreases in TEWL following chemical damage indicates improved skin barrier repair and healing. Similar patterns were quantified for skin impedance. There was also reduced redness observed on days 3 and − 7 with Delta-5 oil vs. untreated SLS-damaged skin. Conclusions Delta-5 oil thus has anti-inflammatory potential in human skin, under controlled clinical conditions, to accelerate irritant-induced healing, and improve skin barrier function. Improvement in barrier function would benefit dermatitis, acne, eczema, and skin scarring. In normal skin, Delta-5 oil has potential to promote healthy, moisturized skin; and improve skin structure, elasticity, and firmness.
Collapse
Affiliation(s)
- Alvin Berger
- SciaEssentials, LLC and Sciadonics, Inc, 1161 Wayzata Blvd E Unit 30, MN, 55391, Wayzata, United States.
| |
Collapse
|
6
|
Multi-Omics Approach Reveals miR-SNPs Affecting Muscle Fatty Acids Profile in Nelore Cattle. Genes (Basel) 2021; 12:genes12010067. [PMID: 33419037 PMCID: PMC7825288 DOI: 10.3390/genes12010067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression, potentially affecting several biological processes, whose function can be altered by sequence variation. Hence, the integration of single nucleotide polymorphisms (SNP) and miRNAs can explain individual differences in economic traits. To provide new insights into the effects of SNPs on miRNAs and their related target genes, we carried out a multi-omic analysis to identify SNPs in miRNA mature sequences (miR-SNPs) associated with fatty acid (FA) composition in the Nelore cattle. As a result, we identified 3 miR-SNPs in different miRNAs (bta-miR-2419-3p, bta-miR-193a-2, and bta-miR-1291) significantly associated with FA traits (p-value < 0.02, Bonferroni corrected). Among these, the rs110817643C>T, located in the seed sequence of the bta-miR-1291, was associated with different ω6 FAs, polyunsaturated FA, and polyunsaturated:saturated FA ratios. Concerning the other two miR-SNPs, the rs43400521T>C (located in the bta-miR-2419-3p) was associated with C12:0 and C18:1 cis-11 FA, whereas the rs516857374A>G (located in the bta-miR-193a-2) was associated with C18:3 ω6 and ratio of ω6/ω3 traits. Additionally, to identify potential biomarkers for FA composition, we described target genes affected by these miR-SNPs at the mRNA or protein level. Our multi-omics analysis outlines the effects of genetic polymorphism on miRNA, and it highlights miR-SNPs and target candidate genes that control beef fatty acid composition.
Collapse
|
7
|
Yang B, Lin L, Bazinet RP, Chien YC, Chang JPC, Satyanarayanan SK, Su H, Su KP. Clinical Efficacy and Biological Regulations of ω-3 PUFA-Derived Endocannabinoids in Major Depressive Disorder. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 88:215-224. [PMID: 31269506 DOI: 10.1159/000501158] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endocannabinoids (ECs) are one type of bioactive endogenous neuroinflammatory mediator derived from polyunsaturated fatty acids (PUFAs), which may regulate the emotional processes. Here, we assessed the effect of ω-3 PUFAs on EC levels, which may be the novel targets for the ω-3 PUFAs' antidepressive effects. METHODS We conducted a 12-week double-blind, nonplacebo, randomized controlled trial. Eighty-eight major depressive disorder (MDD) participants were randomly assigned to receive eicosapentaenoic acid (EPA, 3.0 g/day), docosahexaenoic acid (DHA, 1.4 g/day), or a combination of EPA (1.5 g/d) and DHA (0.7 g/day). Eighty-five participants completed the trial, and their clinical remission and plasma PUFA-derived EC levels (pmol/mL) were measured. RESULTS The cumulative rates of clinical remission were significantly higher in the EPA and EPA + DHA groups than the DHA group (51.85 and 53.84 vs. 34.37%; p =0.027 and p =0.024, respectively). EPA and EPA + DHA treatments increased the eicosapentaenoylethanolamide (EPEA) levels compared to DHA treatment (0.33 ± 0.18 and 0.35 ± 0.24 vs. 0.08 ± 0.12; p =0.002 and p =0.001, respectively), while EPA + DHA treatment increased the docosahexaenoylethanolamide levels more than EPA treatment (1.34 ± 2.09 vs. 0.01 ± 1.79; p =0.006). Plasma EPEA levels were positively correlated with rates of clinical remission (hazard ratio: 1.60, 95% confidence interval: 1.08-2.39). CONCLUSIONS Treatments enriched with EPA increased plasma EPEA levels, which was positively associated with clinical remission. This finding may suggest that levels of plasma EPEA play a potential novel endogenous therapeutic target in MDD.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine and School of Public Health, Wenzhou Medical University, Wenzhou, China.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Chuan Chien
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kuan-Pin Su
- Institute of Lipids Medicine and School of Public Health, Wenzhou Medical University, Wenzhou, China, .,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan, .,College of Medicine, China Medical University, Taichung, Taiwan,
| |
Collapse
|
8
|
Prisingkorn W, Jakovlić I, Yi SK, Deng FY, Zhao YH, Wang WM. Gene expression patterns indicate that a high-fat-high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019; 62:53-67. [PMID: 30830800 DOI: 10.1139/gen-2018-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat-high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's), and functional categories indicative of liver dysfunction. A high-fat-high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Ivan Jakovlić
- b Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Shao-Kui Yi
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Fang-Yu Deng
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Yu-Hua Zhao
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Wei-Min Wang
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| |
Collapse
|
9
|
Feltham BA, Louis XL, Kapourchali FR, Eskin MNA, Suh M. DHA supplementation during prenatal ethanol exposure alters the expression of fetal rat liver genes involved in oxidative stress regulation. Appl Physiol Nutr Metab 2018; 44:744-750. [PMID: 30521352 DOI: 10.1139/apnm-2018-0580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prenatal ethanol (EtOH) exposure is known to induce adverse effects on fetal brain development. Docosahexaenoic acid (DHA) has been shown to alleviate these effects by up-regulating antioxidant mechanisms in the brain. The liver is the first organ to receive enriched blood after placental transport. Therefore, it could be negatively affected by EtOH, but no studies have assessed the effects of DHA on fetal liver. This study examined the effects of maternal DHA intake on DHA status and gene expression of key enzymes of the glutathione antioxidant system in the fetal liver after prenatal EtOH exposure. Pregnant Sprague-Dawley dams were intubated with EtOH for the first 10 days of pregnancy, while being fed a control or DHA-supplemented diet. Fetal livers were collected at gestational day 20, and free fatty acids and phospholipid profile, as well as glutathione reductase (GR) and glutathione peroxidase-1 (GPx1) gene expressions, were assessed. Prenatal EtOH exposure increased fetal liver weight, whereas maternal DHA supplementation decreased fetal liver weight. DHA supplementation increased fetal liver free fatty acid and phospholipid DHA independently of EtOH. GR and GPx1 messenger RNA (mRNA) expressions were significantly increased and decreased, respectively, in the EtOH-exposed group compared with all other groups. Providing DHA normalized GR and GPx1 mRNA expression to control levels. This study shows that maternal DHA supplementation alters the expression of fetal liver genes involved in the glutathione antioxidative system during prenatal EtOH exposure. The fetal liver may play an important role in mitigating the signs and symptoms of fetal alcohol spectrum disorders in affected offspring.
