1
|
Deng Q, Chen W, Deng B, Chen W, Chen L, Fan G, Wu J, Gao Y, Chen X. Based on network pharmacology, molecular docking and experimental verification to reveal the mechanism of Andrographis paniculata against solar dermatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156025. [PMID: 39326136 DOI: 10.1016/j.phymed.2024.156025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Solar dermatitis (SD) is an acute, damaging inflammation of the skin caused by UV exposure, especially UVB. Therefore, the discovery of novel anti-SD therapeutic agents is crucial. Andrographis paniculata (AP) is a medicinal plant with a wide range of pharmacological effects. Increased evidence shows that AP has potential therapeutic effects on SD. However, the therapeutic mechanisms of AP against SD have not yet been completely elucidated, which is an unexplored field. PURPOSE This study employed network pharmacology, molecular docking and experimental verification to ascertain the active constituents, possible targets, and biological pathways associated with AP in the treatment of SD. METHODS AP-related active ingredients and their potential targets were screened from TCMSP and Swiss Target Prediction database, respectively. Potential therapeutic targets of SD were collected using the GeneCards, DrugBank and OMIM databases. Then, we established protein-protein interaction (PPI), compound-target-disease (D-C-T-D) through Cytoscape to identify the major components, core targets of AP against SD. Next, the GO and KEGG pathway was identified by the David database of AP in the treatment of SD. Molecular docking techniques were used to estimate the binding force between the components and the hub genes. In this paper, we used UVB-irradiated HaCaT keratinocytes as an in vitro model and established the dorsal skin of UVB-irradiated ICR mice as an in vivo model to explore the mechanism for further verification. RESULTS There were 24 active components and 63 related target genes in AP against SD. PPI analysis showed that AKT-1, TNF-α, IL6, MMP9, EGFR, and PTGS2 shared the highest centrality among all target genes. KEGG pathway analysis revealed that the PI3K-Akt signaling pathway may be central in the anti-SD system. The molecular docking results showed that the main active components of AP have strong binding affinity with hub genes. In vitro results showed that WG had a protective effect on UVB-intervened HaCat cells. Western blot analysis showed that WG intervention achieved anti-inflammation by reducing the phosphorylated expression of AKT, PI3K proteins in the PI3K-AKT signaling pathway and downregulating the expression of TNF-α, IL-6, EGFR. Furthermore, Histological analysis confirmed that administration of WG to ICR mice significantly ameliorated UVB-induced skin roughness, epidermal thickening, disturbed collagen fiber alignment and wrinkles. Meanwhile, immunohistochemistry showed that administration of WG to ICR mice significantly reduced UVB-induced expression of MMP9, MPO, F4/80 in the skin. These results provide new insights into the contribution of WG to the development of clinical treatment modalities for UVB-induced SD. CONCLUSION The crucial element in the fight against SD is WG, with the primary route being PI3K/Akt. The main components and hub genes had robust binding abilities. In vitro and vivo experiments showed that WG could inhibit the expression level of the hub genes by inhibiting the PI3K/Akt pathway. In summary, the information presented in this study indicates that WG might be utilised as a treatment for UVB-induced SD.
Collapse
Affiliation(s)
- Qin Deng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China
| | - Wenyuan Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China; School of Pharmacy, Bijie Medical College, Bijie, 551700, Guizhou, China
| | - Bili Deng
- Guizhou Institute of Food Inspection and Testing, Guizhou, China
| | - Weishi Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China
| | - Lei Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China
| | - Gengqi Fan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China
| | - Jinglan Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China
| | - Yuan Gao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China
| | - Xiaolan Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou,550025, China.
| |
Collapse
|
2
|
Wroński A, Gęgotek A, Conde T, Domingues MR, Domingues P, Skrzydlewska E. Nannochloropsis oceanica Lipid Extract Moderates UVB-Irradiated Psoriatic Keratinocytes: Impact on Protein Expression and Protein Adducts. Antioxidants (Basel) 2024; 13:1236. [PMID: 39456489 PMCID: PMC11504445 DOI: 10.3390/antiox13101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Psoriasis is characterized by excessive exfoliation of the epidermal layer due to enhanced pro-inflammatory signaling and hyperproliferation of keratinocytes, further modulated by UV-based anti-psoriatic treatments. Consequently, this study aimed to evaluate the impact of a lipid extract derived from the microalgae Nannochloropsis oceanica on the proteomic alterations induced by lipid derivatives in non-irradiated and UVB-irradiated keratinocytes from psoriatic skin lesions compared to keratinocytes from healthy individuals. The findings revealed that the microalgae extract diminished the viability of psoriatic keratinocytes without affecting the viability of these cells following UVB exposure. Notably, the microalgae extract led to an increased level of 4-HNE-protein adducts in non-irradiated cells and a reduction in 4-hydroxynonenal (4-HNE)-protein and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2)-protein adducts in UVB-exposed keratinocytes from psoriasis patients. In healthy skin cells, the extract decreased the UV-induced elevation of 4-HNE-protein and 15d-PGJ2-protein adducts. The antioxidant/anti-inflammatory attributes of the lipid extract from the Nannochloropsis oceanica suggest its potential as a protective agent for keratinocytes in healthy skin against UVB radiation's detrimental effects. Moreover, it could offer therapeutic benefits to skin cells afflicted with psoriatic lesions by mitigating their proliferation and inflammatory responses during UV radiation treatment.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Bialystok, Nowy Swiat 17/5, 15-453 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| |
Collapse
|
3
|
Liu Z, Dang B, Li Z, Wang X, Liu Y, Wu F, Cao X, Wang C, Lin C. Baicalin attenuates acute skin damage induced by ultraviolet B via inhibiting pyroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112937. [PMID: 38743989 DOI: 10.1016/j.jphotobiol.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 μM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.
