1
|
Geng J, Lu W, Kong Q, Lv J, Liu Y, Zu G, Chen Y, Jiang C, You Z, Nie Z. Validation of selective catalytic BmCBP inhibitors that regulate the Bm30K-24 protein expression in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:322-334. [PMID: 39513476 DOI: 10.1111/imb.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The cAMP response element binding protein (CREB)-binding protein (CBP) is a histone acetyltransferase that plays an indispensable role in regulating the acetylation of histone and non-histone proteins. Recently, it has been discovered that chemical inhibitors A485 and C646 can bind to Bombyx mori's CBP (BmCBP) and inhibit its acetyltransferase activity. Notably, the binding ability of A485 with BmCBP showed a very low Kd value of 48 nM by surface plasmon resonance (SPR) test. Further identification showed that both A485 and C646 can decrease the acetylation level of known substrate H3K27 and only 1 μM of A485 can almost completely inhibit the acetylation of H3K27, suggesting that A485 is an effective inhibitor of BmCBP's acetyltransferase activity. Moreover, it was confirmed that A485 could downregulate the expression of acetylated Bm30K-24 protein at a post-translational level through acetylation modification by BmCBP. Additionally, it was found that A485 can downregulate the stability of Bm30K-24 and improve its ubiquitination level, suggesting that the acetylation modification by BmCBP could compete with ubiquitination modification at the same lysine site on Bm30K-24, thereby affecting its protein stability. Here, we predict that A485 may be a potent CBP acetyltransferase inhibitor which could be utilized to inhibit acetyltransferase activity in insects, including silkworms.
Collapse
Affiliation(s)
- Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weina Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qinglong Kong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Liu
- School of Food and Health, Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Guowei Zu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Park EY, Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr Purif 2025; 228:106664. [PMID: 39828016 DOI: 10.1016/j.pep.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Robert Minkner
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Yang R, Guo H, Sun J, Gui T, Li X, Qian H, Chen A. The ebony Gene in Silkworm Black Pupae Significantly Affects 30 K Proteins During the Pupal Stage. Genes (Basel) 2024; 15:1560. [PMID: 39766827 PMCID: PMC11675696 DOI: 10.3390/genes15121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The body color and patterns of insects play important roles in foraging, evading predators, mating, thermoregulation, and environmental adaptation. During the rearing of the QiufengN silkworm strain, a mutant with black pupal cuticle (QiufengNBP) was discovered. Preliminary map-based cloning and sequence analysis indicated that the ebony gene might significantly influence the formation of the black pupa mutant and the expression of 30K proteins. This study aims to determine the function of the ebony gene and its effect on the expression of the 30K protein during the pupal stage; Methods and Results: We employed CRISPR/Cas9 gene-editing technology to knock out the ebony gene in the Nistari strain, resulting in individuals with black pupae, named Nistari Black Pupa (NisBP). This confirmed that the ebony gene plays a crucial role in black pupa formation. Two-dimensional electrophoresis (2-DE) analysis of the pupal cuticle of NisBP and its wild-type Nistari found that the ebony gene has a significant impact on the expression of 30K proteins, which are vital for embryonic development and serve as key storage proteins; Conclusions: This study is the first to demonstrate that the ebony gene affects the expression of 30K proteins, laying the foundation for further research on their functions and providing insights into the developmental mechanisms of silkworms.
Collapse
Affiliation(s)
- Runhuan Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (H.G.); (J.S.); (T.G.)
| | - Huiduo Guo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (H.G.); (J.S.); (T.G.)
| | - Juan Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (H.G.); (J.S.); (T.G.)
| | - Tao Gui
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (H.G.); (J.S.); (T.G.)