Collapse
Affiliation(s)
- Bradley A Feltham
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Xavier L Louis
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Fatemeh Ramezani Kapourchali
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael N A Eskin
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Miyoung Suh
- a Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
10
|
Sikalidis AK. From Food for Survival to Food for Personalized Optimal Health: A Historical Perspective of How Food and Nutrition Gave Rise to Nutrigenomics. J Am Coll Nutr 2018; 38:84-95. [PMID: 30280996 DOI: 10.1080/07315724.2018.1481797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human nutrition has progressed impressively from the hunter-gatherer mode to that of promising personalized nutrition for health optimization through advanced and sophisticated omics technologies. The contemporary major diseases, while having strong genetic components, do not conform to Mendelian genetics; hence, their expression/manifestation is not controlled by a single gene. Noncommunicable diseases such as obesity, cancer, type 2 diabetes mellitus, and cardiovascular disease are attributed to a series of chronic anomalies closely related to dietary, among other, environmental factors, and consistent deregulation of one or more groups of genes (polygenic). Collectively, these diseases constitute the main cause of death globally and pose tremendous financial burden on healthcare systems. Dietary interventions offer significant possibilities for cost-effective strategies to reduce risk of a series of metabolic diseases and/or improve the outcome of prognosis. In recent decades, the ability of particular nutrients to influence certain cellular functions as well as the regulation of several metabolic pathways via genomic interplay has been demonstrated. Nutrients can influence cellular responses and hence exert an effect on health parameters and outcomes. Several nutrients have been documented to extend their regulatory capacity at various levels including gene expression profile signatures' modulation. In addition, specific nutrients can modulate expression/activation of genes that encode regulatory hormones, which in turn are signaling agents strongly affecting metabolism and subsequently risk levels for certain metabolic diseases. The field of nutrigenomics attempts to revolutionize modern thinking on diet, food, and health; whether it will deliver is still an open matter of debate Key teaching points: A brief, yet comprehensive account on how food and nutrition evolved to give rise to nutrigenomics. Discusses potential of nutrigenomics for public health contribution in noncommunicable diseases. Debates credibility of nutrigenomics' commercial products versus the bio-hype in the field. Presents experts' and stakeholders' opinions for future directions of nutrigenomics.
Collapse
Affiliation(s)
- Angelos K Sikalidis
- a Department of Nutrition and Dietetics, Faculty of Health Sciences , Istanbul Yeni Yuzyil University , Istanbul , Turkey
| |
Collapse
|
11
|
Xu H, Wang C, Zhang Y, Wei Y, Liang M. Moderate levels of dietary arachidonic acid reduced lipid accumulation and tended to inhibit cell cycle progression in the liver of Japanese seabass Lateolabrax japonicus. Sci Rep 2018; 8:10682. [PMID: 30013122 PMCID: PMC6048150 DOI: 10.1038/s41598-018-28867-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
To investigate the physiological roles of dietary arachidonic acid (ARA) in fish, a feeding trial with Japanese seabass was conducted, followed by a hepatic transcriptome assay. Six experimental diets differing basically in ARA level (0.05%, 0.22%, 0.37%, 0.60%, 1.38% and 2.32% of dry matter) were used in the feeding trial. Liver samples from fish fed diets with 0.05% and 0.37% ARA were subjected to transcriptomic assay, generating a total of 139 differently expressed unigenes, which were primarily enriched in lipid metabolism and cell cycle-related signaling pathways. Then, qRT-PCR validation on lipid metabolism and cell cycle-related genes as well as corresponding enzyme-linked immunosorbent assay of selected proteins were conducted with liver samples from all six groups. Moderated ARA levels reduced lipogenesis and stimulated β-oxidation concurrently, but high ARA levels seemed to affect lipid metabolism in complicated ways. Both gene expression and protein concentration of cell cycle-related proteins were decreased by moderate levels of dietary ARA. The lipid content and fatty acid composition in fish confirmed the transcription and protein concentration results related to lipid metabolism. In conclusion, moderate levels of dietary ARA (0.37% and 0.60%) reduced lipid accumulation and tended to inhibit cell cycle progression in the liver of Japanese seabass.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, Shandong, China
| | - Chengqiang Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, Shandong, China
| | - Yuanqin Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, Shandong, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, Shandong, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, Shandong, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
12
|
N-3 Polyunsaturated Fatty Acids Stimulate Bile Acid Detoxification in Human Cell Models. Can J Gastroenterol Hepatol 2018; 2018:6031074. [PMID: 29850457 PMCID: PMC5907406 DOI: 10.1155/2018/6031074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/07/2018] [Indexed: 01/16/2023] Open
Abstract
Cholestasis is characterized by the accumulation of toxic bile acids (BAs) in liver cells. The present study aimed to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, on BA homeostasis and toxicity in human cell models. The effects of EPA and/or DHA on the expression of genes involved in the maintenance of BA homeostasis were analyzed in human hepatoma (HepG2) and colon carcinoma (Caco-2) cells, as well as in primary culture of human intestinal (InEpC) and renal (RPTEC) cells. Extracellular BA species were quantified in culture media using LC-MS/MS. BA-induced toxicity was evaluated using caspase-3 and flow cytometry assays. Gene expression analyses of HepG2 cells reveal that n-3 PUFAs reduce the expression of genes involved in BA synthesis (CYP7A1, CYP27A1) and uptake (NTCP), while activating genes encoding metabolic enzymes (SULT2A1) and excretion transporters (MRP2, MRP3). N-3 PUFAs also generate a less toxic BA pool and prevent the BA-dependent activation of apoptosis in HepG2 cells. Conclusion. The present study reveals that n-3 PUFAs stimulate BA detoxification.