Collapse
Affiliation(s)
- Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingsheng Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhan Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, Kim HS, Kim JH, Cho JY. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res 2024; 48:211-219. [PMID: 38465216 PMCID: PMC10920011 DOI: 10.1016/j.jgr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Background Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Hun Cho
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Hyun Soo Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Sudhakaran G, Selvam M, Sreekutty AR, Chandran A, Almutairi BO, Arokiyaraj S, Raman P, Guru A, Arockiaraj J. Luteolin photo-protects zebrafish from environmental stressor ultraviolet radiation (UVB). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:720-734. [PMID: 37609830 DOI: 10.1080/15287394.2023.2249944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1β and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Chennai, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
6
|
Zhang L, Wang K, Liang S, Cao J, Yao M, Qin L, Qu C, Miao J. Beneficial effect of ζ-carotene-like compounds on acute UVB irradiation by alleviating inflammation and regulating intestinal flora. Food Funct 2023; 14:8331-8350. [PMID: 37606633 DOI: 10.1039/d3fo02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
ζ-Carotene is a key intermediate in the carotenoid pathway, but owing to its low content and difficulties in isolation, its application is restricted. In this study, three genes (pnCrtE, pnCrtB, and pnCrtP) in the carotenoid pathway of Antarctic moss were identified, recombined, and expressed in Escherichia coli (E. coli) BL21(DE3). The expression product was identified as one of the ζ-carotenes by UV absorbance spectrum, thin layer chromatography (TLC), and super-high-performance liquid chromatography-mass spectrum (UPLC-MS), and was called a ζ-carotene-like compound (CLC). Excessive exposure to ultraviolet B (UVB) irradiation is one of the main risk factors for skin photodamage. The purpose of this study was to investigate the preventive and therapeutic effects of CLC on UVB-induced skin photodamage in mice. In this paper, through histological examinations (hematoxylin-eosin, HE; Masson and TdT-mediated dUTP Nick-End Labeling, Tunel), biochemical index detection (reactive oxygen species, ROS; inflammatory factors; cyclobutyl pyrimidine dimers, CPDs and hyaluronic acid, HA), quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry and intestinal content flora, etc., it is concluded that CLC has the potential to enhance skin antioxidant capacity by activating the nuclear transcription factor/antioxidant reaction element (Nrf2/ARE) pathway and also reduce skin inflammation and aging by inhibiting the mitogen-activated protein kinase (MAPK) pathway. Moreover, the regulation of intestinal flora may potentially mitigate skin damage induced by UVB radiation. This research not only developed a green and sustainable platform for the efficient synthesis of CLC but also laid a foundation for its application in functional food and medicine for skin resistance against UVB damage.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shaoxin Liang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
7
|
Zhang L, Liang S, Zhang Z, Wang K, Cao J, Yao M, Qin L, Qu C, Miao J. Protective Effects of ζ-Carotene-like Compounds against Acute UVB-Induced Skin Damage. Int J Mol Sci 2023; 24:13970. [PMID: 37762273 PMCID: PMC10530282 DOI: 10.3390/ijms241813970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The previous study successfully established an expression strain of ζ-carotene-like compounds (CLC) and demonstrated its remarkable antioxidant activity, which exhibited resistance to photodamage caused by UVB radiation on the skin following gavage administration. The objective of this study was to investigate the impact and mechanism of CLC on UVB-induced skin damage through topical application. Cell viability, anti-apoptotic activity, ROS scavenging ability, the inhibition of melanin synthesis, the regulation of inflammatory factors and collagen deposition were assessed in cells and mice using qRT-PCR, WB, Elisa assays, immunohistochemistry staining and biochemical kits, etc. The experimental results demonstrated that CLC-mitigated apoptosis induced by UVB irradiation up-regulated the Keap1/Nrf2/ARE antioxidant pathway to attenuate levels of ROS and inflammatory factors (NF-κB, TNF-α, IL-6 and IL-β), and suppressed MAPK/AP-1 and CAMP/PKA/CREB signaling pathways to mitigate collagen degradation, skin aging and melanin formation. In conclusion, this study underscored the potential of CLC as a safe and efficacious source of antioxidants, positioning it as a promising ingredient in the formulation of cosmetics targeting anti-aging, skin brightening and sunburn repair.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (L.Z.); (Z.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Shaoxin Liang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Zhi Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (L.Z.); (Z.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
- Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
8
|
Wang P, Liu D, Cui J, Yan S, Liang Y, Chen Q, Liu Y, Ren S, Chen P. 1,25-Dihydroxvitamin D3 attenuates the damage of human immortalized keratinocytes caused by Ultraviolet-B. Cutan Ocul Toxicol 2023; 42:74-81. [PMID: 37130063 DOI: 10.1080/15569527.2023.2208676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Objective Ultraviolet-B (UVB) radiation is an important factor in causing skin damage. The study is to explore whether 1,25-Dihydroxvitamin D3(1,25(OH)2D3) will attenuate the damage of human immortalized keratinocytes (HaCaT) cells caused by UVB and relevant underlying mechanisms. METHODS CCK-8 was employed to determine the UVB irradiation intensity and 1,25(OH)2D3 concentration. Western blot was used to detect the expression of NF-κB, Caspase9, Caspase3, Bax, Bcl2, FADD, CytC, Beclin-1; Flowcytometry was applied to measure the production of ROS. RESULTS The concentration of 1,25(OH)2D3 used in the study was 100nM and the UVB irradiation intensity was 20 mJ/cm2. Compared with the HaCaT cells irradiated with UVB, the HaCaT cells were pretreated with 1,25(OH)2D3 had lower production of ROS, lower expression of NF-κB, Caspase9, Caspase3, Bax, FADD, CytC and Beclin-1(P < 0.05). CONCLUSION 1,25(OH)2D3 could inhibit the development of oxidative stress and apoptosis in HaCaTs triggered by UVB. This inhibition might be achieved through suppression of mitochondria-modulated apoptosis and autophagy. Vitamin D may be a potential UVB protective component.
Collapse
Affiliation(s)
- Pingwei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Dongge Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiajing Cui
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yujun Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Peng Chen
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Kumar KJS, Vani MG, Wang SY. Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. ENVIRONMENTAL TOXICOLOGY 2022; 37:2897-2909. [PMID: 36063024 DOI: 10.1002/tox.23646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Long term exposure to solar ultraviolet B (UVB) radiation is one of the primary factors of premature skin aging and is referred to as photoaging. Also, mammalian skin exposed to UVB triggers an increase in production of α-melanocyte-stimulating hormone (α-MSH), which is critically involved in the pathogenesis of hyperpigmentary skin diseases. This study investigated the protective effect of limonene on UVB-induced photodamage and photoaging in immortalized human skin keratinocytes (HaCaT) in vitro. Initially, we determined cell viability and levels of reactive oxygen species (ROS) in UVB-irradiated HaCaT cells. Pretreatment with limonene increased cell viability followed by inhibition of intracellular ROS generation in UVB-irradiated HaCaT cells. Interestingly, the antioxidative activity of limonene was directly correlated with an increase in expression of endogenous antioxidants, including heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1), and γ-glutamylcysteine synthetase (γ-GCLC), which was associated with enhanced nuclear translocation and activation of NF-E2-related factor-2 (Nrf2). Indeed, Nrf2 knockdown reduced limonene's protective effects. Additionally, we observed that limonene treatment inhibited UVB-induced α-MSH secretion followed by inhibition of proopiomelanocortin (POMC) via suppression of p53 transcriptional activation. Moreover, limonene prevented UVB-mediated depletion of tight junction regulatory proteins, including occludin and zonula occludens-1. On the other hand, limonene treatment significantly decreased matrix metalloproteinase-2 levels in UVB-irradiated HaCaT cells. Based on these results, limonene may have a dermato-protective effect in skin cells by activating the Nrf2-dependent cellular antioxidant defense system.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
11
|
Jiang GJ, You XG, Fan TJ. Ultraviolet B irradiation induces senescence of human corneal endothelial cells in vitro by DNA damage response and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112568. [PMID: 36137302 DOI: 10.1016/j.jphotobiol.2022.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated β-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-β1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China
| | - Xin-Guo You
- School of bioscience and technology, Weifang medical university, Weifang, Shandong province 261053, China
| | - Ting-Jun Fan
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China.