| | - Xinyu Li
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang 725000, China;
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (H.G.); (J.S.); (T.G.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang 725000, China;
| |
Collapse
|
4
|
Wang Z, Zhou Y, Tang F. RNAi-mediated silencing of transferrin promotes entomopathogens lethality in Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106149. [PMID: 39477602 DOI: 10.1016/j.pestbp.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Transferrin (Tsf) is a highly conserved multifunctional protein involved in insect physiology, defense and development that has been developed as a novel RNA interference (RNAi)-based target for pest control. The function study of the Tsf gene in Odontotermes formosanu (Shiraki) was evaluated for synergistic control of this agroforestry pest with Serratia marcescens (SM1), Bacillus thuringiensis (Bt) or Beauveria bassiana (Bb). The Tsf gene of O. formosanus was identified and characterized. Real-time fluorescent quantitative PCR (qPCR) analysis demonstrated that OfTsf was most highly expressed in the male dealate of O. formosanus, and OfTsf was highly expressed in the hemolymph. OfTsf expression was considerably elevated after SM1, Bt or Bb infection. Furthermore, dsOfTsf treatment was effective in increasing the virulence of entomopathogens to O. formosanus. In addition, OfTsf expression was markedly upregulated in O. formosanus fed with oxidative stress inducers; reactive oxygen species (ROS) levels were significantly increased after dsOfTsf treatment. Therefore, OfTsf gene played an important role in defending against entomopathogen infection and antioxidant stress. Most importantly, our work suggested OfTsf as a potential RNAi target for the control of O. formosanus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Suh SM, Kim K, Yang SM, Lee H, Jun M, Byun J, Lee H, Kim D, Lee D, Cha JE, Kim JS, Kim E, Park ZY, Kim HY. Comparative analysis of LC-MS/MS and real-time PCR assays for efficient detection of potential allergenic silkworm. Food Chem 2024; 445:138761. [PMID: 38367561 DOI: 10.1016/j.foodchem.2024.138761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kyungdo Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hana Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minkyung Jun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jisun Byun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeongjoo Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Daseul Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dain Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae-Eun Cha
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun-Su Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zee-Yong Park
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Lye PY, Shiraki C, Fukushima Y, Takaki K, Liew MWO, Yamamoto M, Wakabayashi K, Mori H, Kotani E. Cytotoxin-mediated silk gland organ dysfunction diverts resources to enhance silkworm fecundity by potentiating nutrient-sensing IIS/TOR pathways. iScience 2024; 27:108853. [PMID: 38303707 PMCID: PMC10830876 DOI: 10.1016/j.isci.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Energy reserves, primarily stored in the insect's fat body, are essential for physiological processes such as reproduction and cocoon formation. However, whether these processes are mutually constraining is unknown. Here, we showed that cocoon-free silkworms accumulate amino acid constituents of silk proteins in the hemolymph and maintain lipid and sugar reserves in the pupal fat body by repressing the expression of sericin and fibroin genes in the middle and posterior silk glands, respectively, via butterfly pierisin-1A catalytic domain expression. This, in turn, upregulates insulin/insulin-like signaling and target of rapamycin (IIS/TOR) signaling, which enhances vitellogenesis and accelerates ovarian development, thus contributing to increased fecundity. The impacts of semi-starvation on fecundity and egg hatchability were also less pronounced in cocoon-free silkworms compared with wildtype silkworms. These data uncover the resource allocation trade-off between cocoon formation and fecundity and demonstrate that nutritional signaling plays a role in regulating silkworm reproduction.
Collapse
Affiliation(s)
- Ping Ying Lye
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Chika Shiraki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuta Fukushima
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
7
|
Zhang ZT, Wang H, Dong H, Cong B. Comparative hemolymph proteomic analyses of the freezing and resistance-freezing Ostrinia furnacalis (Guenée). Sci Rep 2024; 14:2580. [PMID: 38297109 PMCID: PMC10830562 DOI: 10.1038/s41598-024-52792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is one of the most harmful pests of maize in Asia. It poses a significant threat to maize production, causing economic losses due to its strong ecological adaptation. In this study, we compared and analyzed the hemolymph proteome between freezing and resistance-freezing O. furnacalis strains using two-dimensional gel electrophoresis to gain insights into the mechanisms of cold resistance. The results revealed that 300-400 hemolymph protein spots were common, with 24 spots showing differences between the two strains. Spectrometry analysis revealed 21 protein spots, including 17 upregulated spots and 4 downregulated ones. The expression of upregulation/downregulation proteins plays a crucial role in the metabolism, energy supply, and defense reaction of insects. Proteomics research not only provides a method for investigating protein expression patterns but also identifies numerous attractive candidates for further exploration.