Collapse
|
13
|
Xu H, Zhang Y, Wang C, Wei Y, Zheng K, Liang M. Cloning and characterization of fatty acid-binding proteins (fabps) from Japanese seabass (Lateolabrax japonicus) liver, and their gene expressions in response to dietary arachidonic acid (ARA). Comp Biochem Physiol B Biochem Mol Biol 2017; 204:27-34. [DOI: 10.1016/j.cbpb.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
|
14
|
Sergeant S, Rahbar E, Chilton FH. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur J Pharmacol 2016; 785:77-86. [PMID: 27083549 PMCID: PMC4975646 DOI: 10.1016/j.ejphar.2016.04.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Gamma-linolenic acid (GLA, 18:3n-6) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) found in human milk and several botanical seed oils and is typically consumed as part of a dietary supplement. While there have been numerous in vitro and in vivo animal models which illustrate that GLA-supplemented diets attenuate inflammatory responses, clinical studies utilizing GLA or GLA in combination with omega-3 (n-3) PUFAs have been much less conclusive. A central premise of this review is that there are critical metabolic and genetic factors that affect the conversion of GLA to dihommo-gamma linolenic acid (DGLA, 20:3n-6) and arachidonic acid (AA, 20:4n-6), which consequently affects the balance of DGLA- and AA- derived metabolites. As a result, these factors impact the clinical effectiveness of GLA or GLA/(n-3) PUFA supplementations in treating inflammatory conditions. Specifically, these factors include: 1) the capacity for different human cells and tissues to convert GLA to DGLA and AA and to metabolize DGLA and AA to bioactive metabolites; 2) the opposing effects of DGLA and AA metabolites on inflammatory processes and diseases; and 3) the impact of genetic variations within the fatty acid desaturase (FADS) gene cluster, in particular, on AA/DGLA ratios and bioactive metabolites. We postulate that these factors influence the heterogeneity of results observed in GLA supplement-based clinical trials and suggest that "one-size fits all" approaches utilizing PUFA-based supplements may no longer be appropriate for the prevention and treatment of complex human diseases.
Collapse
Affiliation(s)
- Susan Sergeant
- Department of Biochemistry; Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | - Elaheh Rahbar
- Department of Biomedical Engineering; Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | - Floyd H Chilton
- Department of Physiology/Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
15
|
Yamanishi K, Maeda S, Kuwahara-Otani S, Watanabe Y, Yoshida M, Ikubo K, Okuzaki D, El-Darawish Y, Li W, Nakasho K, Nojima H, Yamanishi H, Hayakawa T, Okamura H, Matsunaga H. Interleukin-18-deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Transl Res 2016; 173:101-114.e7. [PMID: 27063959 DOI: 10.1016/j.trsl.2016.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 12/11/2022]
Abstract
We investigated potential pathophysiological relationships between interleukin 18 (IL-18) and dyslipidemia, nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH). Compared with Il18(+/+) mice, IL-18 knockout (Il18(-/-)) mice developed hypercholesterolemia and hyper-high-density-lipoprotein-cholesterolemia as well as hypertriglyceridemia as they aged, and these disorders occurred before the manifestation of obesity and might cause secondary NASH. The analyses of molecular mechanisms involved in the onset of dyslipidemia, NAFLD, and NASH in Il18(-/-) mice identified a number of genes associated with these metabolic diseases. In addition, molecules related to circadian rhythm might affect these extracted genes. The intravenous administration of recombinant IL-18 significantly improved dyslipidemia, inhibited the body weight gain of Il18(+/+) mice, and prevented the onset of NASH. The expression of genes related to these dysfunctions was also affected by recombinant IL-18 administration. In conclusion, this study demonstrated the critical function of IL-18 in lipid metabolism and these findings might contribute to the progress of novel treatments for NAFLD or NASH.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan; Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Momoko Yoshida
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan; Department of Genome Informatics, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Kaoru Ikubo
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan; Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Nojima
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan; Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
16
|
Cui Y, Wang Q, Yi X, Zhang X. Effects of Fatty Acids on CYP2A5 and Nrf2 Expression in Mouse Primary Hepatocytes. Biochem Genet 2015; 54:29-40. [PMID: 26423681 DOI: 10.1007/s10528-015-9697-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 09/19/2015] [Indexed: 01/15/2023]
Abstract
Abnormal fatty acid metabolism is observed throughout nonalcoholic fatty liver disease (NAFLD) pathogenesis, and fatty acid storage is an important inducing factor in insulin resistance, lipid oxidation, hepatic cell damage, and inflammation. During NAFLD pathogenesis, changes in blood and liver contents of different fatty acid types also vary. Cytochrome P450 2A5 (CYP2A5), an important enzyme in mouse liver, metabolizes many drugs and activates multiple pro-carcinogens with widely varying structures. According to the changes in liver fatty acid profiles observed in NAFLD animal models developed in our laboratory and others, saturated (PA/palmitic, and SA/stearic acids) and unsaturated (OA/oleic, LA/linoleic, ALA/α-linolenic and AA/arachidonic acids) fatty acids were selected to induce mouse primary hepatocytes, at concentrations under 1 mM, as detected by MTT assay. After 24 h treatment with various fatty acid concentrations and types, CYP2A5 mRNA and protein amounts, and enzyme activity were determined by real-time PCR, Western blot, and Coumarin 7-hydroxylation, respectively. Meanwhile, Nrf2 mRNA and protein levels were evaluated by real-time PCR and Western blot. The results indicated that saturated fatty acids are more potent in inducing CYP2A5 than unsaturated ones, except arachidonic acid. In addition, the changes in CYP2A5 expression were consistent with the alterations observed in Nrf2 expression, indicating that Nrf2 might play a regulatory role in CYP2A5 expression.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Veterinary Medicine, Northeast Agricultural University, No.59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xing Yi
- College of Veterinary Medicine, Northeast Agricultural University, No.59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiuying Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No.59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
17
|
De Rosa MC, Caputo M, Zirpoli H, Rescigno T, Tarallo R, Giurato G, Weisz A, Torino G, Tecce MF. Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs. J Cell Physiol 2015; 230:2059-66. [DOI: 10.1002/jcp.24932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Affiliation(s)
| | - Mariella Caputo
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Hylde Zirpoli
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Tania Rescigno
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Gaetano Torino
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Mario Felice Tecce
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| |
Collapse
|
18
|
Atlantic salmon (Salmo salar) liver transcriptome response to diets containing Camelina sativa products. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:1-15. [PMID: 25681993 DOI: 10.1016/j.cbd.2015.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
Abstract
Due to increasing demand for fish oil (FO) and fish meal (FM) in aquafeeds, more sustainable alternatives such as plant-derived oils and proteins are needed. Camelina sativa products are viable feed ingredients given the high oil and crude protein content in the seed. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial [Control diet: FO; Test diets: 100% CO replacement of FO (100CO), or 100CO with solvent-extracted FM (100COSEFM), 10% CM (100CO10CM), or SEFM+10% CM (100COSEFM10CM)]. Diet composition, growth, and fatty acid analyses for this feeding trial were published previously. A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to controls, yielding 67 differentially expressed features (FDR<5%). Ten microarray-identified genes [cpt1, pcb, bar, igfbp-5b (2 paralogues), btg1, dnph1, lect-2, clra, klf9, and fadsd6a], and three additional genes involved in lipid metabolism [elovl2, elovl5 (2 paralogues), and fadsd5], were subjected to QPCR with liver templates from all 5 dietary treatments. Of the microarray-identified genes, only bar was not QPCR validated. Both igfbp-5b paralogues were significantly down-regulated, and fadsd6a was significantly up-regulated, in all 4 camelina-containing diet groups compared with controls. Multivariate statistics were used to correlate hepatic desaturase and elongase gene expression data with tissue fatty acid profiles, indicating the involvement of these genes in LC-PUFA biosynthesis. This nutrigenomic study provides molecular biomarkers for use in developing novel aquafeeds using camelina products.