| |
Collapse
|
12
|
Pyrimethamine induces phototoxicity in human keratinocytes via lysosomal and mitochondrial dependent signaling pathways under environmental UVA and UVB exposure. Toxicology 2022; 479:153320. [PMID: 36108988 DOI: 10.1016/j.tox.2022.153320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Pyrimethamine (PYR) is used to treat parasitic infections including toxoplasmosis, pneumonia and cystoisosporiasis in HIV patients. Various oral medicines have shown phototoxicity therefore, we aimed to study the phototoxicity of PYR and its molecular mechanism involving stress responsive lysosomal protein Lamp2 and mitochondrial mediated signaling pathway under normal UVA/B exposure. We found that photodegradation and subsequent photoproduct formation was evident through LCMS/MS analysis. Photosensitized PYR produces ROS that cause damage to DNA, cell membrane and membrane bound organelles in human keratinocytes. PYR triggered cytotoxicity and phototoxicity that was evident through MTT and NRU assay respectively. Intracellular ROS generation caused phosphatidyl serine (PS) translocation in cell membrane, lysosome membrane permeabilization (LMP) and mitochondrial membrane potential (MMP) collapse that was further validated through caspase3 activation. DNA damage was measured as tail DNA formation and cell cycle arrest in G1 phase. Photosensitized PYR induces oxidative stress in the form of overexpression of Lamp2 that ultimately led to cellular apoptosis. Moreover, the effects of UVB were higher than UVA, probably due to its direct interaction with various macromolecules. We propose that photoexcited PYR may be harmful to human health even at normal sunlight exposure. Therefore, protective procedures should be practiced during PYR medication.
Collapse
|
13
|
Gao S, Guo K, Chen Y, Zhao J, Jing R, Wang L, Li X, Hu Z, Xu N, Li X. Keratinocyte Growth Factor 2 Ameliorates UVB-Induced Skin Damage via Activating the AhR/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:655281. [PMID: 34163354 PMCID: PMC8215442 DOI: 10.3389/fphar.2021.655281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: Exposure to ultraviolet B (UVB) can cause skin damage through oxidative stress, DNA damage, and apoptosis. Keratinocyte growth factor (KGF) has been shown to reduce the content of intracellular reactive oxygen species (ROS) following UVB exposure, a role that is crucial for the efficient photoprotection of skin. The present study evaluated the photoprotective effect of KGF-2 on UVB-induced skin damage and explored its potential molecular mechanism. Methods: To evaluate the effect of KGF-2 on UVB-induced damage ex vivo, a human epidermal full-thickness skin equivalent was pretreated without or with KGF-2 and then exposed to UVB and the levels of histopathological changes, DNA damage, inflammation, and apoptosis were then evaluated. The ability of KGF-2 to protect the cells against UVB-inflicted damage and its effect on ROS production, apoptosis, and mitochondrial dysfunction were determined in HaCaT cells. Results: Pretreatment of the epidermis with KGF-2 ameliorated the extent of photodamage. At the cellular level, KGF-2 could attenuate ROS production, apoptosis, DNA damage, and mitochondrial dysfunction caused by UVB exposure. KGF-2 could also activate the aryl hydrocarbon receptor (AhR) to trigger the Nrf2 signaling pathway. Conclusion: Taken together, our findings suggested that KGF-2 could ameliorate UVB-induced skin damage through inhibiting apoptosis, reducing oxidative stress, and preventing DNA damage and mitochondrial dysfunction via regulating AhR/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yu Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jungang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lusheng Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuenan Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Mahendra CK, Abidin SAZ, Htar TT, Chuah LH, Khan SU, Ming LC, Tang SY, Pusparajah P, Goh BH. Counteracting the Ramifications of UVB Irradiation and Photoaging with Swietenia macrophylla King Seed. Molecules 2021; 26:molecules26072000. [PMID: 33916053 PMCID: PMC8037697 DOI: 10.3390/molecules26072000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia;
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
| | - Shafi Ullah Khan
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (P.P.); (B.H.G.)
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.); (S.U.K.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (P.P.); (B.H.G.)
| |
Collapse
|
15
|
Atalay S, Gęgotek A, Skrzydlewska E. Protective Effects of Cannabidiol on the Membrane Proteome of UVB-Irradiated Keratinocytes. Antioxidants (Basel) 2021; 10:402. [PMID: 33800305 PMCID: PMC8001542 DOI: 10.3390/antiox10030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet (UV) radiation contained in sunlight disturbs the redox state of skin cells, leading to changes in the structures and functions of macromolecules including components of biological membranes. Cannabidiol (CBD), which accumulates in biomembranes, may be a promising protective antioxidant compound. Accordingly, the aim of this study was to compare the effects of short-term (24 h) and long-term (48 h) CBD application on the proteomic profile of biological membranes in UVB-irradiated keratinocytes. The data obtained show that UVB radiation quantitatively and qualitatively modified cell membrane proteins, with a particular research focus on adducts of proteins with the lipid peroxidation products malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE). CBD application reduced the UVB-enhanced level of these protein adducts. This was particularly notable amongst proteins related to cell proliferation and apoptosis. Moreover, CBD dramatically increased the UVB-induced expression of proteins involved in the regulation of protein translation and cell proliferation (S3a/L13a/L7a ribosomal proteins), the inflammatory response (S100/S100-A6 proteins), and maintenance of redox balance (peroxiredoxin-1, carbonyl reductase 1, and aldo-keto reductase family 1 members). In contrast, CBD effects on the level of 4-HNE-protein adducts involved in the antioxidant response and proteasomal degradation process indicate that CBD may protect keratinocytes in connection with protein catabolism processes or pro-apoptotic action.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, 15-089 Białystok, Poland; (S.A.); (A.G.)
| |
Collapse
|
16
|
Gęgotek A, Atalay S, Rogowska-Wrzesińska A, Skrzydlewska E. The Effect of Cannabidiol on UV-Induced Changes in Intracellular Signaling of 3D-Cultured Skin Keratinocytes. Int J Mol Sci 2021; 22:1501. [PMID: 33540902 PMCID: PMC7867360 DOI: 10.3390/ijms22031501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/09/2023] Open
Abstract
Human epidermal keratinocytes are constantly exposed to UV radiation. As a result, there is a significant need for safe and effective compounds to protect skin cells against this environmental damage. This study aimed to analyze the effect of phytocannabinoid-cannabinoid (CBD)-on the proteome of UVA/B irradiated keratinocytes. The keratinocytes were cultured in a three-dimensional (3D) system, designed to mimic epidermal conditions closely. The obtained results indicate that CBD protected against the harmful effects of UVA/B radiation. CBD decreased the expression of proinflammatory proteins, including TNFα/NFκB and IκBKB complex and decreased the expression of proteins involved in de novo protein biosynthesis, which are increased in UVA/B-irradiated cells. Additionally, CBD enhanced the UV-induced expression of 20S proteasome subunits. CBD also protected protein structures from 4-hydroxynonenal (HNE)-binding induced by UV radiation, which primarily affects antioxidant enzymes. CBD-through its antioxidant/anti-inflammatory activity and regulation of protein biosynthesis and degradation-protects skin cells against UVA/B-induced changes. In the future, its long-term use in epidermal cells should be investigated.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| | - Adelina Rogowska-Wrzesińska
- Department of Biochemistry and Molecular Biology, University of Southern Danmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| |
Collapse
|
17
|
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62:101127. [PMID: 32721499 DOI: 10.1016/j.arr.2020.101127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Excessive exposure of skin to UV radiation triggers the generation of oxidative stress, inflammation, immunosuppression, apoptosis, matrix-metalloproteases production, and DNA mutations leading to the onset of photo ageing and photo-carcinogenesis. At the molecular level, these changes occur via activation of several protein kinases as well as transcription pathways, formation of reactive oxygen species, and release of cytokines, interleukins and prostaglandins together. Current therapies available on the market only provide limited solutions and exhibit several side effects. The present paper provides insight into scientific studies that have elucidated the positive role of phytochemicals in counteracting the UV-induced depletion of antioxidant enzymes, increased lipid peroxidation, inflammation, DNA mutations, increased senescence, dysfunctional apoptosis and immune suppression. The contribution of phytochemicals to the downregulation of expression of oxidative-stress sensitive transcription factors (Nrf2, NF-Kb, AP-1 and p53) and protein kinases (MSK, ERK, JNK, p38 MAPK, p90RSK2 and CaMKs) involved in inflammation, apoptosis, immune suppression, extracellular matrix remodelling, senescence, photo ageing and photo-carcinogenesis, is also discussed. Conclusively, several phytochemicals hold potential for the development of a viable solution against UV irradiation-mediated photo ageing, photo-carcinogenesis and related manifestations.
