1
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
2
|
SpeS: A Novel Superantigen and Its Potential as a Vaccine Adjuvant against Strangles. Int J Mol Sci 2020; 21:ijms21124467. [PMID: 32586031 PMCID: PMC7352279 DOI: 10.3390/ijms21124467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial superantigens (sAgs) are powerful activators of the immune response that trigger unspecific T cell responses accompanied by the release of proinflammatory cytokines. Streptococcus equi (S. equi) and Streptococcus zooepidemicus (S. zooepidemicus) produce sAgs that play an important role in their ability to cause disease. Strangles, caused by S. equi, is one of the most common infectious diseases of horses worldwide. Here, we report the identification of a new sAg of S. zooepidemicus, SpeS, and show that mutation of the putative T cell receptor (TCR)-binding motif (YAY to IAY) abrogated TCR-binding, whilst maintaining interaction with major histocompatibility complex (MHC) class II molecules. The fusion of SpeS and SpeSY39I to six S. equi surface proteins using two different peptide linkers was conducted to determine if MHC class II-binding properties were maintained. Proliferation assays, qPCR and flow cytometry analysis showed that SpeSY39I and its fusion proteins induced less mitogenic activity and interferon gamma expression when compared to SpeS, whilst retaining Antigen-Presenting Cell (APC)-binding properties. Our data suggest that SpeSY39I-surface protein fusions could be used to direct vaccine antigens towards antigen-presenting cells in vivo with the potential to enhance antigen presentation and improve immune responses.
Collapse
|
3
|
Do H, Makthal N, VanderWal AR, Rettel M, Savitski MM, Peschek N, Papenfort K, Olsen RJ, Musser JM, Kumaraswami M. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc Natl Acad Sci U S A 2017; 114:E8498-E8507. [PMID: 28923955 PMCID: PMC5635878 DOI: 10.1073/pnas.1705972114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A Streptococcus (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of speB gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Mandy Rettel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nikolai Peschek
- Munich Center for Integrated Protein Science, Department of Microbiology, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Kai Papenfort
- Munich Center for Integrated Protein Science, Department of Microbiology, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030;
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| |
Collapse
|
4
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
5
|
Burlet E, HogenEsch H, Dunham A, Morefield G. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes. AAPS J 2017; 19:875-881. [PMID: 28283948 DOI: 10.1208/s12248-017-0069-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.
Collapse
Affiliation(s)
- E Burlet
- VaxForm, LLC, Bethlehem, Pennsylvania, USA
| | - H HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - A Dunham
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
6
|
Li H, Wang S, Zhao Y, Chen Z, Gu G, Guo Z. Mutagenesis and immunological evaluation of group A streptococcal C5a peptidase as an antigen for vaccine development and as a carrier protein for glycoconjugate vaccine design. RSC Adv 2017. [DOI: 10.1039/c7ra07923k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-enzymatic recombinant ScpA mutant (H193A) was prepared and investigated to probe its application potential in the development of GAS vaccines and as a carrier protein of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Hui Li
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Subo Wang
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Yisheng Zhao
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zonggang Chen
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Guofeng Gu
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
- Department of Chemistry
| |
Collapse
|
7
|
Guadalupe Ramirez-Valles E, Dayali Gutierrez-Martinez V, Cervantes-Flores M, Ruiz-Baca E, Alvarado-Esquivel C. IL-2 Expression and T lymphocyte Phenotyping in Young Children Suffering from Upper Respiratory Tract Infection with Streptococcus Pyogenes. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2016; 12:53-7. [PMID: 27493590 PMCID: PMC4947089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T cells are components of adaptive immunity and are involved in the resolution of respiratory infections, which are a major cause of morbidity and mortality in young children worldwide. Activation and differentiation of T cells is given mostly by the cytokine IL-2. This study aimed to determine the phenotype of T cells and IL-2 expression in children suffering from upper respiratory tract infection with Streptococcus pyogenes (S. pyogenes). For this purpose, IL-2 expression at its gene and protein levels and quantitation of CD4(+) and CD8(+) T lymphocytes were assessed in children aged 0-5 years old suffering from upper respiratory tract infection with S. pyogenes and healthy children of the same age. Children with S. pyogenes infection had a higher expression of IL-2 gene and a lower level of this cytokine expression at protein level than healthy children. The numbers of CD4(+) T lymphocytes were similar among the groups. In contrast, difference in the numbers of CD8(+) T lymphocytes among the groups was found. We conclude that infections by S. pyogenes in young children lead to an increased expression of IL-2 mRNA.