Collapse
|
19
|
Mondal J, Panigrahi AK, Khuda-Bukhsh AR. Anticancer potential of Conium maculatum extract against cancer cells in vitro: Drug-DNA interaction and its ability to induce apoptosis through ROS generation. Pharmacogn Mag 2014; 10:S524-33. [PMID: 25298670 PMCID: PMC4189268 DOI: 10.4103/0973-1296.139792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/05/2014] [Accepted: 08/30/2014] [Indexed: 12/18/2022] Open
Abstract
Objective: Conium maculatum extract is used as a traditional medicine for cervix carcinoma including homeopathy. However, no systematic work has so far been carried out to test its anti-cancer potential against cervix cancer cells in vitro. Thus, in this study, we investigated whether ethanolic extract of conium is capable of inducing cytotoxicity in different normal and cancer cell lines including an elaborate study in HeLa cells. Materials and Methods: Conium's effects on cell cycle, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential (MMP) and apoptosis, if any, were analyzed through flow cytometry. Whether Conium could damage DNA and induce morphological changes were also determined microscopically. Expression of different proteins related to cell death and survival was critically studied by western blotting and ELISA methods. If Conium could interact directly with DNA was also determined by circular dichroism (CD) spectroscopy. Results: Conium treatment reduced cell viability and colony formation at 48 h and inhibited cell proliferation, arresting cell cycle at sub-G stage. Conium treatment lead to increased generation of reactive oxygen species (ROS) at 24 h, increase in MMP depolarization, morphological changes and DNA damage in HeLa cells along with externalization of phosphatidyl serine at 48 hours. While cytochrome c release and caspase-3 activation led HeLa cells toward apoptosis, down-regulation of Akt and NFkB inhibited cellular proliferation, indicating the signaling pathway to be mediated via the mitochondria-mediated caspase-3-dependent pathway. CD-spectroscopy revealed that Conium interacted with DNA molecule. Conclusion: Overall results validate anti-cancer potential of Conium and provide support for its use in traditional systems of medicine.
Collapse
Affiliation(s)
- Jesmin Mondal
- Department of Zoology, Cytogenetics and Molecular Biology Laboratory, University of Kalyani, Kalyani, West Bengal, India
| | - Ashis Kumar Panigrahi
- Department of Zoology, Fisheries and Aquaculture Laboratory, University of Kalyani, Kalyani, West Bengal, India
| | - Anisur Rahman Khuda-Bukhsh
- Department of Zoology, Cytogenetics and Molecular Biology Laboratory, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
20
|
Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients 2014; 6:1993-2022. [PMID: 24853887 PMCID: PMC4042578 DOI: 10.3390/nu6051993] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/01/2023] Open
Abstract
The “modern western” diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.
Collapse
|
21
|
Osada J. The use of transcriptomics to unveil the role of nutrients in Mammalian liver. ISRN NUTRITION 2013; 2013:403792. [PMID: 24967258 PMCID: PMC4045299 DOI: 10.5402/2013/403792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.
Collapse
Affiliation(s)
- Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain ; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Nutritional properties of dietary omega-3-enriched phospholipids. BIOMED RESEARCH INTERNATIONAL 2013; 2013:965417. [PMID: 23984423 PMCID: PMC3747496 DOI: 10.1155/2013/965417] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022]
Abstract
Dietary fatty acids regulate several physiological functions. However, to exert their properties, they have to be present in the diet in an optimal balance. Particular attention has been focused on tissue highly polyunsaturated fatty acids (HPUFAs) n-6/n-3 ratio, influenced by the type and the esterified form of dietary fatty acids. Dietary EPA and DHA when esterified to phospholipids (PLs) are more efficiently incorporated into tissue PLs and seem to possess peculiar properties through specific mechanism(s) of action, such as the capacity to affect endocannabinoid biosynthesis at much lower doses than EPA and DHA in triglyceride form, probably because of the above mentioned higher incorporation into tissue PLs. Downregulation of the endocannabinoid system seems to mediate the positive effects exerted by omega-3-enriched PLs on several parameters of metabolic syndrome. PLs are one of the major dietary forms of EPA and DHA we are exposed to with the everyday diet; therefore, it is not surprising that it guarantees an effective EPA and DHA nutritional activity. Future studies should address whether EPA and DHA in PL form are also more effective than other formulations in ameliorating other pathological conditions where n-3 HPUFAs seem to exert beneficial activities such as cancer and psychiatric disorders.