Collapse
Affiliation(s)
- Zhu-Ting Zhang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
- Kaili University, 556011, Kaili, People's Republic of China
| | - Huan Wang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Hui Dong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Bin Cong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| |
Collapse
|
8
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
9
|
Han G, Li C, Zhang N, Liu Q, Huang L, Xia Y, Xu J. CmHem, a hemolin-like gene identified from Cnaphalocrocis medinalis, involved in metamorphosis and baculovirus infection. PeerJ 2023; 11:e16225. [PMID: 37810787 PMCID: PMC10559889 DOI: 10.7717/peerj.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Background As a member of the immunoglobulin superfamily, hemolins play a vital role in insect development and defense against pathogens. However, the innate immune response of hemolin to baculovirus infection varies among different insects. Methods and results In this study, the hemolin-like gene from a Crambidae insect, Cnaphalocrocis medinalis, CmHem was cloned, and its role in insect development and baculovirus infection was analyzed. A 1,528 bp contig as potential hemolin-like gene of C. medinalis was reassembled from the transcriptome. Further, the complete hemolin sequence of C. medinalis (CmHem) was cloned and sequenced. The cDNA of CmHem was 1,515 bp in length and encoded 408 amino acids. The deduced amino acid of CmHem has relatively low identities (41.9-62.3%) to various insect hemolins. However, it contains four Ig domains similarity to other insect hemolins. The expression level of CmHem was the highest in eggs, followed by pupae and adults, and maintained a low expression level at larval stage. The synthesized siRNAs were injected into mature larvae, and the CmHem transcription decreased by 51.7%. Moreover, the abdominal somites of larvae became straightened, could not pupate normally, and then died. Infection with a baculovirus, C. medinalis granulovirus (CnmeGV), the expression levels of CmHem in the midgut and fat body of C. medinalis significantly increased at 12 and 24 h, respectively, and then soon returned to normal levels. Conclusions Our results suggested that hemolin may be related to the metamorphosis of C. medinalis. Exposure to baculovirus induced the phased expression of hemolin gene in the midgut and fat body of C. medinalis, indicated that hemolin involved in the immune recognition of Crambidae insects to baculovirus.
Collapse
Affiliation(s)
- Guangjie Han
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Chuanming Li
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Nan Zhang
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Qin Liu
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Lixin Huang
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Yang Xia
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Jian Xu
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| |
Collapse
|
10
|
Shambhavi HP, Makwana P, Pradeep ANR. LP30K protein manifested in hemocytes of Bombyx mori larva on Nosema bombycis infection and showed functional evolution based on glucose- binding domain. 3 Biotech 2023; 13:264. [PMID: 37408732 PMCID: PMC10317940 DOI: 10.1007/s13205-023-03685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Infection by microsporidian Nosema bombycis induced appearance of exclusive protein conjugate of 190 kDa in hemocytes of silkworm Bombyx mori L (Lepidoptera: Bombycidae). Mass spectrometry of the band showed peptides of low molecular weight 30 kDa lipoprotein (LP30K). Six accessions of LP30K identified from the hemocytes comprised 30 K lipoprotein 1, 30 K protein 1, 2, 6, 7 and 11. Two uncharacterised proteins (UCP) identified from the hemocytes showed 100% similarity with LP30K sequence, altogether showed abundance after the infection. The LP30K accessions H9J4F6 (Q00802), E5EVW2 and the UCP accessions D4QGC0 and D4QGB9 showed presence of glucose binding protein I domain "ADSDVPNDILEEQLYNSIVVADYDSAVEK" that binds with fungal glucans to inhibit infection. However glucose binding protein II domain "TLAPRTDDVLAEQLYMSVVIGEYETAIAK" is absent in LP30K accessions from hemocytes showed loss of DNA sequences encoding the domain. The accessions H9J4F5, H9B440, A7LIK7 and H9B444 showed 92% identity with B. mori LP30K protein (NP_001095198.2) however the glucose binding domain I is absent in these accessions suggesting isoform- specific restricted fungal defense activity. Phylogeny tree of the LP30K homologues showed four groups including microvitellogenin and 30 kDa proteins showing functional diversity endorsed with evolutionary diversity. LP30K accessions with glucose binding domain diverged from that without glucose binding domain exemplify co-evolution for domain- dependent functional roles like storage and immune reactions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03685-x.