Collapse
|
18
|
Cannabidiol protects keratinocyte cell membranes following exposure to UVB and hydrogen peroxide. Redox Biol 2020; 36:101613. [PMID: 32863232 PMCID: PMC7327251 DOI: 10.1016/j.redox.2020.101613] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Keratinocytes, the major cell type of the epidermis, are particularly sensitive to environmental factors including exposure to sunlight and chemical agents. Since oxidative stress may arise as a result of these factors, compounds are actively sought that can act as protective agents. Recently, cannabidiol (CBD), a phytocannabinoid found in Cannabis Sativa L., has gained increased interest due to its anti-inflammatory and antioxidant properties, and absence of psychoactive effects. This prompted us to analyze the protective effects of CBD on keratinocytes exposed to UVB irradiation and hydrogen peroxide. Here we show, using liquid chromatography mass spectrometry, that CBD was able to penetrate keratinocytes, and accumulated within the cellular membrane. CBD reduced redox balance shift, towards oxidative stress, caused by exposure UVB/hydrogen peroxide, estimated by superoxide anion radical generation and total antioxidant status and consequently lipid peroxidation level. CBD was found to protect keratinocytes by preventing changes in the composition of the cellular membrane, associated with UVB/hydrogen peroxide damages which included reduced polyunsaturated fatty acid levels, increased sialic acid and lipid peroxidation products (malondialdehyde and 8-isoprostanes) levels. This maintains cell membranes integrity and prevents the release of lactate dehydrogenase. In addition, CBD prevented UVB/hydrogen peroxide-induced reduction of keratinocyte size and zeta potential, and also decreased activity of ATP-binding cassette membrane transporters. Together, these findings suggest that CBD could be a potential protective agent for keratinocytes against the harmful effects of irradiation and chemical environmental factors that cause oxidative stress. UVB/H2O2 stimulates keratinocytes membrane penetration by CBD. CBD protects cells against UVB/H2O2 induced redox imbalance. CBD maintains membrane integrity by preventing its component modifications. CBD decreases activity of ATP-binding cassette membrane transporters. CBD could be a potential keratinocytes protector against the harmful factors.
Collapse
|
19
|
Dengjel J, Bruckner-Tuderman L, Nyström A. Skin proteomics - analysis of the extracellular matrix in health and disease. Expert Rev Proteomics 2020; 17:377-391. [PMID: 32552150 DOI: 10.1080/14789450.2020.1773261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The skin protects the human body from external insults and regulates water and temperature homeostasis. A highly developed extracellular matrix (ECM) supports the skin and instructs its cell functions. Reduced functionality of the ECM is often associated with skin diseases that cause physical impairment and also have implications on social interactions and quality of life of affected individuals. AREAS COVERED With a focus on the skin ECM we discuss how mass spectrometry (MS)-based proteomic approaches first contributed to establishing skin protein inventories and then facilitated elucidation of molecular functions and disease mechanisms. EXPERT OPINION MS-based proteomic approaches have significantly contributed to our understanding of skin pathophysiology, but also revealed the challenges in assessing the skin ECM. The numerous posttranslational modifications of ECM proteins, like glycosylation, crosslinking, oxidation, and proteolytic maturation in disease settings can be difficult to tackle and remain understudied. Increased ease of handling of LC-MS/MS systems and automated/streamlined data analysis pipelines together with the accompanying increased usage of LC-MS/MS approaches will ensure that in the coming years MS-based proteomic approaches will continue to play a vital part in skin disease research. They will facilitate the elucidation of molecular disease mechanisms and, ultimately, identification of new druggable targets.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Biology, University of Fribourg , Fribourg, Switzerland
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| |
Collapse
|
20
|
Goetting DL, Mansfield R, Soto R, Buskirk CV. Cellular damage, including wounding, drives C. elegans stress-induced sleep. J Neurogenet 2020; 34:430-439. [PMID: 32362197 DOI: 10.1080/01677063.2020.1752203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Across animal phyla, sleep is associated with increased cellular repair, suggesting that cellular damage may be a core component of sleep pressure. In support of this notion, sleep in the nematode Caenorhabditis elegans can be triggered by damaging conditions, including noxious heat, high salt, and ultraviolet light exposure. It is not clear, however, whether this stress-induced sleep (SIS) is a direct consequence of cellular damage, or of a resulting energy deficit, or whether it is triggered simply by the sensation of noxious conditions. Here, we show that thermosensation is dispensable for heat-induced sleep, that osmosensation is dispensable for salt-induced sleep, and that wounding is also a sleep trigger, together indicating that SIS is not triggered by sensation of noxious environments. We present evidence that genetic variation in cellular repair pathways impacts sleep amount, and that SIS involves systemic monitoring of cellular damage. We show that the low-energy sensor AMP-activated protein kinase (AMPK) is not required for SIS, suggesting that energy deficit is not the primary sleep trigger. Instead, AMPK-deficient animals display enhanced SIS responses, and pharmacological activation of AMPK reduces SIS, suggesting that ATP-dependent repair of cellular damage mitigates sleep pressure.