Collapse
|
23
|
Levant B, Ozias MK, Guilford BL, Wright DE. Streptozotocin-induced diabetes partially attenuates the effects of a high-fat diet on liver and brain fatty acid composition in mice. Lipids 2013; 48:939-48. [PMID: 23893338 DOI: 10.1007/s11745-013-3817-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
Abstract
The current study addresses the effects of a high-fat diet on liver and brain fatty acid compositions and the interaction of that diet with diabetes in a type 1 mouse model. Adult, male, normal and streptozotocin-induced diabetic C57BL/6 mice were fed standard (14 % kcal from fat) or high-fat (54 % kcal from fat, hydrogenated vegetable shortening and corn oil) diets for 8 weeks. Liver and whole brain total phospholipid fatty acid compositions were then determined by TLC/GC. In the liver of non-diabetic mice, the high-fat diet increased the percentages of 18:1n-9, 20:4n-6, and 22:5n-6 and decreased 18:2n-6 and 22:6n-3. Diabetes increased 16:0 in liver, and decreased 18:1n-7 and 20:4n-6. The effects of the high-fat diet on liver phospholipids in diabetic mice were similar to those in non-diabetic mice, or were of smaller magnitude. In the brain, the high-fat diet increased 18:0 and 20:4n-6 of non-diabetic, but not diabetic mice. Brain 22:5n-6 acid was increased by the high-fat diet in both non-diabetic and diabetic mice, but this increase was smaller in diabetic mice. Diabetes alone did not alter the percentage of any individual fatty acid in brain. This indicates that the effects of a high-fat diet on liver and brain phospholipid fatty acid compositions are partially attenuated by concomitant hyperglycemia with hypoinsulinemia.
Collapse
Affiliation(s)
- Beth Levant
- Departments of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Mail Stop 1018, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
24
|
Akbar H, Schmitt E, Ballou MA, Corrêa MN, Depeters EJ, Loor JJ. Dietary Lipid During Late-Pregnancy and Early-Lactation to Manipulate Metabolic and Inflammatory Gene Network Expression in Dairy Cattle Liver with a Focus on PPARs. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:103-23. [PMID: 23825924 PMCID: PMC3699062 DOI: 10.4137/grsb.s12005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyunsaturated (PUFA) long-chain fatty acids (LCFAs) are more potent in eliciting molecular and tissue functional changes in monogastrics than saturated LCFA. From −21 through 10 days relative to parturition dairy cows were fed no supplemental LCFA (control), saturated LCFA (SFAT; mainly 16:0 and 18:0), or fish oil (FISH; high-PUFA). Twenty-seven genes were measured via quantitative RT-PCR in liver tissue on day −14 and day 10. Expression of nuclear receptor co-activators (CARM1, MED1), LCFA metabolism (ACSL1, SCD, ACOX1), and inflammation (IL6, TBK1, IKBKE) genes was lower with SFAT than control on day −14. Expression of SCD, however, was markedly lower with FISH than control or SFAT on both −14 and 10 days. FISH led to further decreases in expression on day 10 of LCFA metabolism (CD36, PLIN2, ACSL1, ACOX1), intracellular energy (UCP2, STK11, PRKAA1), de novo cholesterol synthesis (SREBF2), inflammation (IL6, TBK1, IKBKE), and nuclear receptor signaling genes (PPARD, MED1, NRIP1). No change in expression was observed for PPARA and RXRA. The increase of DGAT2, PLIN2, ACSL1, and ACOX1 on day 10 versus −14 in cows fed SFAT suggested upregulation of both beta-oxidation and lipid droplet (LD) formation. However, liver triacylglycerol concentration was similar among treatments. The hepatokine FGF21 and the gluconeogenic genes PC and PCK1 increased markedly on day 10 versus −14 only in controls. At the levels supplemented, the change in the profile of metabolic genes after parturition in cows fed saturated fat suggested a greater capacity for uptake of fatty acids and intracellular handling without excessive storage of LD.
Collapse
Affiliation(s)
- Haji Akbar
- Mammalian NutriPhysioGenomics Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bosco N, Brahmbhatt V, Oliveira M, Martin FP, Lichti P, Raymond F, Mansourian R, Metairon S, Pace-Asciak C, Bastic Schmid V, Rezzi S, Haller D, Benyacoub J. Effects of increase in fish oil intake on intestinal eicosanoids and inflammation in a mouse model of colitis. Lipids Health Dis 2013; 12:81. [PMID: 23725086 PMCID: PMC3691874 DOI: 10.1186/1476-511x-12-81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic intestinal inflammatory diseases affecting about 1% of western populations. New eating behaviors might contribute to the global emergence of IBD. Although the immunoregulatory effects of omega-3 fatty acids have been well characterized in vitro, their role in IBD is controversial. METHODS The aim of this study was to assess the impact of increased fish oil intake on colonic gene expression, eicosanoid metabolism and development of colitis in a mouse model of IBD. Rag-2 deficient mice were fed fish oil (FO) enriched in omega-3 fatty acids i.e. EPA and DHA or control diet for 4 weeks before colitis induction by adoptive transfer of naïve T cells and maintained in the same diet for 4 additional weeks. Onset of colitis was monitored by colonoscopy and further confirmed by immunological examinations. Whole genome expression profiling was made and eicosanoids were measured by HPLC-MS/MS in colonic samples. RESULTS A significant reduction of colonic proinflammatory eicosanoids in FO fed mice compared to control was observed. However, neither alteration of colonic gene expression signature nor reduction in IBD scores was observed under FO diet. CONCLUSION Thus, increased intake of dietary FO did not prevent experimental colitis.
Collapse
Affiliation(s)
- Nabil Bosco
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Viral Brahmbhatt
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Manuel Oliveira
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Francois-Pierre Martin
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Pia Lichti
- Technische Universität München, Biofunctionality, ZIEL–Research Center for Nutrition and Food Science, CDD - Center for Diet and Disease, Gregor-Mendel-Straße 2, Freising-Weihenstephan, 85350, Germany
| | - Frederic Raymond
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Robert Mansourian
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Sylviane Metairon
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Cecil Pace-Asciak
- Research Institute, E. McMaster Building, The Hospital for Sick Children, Toronto, Canada
| | | | - Serge Rezzi
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Dirk Haller
- Technische Universität München, Biofunctionality, ZIEL–Research Center for Nutrition and Food Science, CDD - Center for Diet and Disease, Gregor-Mendel-Straße 2, Freising-Weihenstephan, 85350, Germany
| | - Jalil Benyacoub
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| |
Collapse
|
26
|
Waters SM, Coyne GS, Kenny DA, MacHugh DE, Morris DG. Dietary n-3 polyunsaturated fatty acid supplementation alters the expression of genes involved in the control of fertility in the bovine uterine endometrium. Physiol Genomics 2012; 44:878-88. [PMID: 22851761 DOI: 10.1152/physiolgenomics.00065.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The potential for dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) to improve reproductive efficiency in cattle has received much interest. The mechanisms by which n-3 PUFA may affect physiological and biochemical processes in key reproductive tissues are likely to be mediated by significant alterations in gene expression. The objective of this study was to examine the effects of dietary n-3 PUFA supplementation on global uterine endometrial gene expression in cattle. Beef heifers were supplemented with a rumen protected source of either a saturated fatty acid (CON; palmitic acid) or high n-3 PUFA (n-3 PUFA; 275 g) diet per animal per day for 45 days and global gene expression was determined in uterine endometrial tissue using an Affymetrix oligonucleotide bovine array. A total of 1,807 (946 up- and 861 downregulated) genes were differentially expressed following n-3 PUFA supplementation. Dietary n-3 PUFA altered numerous cellular processes potentially important in the control of reproduction in cattle. These included prostaglandin biosynthesis, steroidogenesis and transcriptional regulation, while effects on genes involved in maternal immune response and tissue remodeling were also observed. This study provides new insights into the effects of n-3 PUFA supplementation on the regulation of gene expression in the bovine uterus.