Collapse
Affiliation(s)
| | - Pooja Makwana
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka 560035 India
- Biotechnology Division, Central Sericultural Research and Training Institute, Berhampore, West Bengal 742101 India
| | - Appukuttan Nair R. Pradeep
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka 560035 India
- Biotechnology Division, Central Sericultural Research and Training Institute, Berhampore, West Bengal 742101 India
| |
Collapse
|
11
|
Sun J, Zheng X, Ouyang G, Qian H, Chen A. Ebony plays an important role in egg hatching and 30k protein expression of silkworm (Bombyx mori). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22014. [PMID: 37032458 DOI: 10.1002/arch.22014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 06/17/2023]
Abstract
QiufengN is a silkworm strain. During the feeding process of QiufengN, a mutant of black pupal cuticle QiufengNBP was found. Some silkworm pupae of the mutant were unable to easily molt during pupation, and some silkworm eggs produced by developed normally but larvae were unable to break out of the eggshells. These phenomena had not been observed in other black pupa mutants. Genetic analysis showed that the melanization trait of QiufengNBP is controlled by a recessive gene located on the autosome and follows Mendelian inheritance. Results of positional cloning and qRT-PCR showed that the occurrence of black pupae was caused by the mutation of the ebony gene on chromosome 26. 2-DE analysis of the pupal cuticle of QiufengN and QiufengNBP found that the 30K protein, the main storage protein for the growth and development of silkworms and an important energy substance for embryonic development, has changed significantly. In addition, the expression level of Bombyx mori hatching enzyme (BmHEL), which can soften the eggshell during the hatching process of silkworm, was significantly higher in the eggs of black pupae before and after hatching than in normal eggs. The mutation of ebony makes hatching difficult for silkworms, and increases in BmHEL is needed to soften the eggshell. This study showed that ebony may have important effects on the formation of silkworm pigment and egg hatching, and its formation mechanism is complex and deserves further study.
Collapse
Affiliation(s)
- Juan Sun
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Xin Zheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Gui Ouyang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Heying Qian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| |
Collapse
|
12
|
Yu J, Wang H, Chen W, Song H, Wang Y, Liu Z, Xu B. 20-Hydroxyecdysone and Receptor Interplay in the Regulation of Hemolymph Glucose Level in Honeybee ( Apis mellifera) Larvae. Metabolites 2023; 13:metabo13010080. [PMID: 36677005 PMCID: PMC9865031 DOI: 10.3390/metabo13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The hormone 20-hydroxyecdysone (20E) and the ecdysone receptors (ECR and USP) play critical roles in the growth and metabolism of insects, including honeybees. In this study, we investigated the effect of 20E on the growth and development of honeybee larvae by rearing them in vitro and found reduced food consumption and small-sized pupae with increasing levels of 20E. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis of widely targeted metabolomics was used to examine the changes in the metabolites after an exogenous 20E application to honeybee larvae and the underlying mechanisms. A total of 374 different metabolites were detected between the control group and the 20E treatment group, covering 12 subclasses. The most significant changes occurred in 7-day-old larvae, where some monosaccharides, such as D-Glucose and UDP-galactose, were significantly upregulated. In addition, some metabolic pathways, such as glycolysis/gluconeogenesis and galactose metabolism, were affected by the 20E treatment, suggesting that the 20E treatment disrupts the metabolic homeostasis of honeybee larvae hemolymph and that the response of honeybee larvae to the 20E treatment is dynamic and contains many complex pathways. Many genes involved in carbohydrate metabolism, including genes of the glycolysis and glycogen synthesis pathways, were downregulated during molting and pupation after the 20E treatment. In contrast, the expression levels of the genes related to gluconeogenesis and glycogenolysis were significantly increased, which directly or indirectly upregulated glucose levels in the hemolymph, whereas RNA interference with the 20E receptor EcR-USP had an opposite effect to that of the 20E treatment. Taken together, 20E plays a critical role in the changes in carbohydrate metabolism during metamorphosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Xu
- Correspondence: ; Tel.: +86-13805488930
| |
Collapse
|
13
|
Aiello D, Giglio A, Talarico F, Vommaro ML, Tagarelli A, Napoli A. Mass Spectrometry-Based Peptide Profiling of Haemolymph from Pterostichus melas Exposed to Pendimethalin Herbicide. Molecules 2022; 27:molecules27144645. [PMID: 35889523 PMCID: PMC9315633 DOI: 10.3390/molecules27144645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Pendimethalin-based herbicides are used worldwide for pre-emergence selective control of annual grasses and weeds in croplands. The endurance of herbicides residues in the environment has an impact on the soil biodiversity and fertility, also affecting non-target species, including terrestrial invertebrates. Carabid beetles are known as natural pest control agents in the soil food web of agroecosystems, and feed on invertebrates and weed seeds. Here, a mass spectrometry untargeted profiling of haemolymph is used to investigate Pterostichus melas metabolic response after to pendimethalin-based herbicide exposure. Mass spectrometric data are examined with statistical approaches, such as principal component analysis, for possible correlation with biological effects. Those signals with high correlation are submitted to tandem mass spectrometry to identify the associated biomarker. The time course exposure showed many interesting findings, including a significant downregulation of related to immune and defense peptides (M-lycotoxin-Ls4a, Peptide hormone 1, Paralytic peptide 2, and Serine protease inhibitor 2). Overall, the observed peptide deregulations concur with the general mechanism of uptake and elimination of toxicants reported for Arthropods.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (A.T.)