Collapse
Affiliation(s)
- Desiree L Goetting
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Richard Mansfield
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Rony Soto
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| |
Collapse
|
21
|
Korhonen E, Piippo N, Hytti M, Hyttinen JMT, Kaarniranta K, Kauppinen A. Only IL‐1β release is inflammasome‐dependent upon ultraviolet B irradiation although IL‐18 is also secreted. FASEB J 2020; 34:6437-6448. [DOI: 10.1096/fj.201902355rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Eveliina Korhonen
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
- HUSLAB University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Niina Piippo
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Maria Hytti
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| |
Collapse
|
22
|
One- and Two-Electron Oxidations of β-Amyloid 25-35 by Carbonate Radical Anion (CO 3•-) and Peroxymonocarbonate (HCO 4-): Role of Sulfur in Radical Reactions and Peptide Aggregation. Molecules 2020; 25:molecules25040961. [PMID: 32093407 PMCID: PMC7070857 DOI: 10.3390/molecules25040961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
The β-amyloid (Aβ) peptide plays a key role in the pathogenesis of Alzheimer’s disease. The methionine (Met) residue at position 35 in Aβ C-terminal domain is critical for neurotoxicity, aggregation, and free radical formation initiated by the peptide. The role of Met in modulating toxicological properties of Aβ most likely involves an oxidative event at the sulfur atom. We therefore investigated the one- or two-electron oxidation of the Met residue of Aβ25-35 fragment and the effect of such oxidation on the behavior of the peptide. Bicarbonate promotes two-electron oxidations mediated by hydrogen peroxide after generation of peroxymonocarbonate (HCO4−, PMC). The bicarbonate/carbon dioxide pair stimulates one-electron oxidations mediated by carbonate radical anion (CO3•−). PMC efficiently oxidizes thioether sulfur of the Met residue to sulfoxide. Interestingly, such oxidation hampers the tendency of Aβ to aggregate. Conversely, CO3•− causes the one-electron oxidation of methionine residue to sulfur radical cation (MetS•+). The formation of this transient reactive intermediate during Aβ oxidation may play an important role in the process underlying amyloid neurotoxicity and free radical generation.
Collapse
|
23
|
Antioxidant Activities of an Exopolysaccharide (DeinoPol) Produced by the Extreme Radiation-Resistant Bacterium Deinococcus radiodurans. Sci Rep 2020; 10:55. [PMID: 31919371 PMCID: PMC6952347 DOI: 10.1038/s41598-019-56141-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023] Open
Abstract
Deinococcus radiodurans shows extreme resistance to a range of remarkable environmental stresses. Deinococcal exopolysaccharide (DeinoPol) is a component of the cell wall, but its role in stress resistance has not yet been well-described. In this study, we isolated and characterized DeinoPol from Deinococcus radiodurans R1 strain and investigated its application as an antioxidant agent. Bioinformatic analysis indicated that dra0033, encoding an ExoP-like protein, was involved in DeinoPol biosynthesis, and dra0033 mutation significantly decreased survival rates in response to stresses. Purified DeinoPol consists of different monosaccharides and has a molecular weight of approximately 80 to 100 kDa. DeinoPol also demonstrates highly protective effects on human keratinocytes in response to stress-induced apoptosis by effectively scavenging ROS. Taken together, these findings indicate that DeinoPol is the first reported deinococcal exopolysaccharide that might be used in cosmetics and pharmaceuticals as a safe and attractive radical scavenger.
Collapse
|
24
|
Protein Oxidative Damage in UV-Related Skin Cancer and Dysplastic Lesions Contributes to Neoplastic Promotion and Progression. Cancers (Basel) 2020; 12:cancers12010110. [PMID: 31906275 PMCID: PMC7017152 DOI: 10.3390/cancers12010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.
Collapse
|
25
|
Fernando PDSM, Piao MJ, Zhen AX, Ahn MJ, Yi JM, Choi YH, Hyun JW. Extract of Cornus officinalis Protects Keratinocytes from Particulate Matter-induced Oxidative Stress. Int J Med Sci 2020; 17:63-70. [PMID: 31929739 PMCID: PMC6945560 DOI: 10.7150/ijms.36476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
The skin is one of the large organs in the human body and the most exposed to outdoor contaminants such as particulate matter < 2.5 µm (PM2.5). Recently, we reported that PM2.5 induced cellular macromolecule disruption of lipids, proteins, and DNA, via reactive oxygen species, eventually causing cellular apoptosis of human keratinocytes. In this study, the ethanol extract of Cornus officinalis fruit (EECF) showed anti-oxidant effect against PM2.5-induced cellular oxidative stress. EECF protected cells against PM2.5-induced DNA damage, lipid peroxidation, and protein carbonylation. PM2.5 up-regulated intracellular and mitochondrial Ca2+ levels excessively, which led to mitochondrial depolarization and cellular apoptosis. However, EECF suppressed the PM2.5-induced excessive Ca2+ accumulation and inhibited apoptosis. The data confirmed that EECF greatly protected human HaCaT keratinocytes from PM2.5-induced oxidative stress.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Ao Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mee Jung Ahn
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
26
|
Abstract
Redox proteomics is a field of proteomics that is concerned with the characterization of the oxidation state of proteins to gain information about their modulated structure, function, activity, and involvement in different physiological pathways. Oxidative modifications of proteins have been shown to be implicated in normal physiological processes of cells as well as in pathomechanisms leading to the development of cancer, diabetes, neurodegenerative diseases, and some rare hereditary metabolic diseases, like classic galactosemia. Reactive oxygen species generate a variety of reversible and irreversible modifications in amino acid residue side chains and within the protein backbone. These oxidative post-translational modifications (Ox-PTMs) can participate in the activation of signal transduction pathways and mediate the toxicity of harmful oxidants. Thus the application of advanced redox proteomics technologies is important for gaining insights into molecular mechanisms of diseases. Mass-spectrometry-based proteomics is one of the most powerful methods that can be used to give detailed qualitative and quantitative information on protein modifications and allows us to characterize redox proteomes associated with diseases. This Review illustrates the role and biological consequences of Ox-PTMs under basal and oxidative stress conditions by focusing on protein carbonylation and S-glutathionylation, two abundant modifications with an impact on cellular pathways that have been intensively studied during the past decade.