Collapse
Affiliation(s)
- Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| | | | | | | | | |
Collapse
|
27
|
Zhang W, Zhang Y, Zhang H, Wang J, Cui R, Dai J. Sex differences in transcriptional expression of FABPs in zebrafish liver after chronic perfluorononanoic acid exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5175-5182. [PMID: 22500729 DOI: 10.1021/es300147w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Perfluorononanoic acid (PFNA), a nine carbon backbone of perfluorinated acids (PFAAs), has wide production applications and is found in environmental matrices as a contaminant. To understand the adverse effects of PFNA, adult male and female zebrafish were exposed to differing PFNA dosages (0, 0.01, 0.1, and 1.0 mg/L) for 180 days using a flow-through exposure system. Results showed body weight, body length, and hepatosomatic index (HSI) decreased in both sexes. The HPLC-MS/MS analysis found that PFNA concentrations were higher in male livers than in female livers with increasing significance in a dose-dependent manner. Total cholesterol levels increased in the livers of both sexes, whereas triglyceride (TG) levels increased in males and decreased in females. With the exception of FABP1b, the transcriptional expression levels of fatty acid binding proteins (FABPs) were up-regulated in males and down-regulated in females. A similar trend between sexes occurred for peroxisome proliferator-activated receptors (PPARs) and Ccaat-enhancer-binding proteins (C/EBPs), which may be the upstream regulatory elements of FABPs. The results indicated that PFNA exposure caused opposite adverse effects on liver TG levels between the sexes in zebrafish possibly due to the opposite expression of FABPs and its upstream genes.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Liu WM, Zhang J, Lu LZ, Shi FX, Niu D, Wang DL, Yu B, Tao ZR, Shen JD, Wang DQ, Tian Y. Effects of perilla extract on productive performance, serum values and hepatic expression of lipid-related genes in Shaoxing ducks. Br Poult Sci 2011; 52:381-7. [PMID: 21732885 DOI: 10.1080/00071668.2011.577053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. The aim of this study was to identify the effect of perilla extract, a source of polyunsaturated fatty acids, on lipid metabolism and expression of lipid-related genes in livers of Shaoxing ducks. 2. Two hundred and forty 28-week-old laying ducks received a commercial diet with perilla extract added at 0 (control) or 200 mg/kg of feed. 3. Ducks fed on a diet with perilla extract had increased laying rates compared with control ducks. 4. Serum concentrations of triglycerides were reduced by perilla extract, while high-density lipoprotein cholesterol and total serum cholesterol increased. 5. The expression of genes involved in hepatic lipogenesis, sterol regulatory element-binding protein-1, acetyl CoA carboxylase, stearoyl CoA desaturase, fatty acid synthase, apolipoprotein B, and apolipoprotein very low density lipoprotein, were decreased in the perilla group. 6. The mRNA expression of peroxisome proliferators-activated receptor alpha and acyl-coenzyme A oxidase was enhanced following treatment with perilla extract, and a similar tendency was observed in the expression of liver fatty acid-binding protein. 7. The results show that a diet with 200 mg/kg perilla extract regulated fat metabolism of Shaoxing ducks by improving egg laying, altering serum lipid profiles, stimulating lipid catabolic gene expression and inhibiting lipogenic gene expression in the liver.
Collapse
Affiliation(s)
- W M Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes. BMC Genomics 2011; 12:432. [PMID: 21864415 PMCID: PMC3175228 DOI: 10.1186/1471-2164-12-432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/25/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. RESULTS Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). CONCLUSIONS OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Kalyana Sundram
- Malaysian Palm Oil Council, 2nd Floor, Wisma Sawit, Lot 6, SS6, Jalan Perbandaran, 47301 Kelana Jaya, Selangor, Malaysia
| | - YewAi Tan
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
30
|
Knoch B, Barnett MPG, McNabb WC, Zhu S, Park ZA, Khan A, Roy NC. Dietary arachidonic acid-mediated effects on colon inflammation using transcriptome analysis. Mol Nutr Food Res 2010; 54 Suppl 1:S62-74. [DOI: 10.1002/mnfr.200900543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Banni S, Di Marzo V. Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol Nutr Food Res 2010; 54:82-92. [PMID: 20013888 DOI: 10.1002/mnfr.200900516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the several known fatty acid-derived chemical signals, the endogenous ligands of cannabinoid receptors type-1 and -2, two G-protein-coupled receptors involved in several aspects of mammalian physiology and pathology, are perhaps those the levels of which have proven to be most sensitive to the fatty acid composition of the diet. The two most studied such ligands, known as endocannabinoids, are N-arachidonoyl-ethanolamine and 2-archidonoylglycerol, and are found in tissues together with other N-acyl-ethanolamines and 2-acylglycerols, not all of which activate the cannabinoid receptors, although several of them do exhibit important pharmacological effects. In this review article, we describe literature data indicating that the tissue concentrations of the endocannabinoids and related signalling molecules, and hence the activity of the respective receptors, can be modulated by modifying the fatty acid composition of the diet, and particularly its content in long chain PUFAs or in long chain PUFA precursors. We also discuss the potential impact of these diet-induced changes of endocannabinoid tone on three of the major pathological conditions in which cannabinoid receptors have been involved, that is metabolic dysfunctions, inflammation and affective disorders.