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, Italy; (A.G.); (F.T.); (M.L.V.)
| | - Federica Talarico
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, Italy; (A.G.); (F.T.); (M.L.V.)
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, Italy; (A.G.); (F.T.); (M.L.V.)
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (A.T.)
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (A.T.)
- Correspondence:
| |
Collapse
|
14
|
Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int J Biol Macromol 2022; 209:1760-1770. [PMID: 35490768 DOI: 10.1016/j.ijbiomac.2022.04.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Rearing silkworms (Bombyx mori) using formula feed has revolutionized traditional mulberry feed strategies. However, low silk production efficiencies persist and have caused bottlenecks, hindering the industrial application of formula feed sericulture. Here, we investigated the effects of formula feed amino acid composition on silk yields. We showed that imbalanced amino acids reduced DNA proliferation, decreased Fib-H, Fib-L, and P25 gene expression, and caused mild autophagy in the posterior silk gland, reducing cocoon shell weight and ratio. When compared with mulberry leaves, Gly, Ala, Ser, and Tyr percentages of total amino acids in formula feed were decreased by 5.26%, while Glu and Arg percentages increased by 9.56%. These changes increased uric acid and several amino acids levels in the hemolymph of silkworms on formula feed. Further analyses showed that Gly and Thr (important synthetic Gly sources) increased silk yields, with Gly increasing amino acid conversion efficiencies to silk protein, and reducing urea levels in hemolymph. Also, Gly promoted endomitotic DNA synthesis in silk gland cells via phosphoinositide 3-kinase (PI3K)/Akt/target of rapamycin (TOR) signaling. In this study, we highlighted the important role of Gly in regulating silk yields in silkworms.
Collapse
|
15
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Rhodnius prolixus Hemolymph Immuno-Physiology: Deciphering the Systemic Immune Response Triggered by Trypanosoma cruzi Establishment in the Vector Using Quantitative Proteomics. Cells 2022; 11:1449. [PMID: 35563760 PMCID: PMC9104911 DOI: 10.3390/cells11091449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host-parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
16
|
Javaid A, Hussain M, Aftab K, Malik MF, Umar M, Iqbal T. Isolation and characterization of bacteria associated with silkworm gut under antibiotic-treated larval feeding. BRAZ J BIOL 2021; 84:e249664. [PMID: 34787236 DOI: 10.1590/1519-6984.249664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.