Collapse
Affiliation(s)
- Eda Guadalupe Ramirez-Valles
- Faculty of Chemical Sciences, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| | | | - Maribel Cervantes-Flores
- Faculty of Chemical Sciences, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| | - Estela Ruiz-Baca
- Faculty of Chemical Sciences, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| | - Cosme Alvarado-Esquivel
- Faculty of Medicine and Nutrition, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| |
Collapse
|
8
|
HogenEsch H, Dunham A, Burlet E, Lu F, Mosley YYC, Morefield G. Preclinical safety study of a recombinant Streptococcus pyogenes vaccine formulated with aluminum adjuvant. J Appl Toxicol 2016; 37:222-230. [PMID: 27241723 DOI: 10.1002/jat.3349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/08/2022]
Abstract
A recombinant vaccine composed of a fusion protein formulated with aluminum hydroxide adjuvant is under development for protection against diseases caused by Streptococcus pyogenes. The safety and local reactogenicity of the vaccine was assessed by a comprehensive series of clinical, pathologic and immunologic tests in preclinical experiments. Outbred mice received three intramuscular injections of 1/5th of the human dose (0.1 ml) and rabbits received two injections of the full human dose. Control groups received adjuvant or protein antigen. The vaccine did not cause clinical evidence of systemic toxicity in mice or rabbits. There was a transient increase of peripheral blood neutrophils after the third vaccination of mice. In addition, the concentration of acute phase proteins serum amyloid A and haptoglobin was significantly increased 1 day after injection of the vaccine in mice. There was mild transient swelling and erythema of the injection site in both mice and rabbits. Treatment-related pathology was limited to inflammation at the injection site and accumulation of adjuvant-containing macrophages in the draining lymph nodes. In conclusion, the absence of clinical toxicity in two animal species suggest that the vaccine is safe for use in a phase I human clinical trial. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Anisa Dunham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | | | - Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
9
|
The majority of 9,729 group A streptococcus strains causing disease secrete SpeB cysteine protease: pathogenesis implications. Infect Immun 2015; 83:4750-8. [PMID: 26416912 DOI: 10.1128/iai.00989-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Group A streptococcus (GAS), the causative agent of pharyngitis and necrotizing fasciitis, secretes the potent cysteine protease SpeB. Several lines of evidence suggest that SpeB is an important virulence factor. SpeB is expressed in human infections, protects mice from lethal challenge when used as a vaccine, and contributes significantly to tissue destruction and dissemination in animal models. However, recent descriptions of mutations in genes implicated in SpeB production have led to the idea that GAS may be under selective pressure to decrease secreted SpeB protease activity during infection. Thus, two divergent hypotheses have been proposed. One postulates that SpeB is a key contributor to pathogenesis; the other, that GAS is under selection to decrease SpeB during infection. In order to distinguish between these alternative hypotheses, we performed casein hydrolysis assays to measure the SpeB protease activity secreted by 6,775 GAS strains recovered from infected humans. The results demonstrated that 84.3% of the strains have a wild-type SpeB protease phenotype. The availability of whole-genome sequence data allowed us to determine the relative frequencies of mutations in genes implicated in SpeB production. The most abundantly mutated genes were direct transcription regulators. We also sequenced the genomes of 2,954 GAS isolates recovered from nonhuman primates with experimental necrotizing fasciitis. No mutations that would result in a SpeB-deficient phenotype were identified. Taken together, these data unambiguously demonstrate that the great majority of GAS strains recovered from infected humans secrete wild-type levels of SpeB protease activity. Our data confirm the important role of SpeB in GAS pathogenesis and help end a long-standing controversy.
Collapse
|
10
|
Morefield G, Touhey G, Lu F, Dunham A, HogenEsch H. Development of a recombinant fusion protein vaccine formulation to protect against Streptococcus pyogenes. Vaccine 2014; 32:3810-5. [DOI: 10.1016/j.vaccine.2014.04.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
11
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
12
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 604] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
13
|
Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus. mBio 2013; 4:mBio.00509-13. [PMID: 23919999 PMCID: PMC3735194 DOI: 10.1128/mbio.00509-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4. We present an example of structural biology informing human vaccine design. We previously showed that the administration of the enzyme arginine deiminase (ADI) to mice protected the mice against infection with multiple GAS serotypes. In this study, we determined the structure of GAS ADI and used this information to improve the vaccine safety of GAS ADI. Catalytically inactive mutant forms of ADI retained structure, recognition by antisera, and immunogenic epitopes, rendering them ideal for inclusion in GAS vaccine preparations. This example of structural biology informing vaccine design may underpin the formulation of a safe and efficacious GAS vaccine.