Collapse
Affiliation(s)
- Atef Mannaa
- Borg AlArab Higher Institute of Engineering and Technology , New Borg AlArab City , Alexandria , Egypt
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty , University of Cologne , Joseph-Stelzmann-Str. 52 , 50931 Cologne , Germany
| |
Collapse
|
27
|
Tanaka Y, Uchi H, Furue M. Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci 2019; 96:151-158. [PMID: 31735467 DOI: 10.1016/j.jdermsci.2019.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation disrupts skin through several deleterious actions, such as induction of reactive oxygen species (ROS), DNA damage, and collagen degradation. Cinnamaldehyde (CIN) is a major constituent of the cinnamon and it possesses potent antioxidative activity; however, it is unclear whether CIN is capable of inhibiting the adverse effects of UVB. OBJECTIVE To investigate protective effects of CIN against UVB-induced photodamage. METHODS HaCaT keratinocytes were pretreated with CIN, irradiated with UVB, and assessed for the ROS production by flow cytometry and for the DNA damage by ELISA. As in vivo mouse model, Hos:HR-1 hairless mice were treated with ointments containing DMSO or CIN and irradiated multiple times with UVB. After 10 weeks of irradiation, wrinkle formation, epidermal thickness, infiltrating cell number, malondialdehyde amount, collagen amount, MAP kinase signaling, and related gene expressions (Hmox1, Col1a1, Mmp1a, and Mmp13) were analyzed. RESULTS CIN significantly reduced the ROS production and accelerated the repair of DNA damage pyrimidine(6-4)pyrimidone photoproducts in UVB-irradiated human keratinocytes in vitro. In the mouse model, topical application of CIN significantly inhibited wrinkle formation, epidermal hyperplasia, and dermal inflammatory cell infiltration. The antioxidative process was significantly promoted in the CIN-applied site, as evidenced by upregulation of the antioxidative enzyme Hmox1 as well as the reduced accumulation of malondialdehyde. In addition, topical application of CIN normalized the UVB-induced collagen/Col1a1 downregulation and the UVB-induced Mmp13 upregulation, implying the prevention of UVB-induced collagen degradation. CONCLUSIONS CIN and CIN-containing herbal agents may exert potent protective effects against UVB exposure on skin.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, National Hospital organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019; 24:1027-1044. [PMID: 31734893 PMCID: PMC6882751 DOI: 10.1007/s12192-019-01044-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
29
|
El-Chami C, Haslam IS, Steward MC, O'Neill CA. Organic osmolytes preserve the function of the developing tight junction in ultraviolet B-irradiated rat epidermal keratinocytes. Sci Rep 2018; 8:5167. [PMID: 29581434 PMCID: PMC5979960 DOI: 10.1038/s41598-018-22533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/08/2018] [Indexed: 01/04/2023] Open
Abstract
Epidermal barrier function is provided by the highly keratinised stratum corneum and also by tight junctions (TJs) in the granular layer of skin. The development of the TJ barrier significantly deteriorates in response to ultraviolet B radiation (UVB). Following exposure to UVB, keratinocytes accumulate organic osmolytes, which are known to preserve cell volume during water stress. Since TJs are intimately associated with control of water homeostasis in skin, we hypothesised that there may be a direct influence of osmolytes on TJ development. Exposure of rat epidermal keratinocytes (REKs) to a single dose of UVB reduced the function of developing TJs. This was concomitant with dislocalisation of claudin-1 and claudin-4 from the keratinocyte plasma membrane, phosphorylation of occludin and elevation of reactive oxygen species (ROS). In the presence of organic osmolytes, these effects were negated but were independent of the effects of these molecules on cell volume, elevation of ROS or the gene expression of TJ proteins. These data suggest that organic osmolytes affect TJs via post-translational mechanism(s) possibly involving protection of the native conformation of TJ proteins.
Collapse
Affiliation(s)
- Cécile El-Chami
- School of Biological Sciences, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Iain S Haslam
- School of Biological Sciences, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.,School of Medical Sciences, Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, United Kingdom
| | - Martin C Steward
- School of Medical Sciences, Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Catherine A O'Neill
- School of Biological Sciences, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
30
|
Afnan Q, Kaiser PJ, Rafiq RA, Nazir LA, Bhushan S, Bhardwaj SC, Sandhir R, Tasduq SA. Glycyrrhizic acid prevents ultraviolet-B-induced photodamage: a role for mitogen-activated protein kinases, nuclear factor kappa B and mitochondrial apoptotic pathway. Exp Dermatol 2018; 25:440-6. [PMID: 26836460 DOI: 10.1111/exd.12964] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
Abstract
Glycyrrhizic acid (GA), a natural triterpene, has received attention as an agent that has protective effects against chronic diseases including ultraviolet UV-B-induced skin photodamage. However, the mechanism of its protective effect remains elusive. Here, we used an immortalized human keratinocyte cell line (HaCaT) and a small animal model (BALB/c mice), to investigate the protective effects of GA against UV-B-induced oxidative damage, and additionally, delineated the molecular mechanisms involved in the UV-B-mediated inflammatory and apoptotic response. In the HaCaT cells, GA inhibited the UV-B-mediated increase in intracellular reactive oxygen species (ROS) and down-regulated the release of pro-inflammatory cytokines interleukin (IL)-1α, -1β and -6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2). GA inhibited UV-B-mediated activation of p38 and JNK MAP kinases, COX-2 expression and nuclear translocation of NF-κB. Furthermore, GA inhibited UV-B-mediated apoptosis by attenuating translocation of Bax from the cytosol to mitochondria, thus preserving mitochondrial integrity. GA-treated HaCaT cells also exhibited elevated antiapoptotic Bcl-2 protein, concomitant with reduced caspase-3 cleavage and decreased PARP-1 protein. In BALB/c mice, topical application of GA on dorsal skin exposed to UV-B irradiation protected against epidermal hyperplasia, lymphocyte infiltration and expression of several inflammatory proteins, p38, JNK, COX-2, NF-κB and ICAM-1. Based on the above findings, we conclude that GA protects against UV-B-mediated photodamage by inhibiting the signalling cascades triggered by oxidative stress, including MAPK/NF-κB activation, as well as apoptosis. Thus, GA has strong potential to be used as a therapeutic/cosmeceutical agent against photodamage.
Collapse
Affiliation(s)
- Quadri Afnan
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Department of Biochemistry, Panjab University, Chandigarh, India
| | - Peerzada J Kaiser
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Rather A Rafiq
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Lone A Nazir
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Shashi Bhushan
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Subhash C Bhardwaj
- Department of Pathology, Government Medical College, Jammu, Jammu and Kashmir, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sheikh A Tasduq
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
31
|
Petushkova NA, Rusanov AL, Zgoda VG, Pyatnitskiy MA, Larina OV, Nakhod KV, Luzgina NG, Lisitsa AV. Proteome of the human HaCaT keratinocytes: Identification of the oxidative stress proteins after sodium dodecyl sulpfate exposur. Mol Biol 2017. [DOI: 10.1134/s0026893317050259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
|
33
|
Jiao C, Yang R, Zhou Y, Gu Z. Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts. Food Chem 2016; 204:373-380. [PMID: 26988515 DOI: 10.1016/j.foodchem.2016.02.147] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/23/2015] [Indexed: 12/12/2022]
Abstract
In this study, we investigated the relationships between endogenous NO signal transduction pathways, the antioxidant system and isoflavone accumulation induced by UV-B radiation in soybean sprouts. Results showed that UV-B-triggered NO generation induced isoflavone accumulation by up-regulating the activity and gene expression of key enzymes (phenylalanine ammonia lyase, PAL; chalcone isomerase, CHI; chalcone synthase, CHS; isoflavone synthase, IFS) that participate in isoflavone biosynthesis and enhanced the antioxidant system by regulating levels of antioxidants (glutathione reductase, GR; glutathione S-transferase, GST; ascorbate peroxidase, APX; glutathione GSH; ascorbic acid, ASC), antioxidant enzyme activities (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT) and their gene expression. These effects were inhibited by the addition of a specific NO-scavenger, carboxy-PTIO (cPTIO). The inhibition was reversed through application of the exogenous NO donor, SNP. Overall, NO is an essential signaling molecule, mediating UV-B-induced isoflavone accumulation and the antioxidant system enhancement in soybean sprouts.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yulin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
34
|
Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing. Sci Rep 2016; 6:20328. [PMID: 26846883 PMCID: PMC4742856 DOI: 10.1038/srep20328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
Skin wounds need to be repaired rapidly after injury to restore proper skin barrier function. Hydrogen peroxide (H2O2) is a conserved signaling factor that has been shown to promote a variety of skin wound repair processes, including immune cell migration, angiogenesis and sensory axon repair. Despite growing research on H2O2 functions in wound repair, the downstream signaling pathways activated by this reactive oxygen species in the context of injury remain largely unknown. The goal of this study was to provide a comprehensive analysis of gene expression changes in the epidermis upon exposure to H2O2 concentrations known to promote wound repair. Comparative transcriptome analysis using RNA-seq data from larval zebrafish and previously reported microarray data from a human epidermal keratinocyte line shows that H2O2 activates conserved cell migration, adhesion, cytoprotective and anti-apoptotic programs in both zebrafish and human keratinocytes. Further assessment of expression characteristics and signaling pathways revealed the activation of three major H2O2–dependent pathways, EGF, FOXO1, and IKKα. This study expands on our current understanding of the clinical potential of low-level H2O2 for the promotion of epidermal wound repair and provides potential candidates in the treatment of wound healing deficits.