Collapse
Affiliation(s)
- Sebastiano Banni
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Cagliari, Italy
| | | |
Collapse
|
32
|
Karanth S, Lall SP, Denovan-Wright EM, Wright JM. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. BMC Evol Biol 2009; 9:219. [PMID: 19725974 PMCID: PMC2754478 DOI: 10.1186/1471-2148-9-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/02/2009] [Indexed: 12/25/2022] Open
Abstract
Background In the Duplication-Degeneration-Complementation (DDC) model, subfunctionalization and neofunctionalization have been proposed as important processes driving the retention of duplicated genes in the genome. These processes are thought to occur by gain or loss of regulatory elements in the promoters of duplicated genes. We tested the DDC model by determining the transcriptional induction of fatty acid-binding proteins (Fabps) genes by dietary fatty acids (FAs) in zebrafish. We chose zebrafish for this study for two reasons: extensive bioinformatics resources are available for zebrafish at zfin.org and zebrafish contains many duplicated genes owing to a whole genome duplication event that occurred early in the ray-finned fish lineage approximately 230-400 million years ago. Adult zebrafish were fed diets containing either fish oil (12% lipid, rich in highly unsaturated fatty acid), sunflower oil (12% lipid, rich in linoleic acid), linseed oil (12% lipid, rich in linolenic acid), or low fat (4% lipid, low fat diet) for 10 weeks. FA profiles and the steady-state levels of fabp mRNA and heterogeneous nuclear RNA in intestine, liver, muscle and brain of zebrafish were determined. Result FA profiles assayed by gas chromatography differed in the intestine, brain, muscle and liver depending on diet. The steady-state level of mRNA for three sets of duplicated genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, and fabp11a/fabp11b, was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR). In brain, the steady-state level of fabp7b mRNAs was induced in fish fed the linoleic acid-rich diet; in intestine, the transcript level of fabp1b.1 and fabp7b were elevated in fish fed the linolenic acid-rich diet; in liver, the level of fabp7a mRNAs was elevated in fish fed the low fat diet; and in muscle, the level of fabp7a and fabp11a mRNAs were elevated in fish fed the linolenic acid-rich or the low fat diets. In all cases, induction of the steady-state level of fabp mRNAs by dietary FAs correlated with induced levels of hnRNA for a given fabp gene. As such, up-regulation of the steady-state level of fabp mRNAs by FAs occurred at the level of initiation of transcription. None of the sister duplicates of these fabp genes exhibited an increase in their steady-state transcript levels in a specific tissue following feeding zebrafish any of the four experimental diets. Conclusion Differential induction of only one of the sister pair of duplicated fabp genes by FAs provides evidence to support the DDC model for retention of duplicated genes in the zebrafish genome by either subfunctionalization or neofunctionalization.
Collapse
Affiliation(s)
- Santhosh Karanth
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada.
| | | | | | | |
Collapse
|
33
|
Shimizu YI, Morita M, Ohmi A, Aoyagi S, Ebihara H, Tonaki D, Horino Y, Iijima M, Hirose H, Takahashi S, Takahashi Y. Fasting induced up-regulation of activating transcription factor 5 in mouse liver. Life Sci 2009; 84:894-902. [DOI: 10.1016/j.lfs.2009.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
34
|
Functional analysis of rat liver citrate carrier promoter: differential responsiveness to polyunsaturated fatty acids. Biochem J 2009; 417:561-71. [PMID: 18795892 DOI: 10.1042/bj20081082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CiC (citrate carrier), a mitochondrial membrane protein, plays an important metabolic role by transporting acetyl-CoA into the cytosol for fatty acid and cholesterol synthesis. Several studies showed that CiC activity and expression is regulated by dietary fatty acids. In the present study we report data on the structural and functional characterization of the 5'-flanking region of the rat Cic gene. By transient transfection assays in H4IIE rat hepatoma cells, a PUFA (polyunsaturated fatty acids) response region has been identified within the CiC promoter. A cluster of putative binding sites for several transcription factors, composed of a NF-Y (nuclear factor-Y) site, an E-box-like site, a SRE1 (sterol regulatory element 1)-like site and four Sp1 (stimulatory protein 1) sites, was localized in the promoter region. Luciferase reporter gene and gel mobility shift assays indicated that a functional E-box-like, essential to the basal CiC promoter activity, confers responsiveness to activation by SREBP (SRE-binding protein)-1c. This study provides evidence for SREBP-1c as a principal target for PUFA regulation of CiC transcription. In H4IIE cells, overexpression of nSREBP (nuclear SREBP)-1c over-rides arachidonic acid (C(20:4, n-6)) suppression, but does not prevent the repression by docosahexaenoic acid (C(22:6, n-3)). ChIP (chromatin immunoprecipitation) assays in H4IIE cells showed that docosahexaenoic acid affects the binding of NF-Y, Sp1 and SREBP-1 to the PUFA response region of CiC promoter, whereas arachidonic acid alters only the binding of SREBP-1. Our data show that PUFA inhibition of hepatic Cic gene transcription is mediated not only by the nuclear level of SREBP-1c, but also might involve a reduction in Sp1 and NF-Y DNA binding, suggesting differential mechanisms in the Cic gene regulation by different PUFA.
Collapse
|
35
|
Rezen T, Contreras JA, Rozman D. Functional Genomics Approaches to Studies of the Cytochrome P450 Superfamily. Drug Metab Rev 2008; 39:389-99. [PMID: 17786628 DOI: 10.1080/03602530701498760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Functional genomics approaches are widely implemented in current research and have found application in many areas of biology. This review will present research fields, novel findings and new tools developed in the cytochrome P450 field using the functional genomics techniques. The most widely used method is microarray technology, which has already greatly contributed to the understanding of the cytochromes P450 function and expression. Several focused CYP microarrays have been developed for genotyping, toxicogenomics and studies of CYP function of many different organisms. Our contribution to the CYP field by development of Steroltalk microarrays to study the cross-talk of cholesterol homeostasis and drug metabolism is also presented.