Collapse
|
14
|
Pandey M, Batzloff MR, Good MF. Vaccination against rheumatic heart disease: a review of current research strategies and challenges. Curr Infect Dis Rep 2012; 14:381-90. [PMID: 22729401 DOI: 10.1007/s11908-012-0263-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are major health problems in many developing countries and Indigenous populations of developed countries. ARF and RHD are sequelae resulting from an infection of Streptococcus pyogenes. Despite advances in health care practices and technology, these diseases still pose major challenges in the communities where Streptococcus pyogenes is often endemic. Here we review and discuss the dynamic epidemiology of streptococcal infection and its associated diseases (ARF and RHD), with a focus on disease burden in temperate versus tropical regions, the tissue tropism of the organism and the efforts towards vaccine development in relation to the available animal models.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, G26/4.30 Gold Coast Campus, Gold Coast, QLD, 4222, Australia,
| | | | | |
Collapse
|
15
|
Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 2012; 368:207-42. [PMID: 23250780 DOI: 10.1007/82_2012_284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there is no commercial Group A Streptococcus (GAS; S. pyogenes) vaccine available. The development of safe GAS vaccines is challenging, researchers are confronted with obstacles such as the occurrence of many unique serotypes (there are greater than 150 M types), antigenic variation within the same serotype, large variations in the geographical distribution of serotypes, and the production of antibodies cross-reactive with human tissue which can lead to host auto-immune disease. Cell wall anchored, cell membrane associated, secreted and anchorless proteins have all been targeted as GAS vaccine candidates. As GAS is an exclusively human pathogen, the quest for an efficacious vaccine is further complicated by the lack of an animal model which mimics human disease and can be consistently and reproducibly colonized by multiple GAS strains.
Collapse
Affiliation(s)
- Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
16
|
A single, engineered protein therapeutic agent neutralizes exotoxins from both Staphylococcus aureus and Streptococcus pyogenes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1781-9. [PMID: 20861327 DOI: 10.1128/cvi.00277-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus and Streptococcus pyogenes secrete exotoxins that act as superantigens, proteins that cause hyperimmune reactions by binding the variable domain of the T-cell receptor beta chain (Vβ), leading to stimulation of a large fraction of the T-cell repertoire. To develop potential neutralizing agents, we engineered Vβ mutants with high affinity for the superantigens staphylococcal enterotoxin B (SEB), SEC3, and streptococcal pyrogenic exotoxin A (SpeA). Unexpectedly, the high-affinity Vβ mutants generated against SEB cross-reacted with SpeA to a greater extent than they did with SEC3, despite greater sequence similarity between SEB and SEC3. Likewise, the Vβ mutants generated against SpeA cross-reacted with SEB to a greater extent than with SEC3. The structural basis of the high affinity and cross-reactivity was examined by single-site mutational analyses. The cross-reactivity seems to involve only one or two toxin residues. Soluble forms of the cross-reactive Vβ regions neutralized both SEB and SpeA in vivo, suggesting structure-based strategies for generating high-affinity neutralizing agents that can cross-react with multiple exotoxins.
Collapse
|
17
|
Olsen RJ, Musser JM. Molecular pathogenesis of necrotizing fasciitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:1-31. [PMID: 19737105 DOI: 10.1146/annurev-pathol-121808-102135] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Necrotizing fasciitis, also known as the flesh-eating disease, is a severe invasive infection associated with very high rates of human morbidity and mortality. It is most commonly caused by group A Streptococcus(GAS), a versatile human pathogen that causes diseases ranging in severity from uncomplicated pharyngitis (or strep throat) to life-threatening infections such as necrotizing fasciitis. Herein, we review recent discoveries bearing on the molecular pathogenesis of GAS necrotizing fasciitis. Importantly, the integration of new technologies and the development of human-relevant animal models have markedly expanded our understanding of the key pathogen-host interactions underlying GAS necrotizing fasciitis. For example, we now know that GAS organisms secrete a variety of proteases that disrupt host tissue and that these proteolytic enzymes are regulated by multiple transcriptional and posttranslational processes. This pathogenesis knowledge will be crucial to supporting downstream efforts that seek to develop novel vaccines and therapeutic agents for this serious human infection.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, Texas 77030, USA
| | | |
Collapse
|
18
|
Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis 2010; 22:544-52. [PMID: 19797947 DOI: 10.1097/qco.0b013e328332bbfe] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of progress of the development of group A streptococcal (GAS) vaccines with a focus on recent advances. RECENT FINDINGS Historically, GAS vaccine development has focused on the N-terminus of the M protein, which ultimately led to successful phase I/II clinical trials of a 26-valent recombinant M protein vaccine in 2004-2005. More recently, interest in antigens conserved among most, if not all, group A streptococci has increased. However, no vaccines containing these antigens have reached clinical trials. Three strategies have been used to develop conserved antigen vaccine candidates: use of the conserved region of the M protein; use of well described virulence factors as antigens, including streptococcal C5a peptidase, streptococcal carbohydrate, fibronectin-binding proteins, cysteine protease and streptococcal pili; and use of reverse vaccinology to identify novel antigens. SUMMARY Several vaccine candidates against GAS infection are in varying stages of preclinical and clinical development. Although there is great hope that one of these vaccine candidates will reach licensure in the next decade, only one, the multivalent N-terminal vaccine, has entered clinical trials in the last 30 years. Although strong advocacy for GAS vaccine development is important, there remains an urgent need to institute available public health control measures against GAS diseases globally, particularly in developing countries.
Collapse
Affiliation(s)
- Andrew C Steer
- Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Novel strategies for controlling
Streptococcus pyogenes
infection and associated diseases: from potential peptide vaccines to antibody immunotherapy. Immunol Cell Biol 2009; 87:391-9. [DOI: 10.1038/icb.2009.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|