Collapse
|
35
|
Lennicke C, Rahn J, Heimer N, Lichtenfels R, Wessjohann LA, Seliger B. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications. Proteomics 2015; 16:197-213. [PMID: 26508685 DOI: 10.1002/pmic.201500268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023]
Abstract
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S-nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double-edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
36
|
Min W, Ahmad I, Chang ME, Burns EM, Qian Q, Yusuf N. Baicalin Protects Keratinocytes from Toll-like Receptor-4 Mediated DNA Damage and Inflammation Following Ultraviolet Irradiation. Photochem Photobiol 2015; 91:1435-43. [PMID: 26256790 DOI: 10.1111/php.12505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/10/2015] [Indexed: 01/02/2023]
Abstract
UVB radiation contributes to both direct and indirect damage to the skin including the generation of free radicals and reactive oxygen species (ROS), inflammatory responses, immunosuppression and gene mutations, which can ultimately lead to photocarcinogenesis. A plant-derived flavonoid, baicalin, has been shown to have antioxidant, anti-inflammatory and free radical scavenging activities. Previous studies from our laboratory have shown that in murine skin, Toll-like receptor-4 (TLR4) enhanced both UVB-induced DNA damage and inflammation. The aim of this study was to investigate the efficacy of baicalin against TLR4-mediated processes in the murine keratinocyte PAM 212 cell line. Our results demonstrate that treating keratinocytes with baicalin both before and after UV radiation (100 mJ cm(-2) ) significantly inhibited the level of intracellular ROS and decreased cyclobutane pyrimidine dimers and 8-Oxo-2'-deoxyguanosine (8-oxo-dG)-markers of DNA damage. Furthermore, cells treated with baicalin demonstrated an inhibition of TLR4 and its downstream signaling molecules, MyD88, TRIF, TRAF6 and IRAK4. TLR4 pathway inhibition resulted in NF-κB inactivation and down-regulation of iNOS and COX-2 protein expression. Taken together, baicalin treatment effectively protected keratinocytes from UVB-induced inflammatory damage through TLR pathway modulation.
Collapse
Affiliation(s)
- Wei Min
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Israr Ahmad
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Michelle E Chang
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Erin M Burns
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nabiha Yusuf
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
37
|
Potential ramifications of the effects of sub-lethal ultraviolet B-radiation on the subsequent three subcultures of Lactobacillus fermentum BT 8219 during fermentation in biotin-supplemented soymilk and their probiotic properties. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
38
|
Madduma Hewage SRK, Piao MJ, Kim KC, Cha JW, Han X, Choi YH, Chae S, Hyun JW. Galangin (3,5,7-trihydroxyflavone) shields human keratinocytes from ultraviolet B-induced oxidative stress. Biomol Ther (Seoul) 2015; 23:165-73. [PMID: 25767685 PMCID: PMC4354318 DOI: 10.4062/biomolther.2014.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 01/16/2023] Open
Abstract
Most skin damage caused by ultraviolet B (UVB) radiation is owing to the generation of reactive oxygen species. Phytochemicals can act as antioxidants against UVB-induced oxidative stress. This study investigated the protective effects of the flavone galangin against UVB-induced oxidative damage in human keratinocytes. Galangin efficiently scavenged free radicals and reduced UVB-induced damage to cellular macromolecules, such as DNA, lipids, and proteins. Furthermore, galangin rescued cells undergoing apoptosis induced by UVB radiation via recovering mitochondrial polarization and down-regulating apoptotic proteins. These results showed that galangin protects human keratinocytes against UVB radiation-induced cellular damage and apoptosis via its antioxidant effects.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Jeju National University School of Medicine, Jeju 690-756, Republic of Korea
| | - Ki Cheon Kim
- Jeju National University School of Medicine, Jeju 690-756, Republic of Korea
| | - Ji Won Cha
- Jeju National University School of Medicine, Jeju 690-756, Republic of Korea
| | - Xia Han
- Jeju National University School of Medicine, Jeju 690-756, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea
| | - Sungwook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine, Jeju 690-756, Republic of Korea
| |
Collapse
|
39
|
Hsu WL, Yoshioka T. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin. Biophysics (Nagoya-shi) 2015; 11:25-32. [PMID: 27493511 PMCID: PMC4736782 DOI: 10.2142/biophysics.11.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure.
Collapse
Affiliation(s)
- Wen-Li Hsu
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; The Institute of Basic Medical Sciences, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
40
|
Cynaropicrin attenuates UVB-induced oxidative stress via the AhR-Nrf2-Nqo1 pathway. Toxicol Lett 2015; 234:74-80. [PMID: 25680693 DOI: 10.1016/j.toxlet.2015.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 11/21/2022]
Abstract
UNLABELLED Due to its antioxidant and anti-inflammatory activities, artichoke (Cynara scolymus) has been used as folk medicine to treat various diseases. Cynaropicrin (Cyn), a sesquiterpene lactone, is the major bioactive phytochemical in the artichoke; however, its pharmacological mechanism remains unknown. Because some phytochemicals exert their antioxidant activity by activating aryl hydrocarbon receptor (AhR), leading to subsequent induction of the antioxidant pathway including nuclear factor E2-related factor 2 (Nrf2) and NAD(P)H quinone oxidoreductase 1 (Nqo1), we investigated whether Cyn also activates the AhR-Nrf2-Nqo1 pathway. Cyn indeed induced the activation (nuclear translocation) of AhR, leading to nuclear translocation of Nrf2 and dose-dependent upregulation of Nrf2 and Nqo1 mRNAs in human keratinocytes. The Cyn-induced AhR-Nrf2-Nqo1 activation was AhR- and Nrf2-dependent, as demonstrated by the observation that it was absent in keratinocytes transfected by siRNA against either AhR or Nrf2. In accordance with these findings, Cyn actively inhibited generation of reactive oxygen species from keratinocytes irradiated with ultraviolet B (UVB) in a Nrf2-dependent manner. Cyn also inhibited the production of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor-α from UVB-treated keratinocytes. Our findings demonstrate that Cyn is a potent activator of the AhR-Nrf2-Nqo1 pathway, and could therefore be applied to prevention of UVB-induced photo aging.