Collapse
Affiliation(s)
- Tadeja Rezen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
36
|
Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008; 269:363-77. [PMID: 18479809 PMCID: PMC2572135 DOI: 10.1016/j.canlet.2008.03.044] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 01/15/2008] [Accepted: 03/28/2008] [Indexed: 01/20/2023]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids necessary for human health. Currently, the Western diet contains a disproportionally high amount of n-6 PUFAs and low amount of n-3 PUFAs, and the resulting high n-6/n-3 ratio is thought to contribute to cardiovascular disease, inflammation, and cancer. Studies in human populations have linked high consumption of fish or fish oil to reduced risk of colon, prostate, and breast cancer, although other studies failed to find a significant association. Nonetheless, the available epidemiological evidence, combined with the demonstrated effects of n-3 PUFAs on cancer in animal and cell culture models, has motivated the development of clinical interventions using n-3 PUFAs in the prevention and treatment of cancer, as well as for nutritional support of cancer patients to reduce weight loss and modulate the immune system. In this review, we discuss the rationale for using long-chain n-3 PUFAs in cancer prevention and treatment and the challenges that such approaches pose in the design of clinical trials.
Collapse
Affiliation(s)
- Isabelle M. Berquin
- Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Iris J. Edwards
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Yong Q. Chen
- Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. RECENT FINDINGS Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor alpha, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22:6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor alpha. Hepatic metabolism of 22:6,n-3, however, generates 20:5,n-3, a strong peroxisome proliferator-activated receptor alpha activator. In contrast to peroxisome proliferator-activated receptor alpha, 22:6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22:6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. SUMMARY These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor alpha, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks.
Collapse
Affiliation(s)
- Donald B Jump
- Department of Nutrition and Exercise Sciences, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-5109, USA.
| |
Collapse
|
38
|
Levant B, Ozias MK, Carlson SE. Diet (n-3) polyunsaturated fatty acid content and parity affect liver and erythrocyte phospholipid fatty acid composition in female rats. J Nutr 2007; 137:2425-30. [PMID: 17951480 DOI: 10.1093/jn/137.11.2425] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The fatty acid composition of membrane phospholipids affects the physicochemical properties of the membrane and thus influences cell function. In this study, the effects of 1-4 sequential pregnancies on the phospholipid fatty acid compositions of the maternal liver and erythrocytes were determined in female rats fed diets containing alpha-linolenic acid (ALA), ALA and preformed docosahexaenoic acid (DHA; ALA+DHA), or minimal ALA (low ALA). Virgin females, fed the diets for commensurate durations, served as a control for reproduction. Liver and erythrocyte total phospholipid compositions were determined at weaning by TLC/GC. In both tissues, significant main effects of diet and reproductive status were detected for many fatty acids, but a significant interaction of diet, reproductive status, and duration of treatment (no. of reproductive cycles or equivalent time period for virgins) was detected only for DHA, 22:6(n-3). Primiparous dams fed the ALA and low ALA diet had decreased liver DHA content of 31% and 74%, respectively, compared with virgin females fed the ALA diet. Liver DHA did not decrease further after additional reproductive cycles. Liver DHA content was unchanged in parous dams fed the ALA+DHA diet, but virgin females fed this diet exhibited a 50% increase in liver DHA after 13 wk of treatment. Changes in erythrocyte DHA were of similar magnitude and time course to those observed in liver, suggesting that this tissue may serve as a marker for liver DHA status.
Collapse
Affiliation(s)
- Beth Levant
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
39
|
Castaneda F, Zimmermann D, Nolte J, Baumbach JI. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells. Cell Biol Toxicol 2007; 23:477-85. [PMID: 17453350 DOI: 10.1007/s10565-007-9009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 03/16/2007] [Indexed: 12/20/2022]
Abstract
Based on the reduced expression of ethanol-oxidizing enzymes in human hepatocellular carcinoma (HepG2) cells, we analyzed the role of nonoxidative metabolites in ethanol-induced apoptosis in HepG2 cells. For this purpose, an analysis of volatile metabolites of ethanol using ion-mobility spectrometry and gas chromatography-mass spectrometry was performed. HepG2 cells exposed to 1 mmol/L ethanol exhibited significant synthesis of undecan-2-one compared to untreated cells. Undecan-2-one is a fatty acid ethyl ester metabolite synthesized through a nonoxidative pathway. Undecan-2-one had a dose-dependent cytotoxic effect on HepG2 cells as shown by release of lactate dehydrogenase (LDH). The most notable finding of this study was the potentiation of ethanol-induced apoptosis demonstrated by an increased apoptotic rate induced by undecan-2-one in ethanol-treated HepG2 cells. The data presented in this study contribute to the better understanding of the molecular mechanisms of ethanol exposure at low concentration in HepG2 cells, a human hepatocellular carcinoma-derived cell line.
Collapse
Affiliation(s)
- F Castaneda
- Laboratory for Molecular Pathobiochemistry and Clinical Research, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
| | | | | | | |
Collapse
|
40
|
Pitel S, Raccah D, Gerbi A, Pieroni G, Vague P, Coste TC. At low doses, a gamma-linolenic acid-lipoic acid conjugate is more effective than docosahexaenoic acid-enriched phospholipids in preventing neuropathy in diabetic rats. J Nutr 2007; 137:368-72. [PMID: 17237313 DOI: 10.1093/jn/137.2.368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A deficiency in essential fatty acid metabolism has been reported in diabetes. Nutritional supplementations with (n-6) or (n-3) PUFA have differential efficiency on parameters of diabetic neuropathy, including nerve conduction velocity (NCV) and nerve blood flow (NBF). The aim of this study was to compare the neuroprotective effects of gamma-linolenic acid (GLA)-lipoic acid (LA) conjugate (GLA-LA) and docosahexaenoic acid (DHA)-enriched phospholipids (PL) supplementations on NCV and NBF. Streptozotocin-induced diabetic (D) and control (C) rats were supplemented for 8 wk with either DHA-enriched PL at a dose of 30 mg.kg-1.d-1 (DDHA and CDHA) or with corn oil enriched with GLA-LA at a dose of 30 mg.kg-1.d-1 (DGLA and CGLA). Moreover, a C and D group received no supplementation. After 8 wk, NCV (-30%) and NBF (-50%) were lower in the D group than in the C group. Supplementation with GLA-LA totally prevented the decrease in NCV and NBF in the DGLA group, in which values did not differ from group C. Supplementation with DHA only partially prevented the decrease in NCV in the DDHA group, in which value was different from groups C and D and did not affect NBF. We conclude that at the low doses used, supplementation with GLA-LA is more effective than supplementation with DHA in preventing experimental diabetic neuropathy. The difference could be due in part to an antioxidant protective effect of LA on GLA.
Collapse
Affiliation(s)
- Séverine Pitel
- UPRES EA 2193, Aix-Marseille Université, Faculté de Médecine, IPHM-IFR 125, Marseille, F-13385 France
| | | | | | | | | | | |
Collapse
|