Collapse
|
41
|
Butterfield DA, Gu L, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: applications in disease. MASS SPECTROMETRY REVIEWS 2014; 33:277-301. [PMID: 24930952 DOI: 10.1002/mas.21374] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 06/03/2023]
Abstract
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been used to characterize oxidative PTMs that result as a part of normal cell signaling processes as well as oxidative stress conditions. This review highlights many of the redox proteomics techniques which are currently available for several oxidative PTMs and brings to the reader's attention the application of redox proteomics for understanding disease pathogenesis in neurodegenerative disorders and others such as cancer, kidney, and heart diseases.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40506
| | | | | | | |
Collapse
|
42
|
Emanuele E. Challenging the central dogma of skin photobiology: are proteins more important than DNA? J Invest Dermatol 2014; 134:2052-2053. [PMID: 24492242 DOI: 10.1038/jid.2014.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Foppoli C, Coccia R, Perluigi M. Role of Oxidative Stress in Human Papillomavirus-Driven Cervical Carcinogenesis. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
44
|
Gabrielska J, Sekowski S, Zukowska I, Przestalski S, Zamaraeva M. The modified action of triphenyllead chloride on UVB-induced effects in albumin and lipids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:36-42. [PMID: 23260240 DOI: 10.1016/j.ecoenv.2012.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Previously we have shown a toxic effect of the organometallic compound triphenyllead (TPhPb) on cells. In the present study we evaluated the destructive effect of TPhPb on model systems--serum albumin and liposome membranes--alone and under UVB irradiation. UVB irradiation of bovine serum albumin results in protein S-S bond reduction, free SH- and CO- group formation and decrease in fluorescence intensity of tryptophans. Triphenyllead chloride alone and under UVB irradiation did not induce protein oxidation, measured as formation of carbonyl groups, in serum albumin; however, it decreased the content of SH- groups in both cases (alone and under UVB radiation) in a dose-dependent manner. It was found that triphenyllead chloride alone did not induce lipid peroxidation of liposomes but increased their fluidity. However, under UVB irradiation TPhPb dramatically enhances the pro-oxidant action of UVB in a manner dependent on concentration and intensity of radiation, and these effects were suppressed by Trolox. These results suggest that the toxicity of TPhPb under UVB irradiation is due to formation of radical forms of the compound and its disordered effects on the membrane structure.
Collapse
Affiliation(s)
- Janina Gabrielska
- Wroclaw University of Environmental and Life Sciences, CK Norwida 25/27, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
45
|
Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT. Ultraviolet radiation enhanced growth of lactobacilli and their bioconversion of isoflavones in biotin-supplemented soymilk. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Salucci S, Burattini S, Battistelli M, Baldassarri V, Maltarello MC, Falcieri E. Ultraviolet B (UVB) irradiation-induced apoptosis in various cell lineages in vitro. Int J Mol Sci 2012; 14:532-46. [PMID: 23271369 PMCID: PMC3565280 DOI: 10.3390/ijms14010532] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB) radiation acts as a strong apoptotic trigger in many cell types, in tumor and normal cells. Several studies have demonstrated that UVB-induced cell death occurs through the generation of reactive oxygen species. The consequent oxidative stress includes the impairment of cellular antioxidants, the induction of DNA damage and the occurrence of apoptosis. In this review, we investigated UVB apoptotic action in various cell models by using ultrastructural, molecular and cytofluorimetric techniques. Myeloid leukemia HL-60, T-lymphoblastoid Molt-4 and myelomonocytic U937 human cells, generally affected by apoptotic stimuli, were studied. Human chondrocytes and C2C12 skeletal muscle cells, known to be more resistant to damage, were also considered. All of them, when exposed to UVB radiation, revealed a number of characteristic apoptotic markers. Membrane blebbing, cytoplasm shrinkage and chromatin condensation were detected by means of electron microscopy. DNA cleavage, investigated by using agarose gel electrophoresis and TUNEL reaction, was observed in suspended cells. Differently, in chondrocytes and in skeletal muscle cells, oligonucleosomic DNA fragmentation did not appear, even if a certain TUNEL positivity was detected. These findings demonstrate that UVB radiation appears to be an ideal tool to study the apoptotic behavior.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Sabrina Burattini
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Michela Battistelli
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Valentina Baldassarri
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Maria Cristina Maltarello
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna 40136, Italy; E-Mail:
| | - Elisabetta Falcieri
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
- IGM, CNR, Rizzoli Orthopaedic Institute, Bologna 40136, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0722304284; Fax: +39-0722304244
| |
Collapse
|
47
|
Liu S, Guo C, Wu D, Ren Y, Sun MZ, Xu P. Protein indicators for HaCaT cell damage induced by UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:94-101. [DOI: 10.1016/j.jphotobiol.2012.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022]
|
48
|
Nasti TH, Timares L. Inflammasome activation of IL-1 family mediators in response to cutaneous photodamage. Photochem Photobiol 2012; 88:1111-25. [PMID: 22631445 DOI: 10.1111/j.1751-1097.2012.01182.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although keratinocytes are relatively resistant to ultraviolet radiation (UVR) induced damage, repeated UVR exposure result in accumulated DNA mutations that can lead to epidermal malignancies. Keratinocytes play a central role in elaborating innate responses that lead to inflammation and influence the generation of adaptive immune responses in skin. Apart from the minor cellular constituents of the epidermis, specifically Langerhans cells and melanocytes, keratinocytes are the major source of cytokines. UVR exposure stimulates keratinocytes to secrete abundant pro-inflammatory IL-1-family proteins, IL-1α, IL-1β, IL-18, and IL-33. Normal skin contains only low levels of inactive precursor forms of IL-1β and IL-18, which require caspase 1-mediated proteolysis for their maturation and secretion. However, caspase-1 activation is not constitutive, but dependents on the UV-induced formation of an active inflammasome complex. IL-1 family cytokines can induce a secondary cascade of mediators and cytokines from keratinocytes and other cells resulting in wide range of innate processes including infiltration of inflammatory leukocytes, induction of immunosuppression, DNA repair or apoptosis. Thus, the ability of keratinocytes to produce a wide repertoire of proinflammatory cytokines can influence the immune response locally as well as systematically, and alter the host response to photodamaged cells. We will highlight differential roles played by each IL-1 family molecule generated by UV-damaged keratinocytes, and reveal their complementary influences in modulating acute inflammatory and immunological events that follow cutaneous UV exposure.
Collapse
Affiliation(s)
- Tahseen H Nasti
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
49
|
Terra V, Souza-Neto F, Pereira R, Silva T, Costa A, Luiz R, Cecchini R, Cecchini A. Time-dependent reactive species formation and oxidative stress damage in the skin after UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 109:34-41. [DOI: 10.1016/j.jphotobiol.2012.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
50
|
Wu CL, Chou HC, Cheng CS, Li JM, Lin ST, Chen YW, Chan HL. Proteomic analysis of UVB-induced protein expression- and redox-dependent changes in skin fibroblasts using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis. J Proteomics 2012; 75:1991-2014. [DOI: 10.1016/j.jprot.2011.12.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/27/2011] [Accepted: 12/27/2011] [Indexed: 02/02/2023]
|