Collapse
Affiliation(s)
- A Javaid
- University of Gujrat, Department of Zoology, Punjab, Pakistan
| | - M Hussain
- University of Gujrat, Department of Zoology, Punjab, Pakistan
| | - K Aftab
- University of Gujrat, Department of Zoology, Punjab, Pakistan
| | - M F Malik
- University of Gujrat, Department of Zoology, Punjab, Pakistan
| | - M Umar
- University of Gujrat, Department of Zoology, Punjab, Pakistan
| | - T Iqbal
- University of Gujrat, Department of Zoology, Punjab, Pakistan
| |
Collapse
|
17
|
Li T, Xu C, Xu J, Luo J, Yu B, Meng X, Li C, Pan G, Zhou Z. Proteomic Identification of Bombyx mori Organelles Using the Engineered Ascorbate Peroxidase APEX and Development of Silkworm Organelle Proteome Database (SilkOrganPDB). Int J Mol Sci 2021; 22:ijms22095051. [PMID: 34068790 PMCID: PMC8126250 DOI: 10.3390/ijms22095051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Silkworm Bombyx mori is an economically important insect and a lepidopteran model. Organelle proteome is vital to understanding gene functions; however, it remains to be identified in silkworm. Here, using the engineered ascorbate peroxidase APEX, we constructed transgenic B. mori embryo cells (BmE) expressing APEX-NLS, COX4-APEX, APEX-Rev, and APEX-KDEL in nucleus, mitochondrial matrix (MM), cytosol, and endoplasmic reticulum (ER), and isolated the biotin-labeled proteins using streptavidin-affinity purification, respectively. The isolated proteins were determined using LC-MS/MS and annotated by searching B. mori genomes downloaded from GenBank, SilkBase, SilkDB 2.0, and SilkDB 3.0, resulting in 842, 495, 311, and 445 organelle proteins identified, respectively. We mapped the 296 MM proteins annotated in the GenBank data to mitochondrial protein databases of the fly, human, and mouse, and found that 140 (47%) proteins are homologous to 80 fly proteins, and 65 (22%) proteins match to 31 and 29 human and mouse proteins, respectively. Protein orthology was predicted in multiple insects using OrthoMCL, producing 460 families containing 839 proteins we identified. Out of 460 families, 363 were highly conserved and found in all insects, leaving only three proteins without orthology in other insects, indicating that the identified proteins are highly conserved and probably play important roles in insects. A gene ontology enrichment analysis by clusterProfiler revealed that the nucleus proteins significantly enriched in cellular component terms of nucleus and nucleolus, the MM proteins markedly enriched in molecular function terms of nucleotide binding, and the cytosol proteins mainly enriched in biological process terms of small molecule metabolism. To facilitate the usage and analysis of our data, we developed an open-access database, Silkworm Organelle Proteome Database (SilkOrganPDB), which provides multiple modules for searching, browsing, downloading, and analyzing these proteins, including BLAST, HMMER, Organelle Proteins, Protein Locations, Sequences, Gene Ontology, Homologs, and Phylogeny. In summary, our work revealed the protein composition of silkworm BmE organelles and provided a database resource helpful for understanding the functions and evolution of these proteins.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: (T.L.); (Z.Z.)
| | - Chen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jinzhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (C.X.); (J.X.); (J.L.); (B.Y.); (X.M.); (C.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
- Correspondence: (T.L.); (Z.Z.)
| |
Collapse
|
18
|
Das D, Roy SS, Mandal P. Investigation of protein profile of nano-silver preserved mulberry leaves and silkworm larvae fed with the same leaves. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01416-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Colgan TJ, Finlay S, Brown MJF, Carolan JC. Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics 2019; 20:959. [PMID: 31823732 PMCID: PMC6902353 DOI: 10.1186/s12864-019-6314-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background Understanding the mechanisms by which organisms adapt to unfavourable conditions is a fundamental question in ecology and evolutionary biology. One such mechanism is diapause, a period of dormancy typically found in nematodes, fish, crustaceans and insects. This state is a key life-history event characterised by arrested development, suppressed metabolism and increased stress tolerance and allows an organism to avoid prolonged periods of harsh and inhospitable environmental conditions. For some species, diapause is preceded by mating which can have a profound effect on female behaviour, physiology and key biological processes, including immunity. However, our understanding of how mating impacts long-term immunity and whether these effects persist throughout diapause is currently limited. To address this, we explored molecular changes in the haemolymph of the ecologically important pollinator, the buff-tailed bumblebee Bombus terrestris. B. terrestris queens mate prior to entering diapause, a non-feeding period of arrested development that can last 6–9 months. Using mass-spectrometry-based proteomics, we quantified changes in the pre-diapause queen haemolymph after mating, as well as the subsequent protein expression of mated queens during and post-diapause. Results Our analysis identified distinct proteome profiles associated with diapause preparation, maintenance and termination. More specifically, mating pre-diapause was followed by an increase in the abundance of antimicrobial peptides, key effectors of the immune system. Furthermore, we identified the elevated abundance of these proteins to be maintained throughout diapause. This finding was in contrast to the general reduction observed in immune proteins during diapause suggestive of selective immune priming and expression during diapause. Diapause also affected the expression of proteins involved in cuticular maintenance, olfaction, as well as proteins of unknown function, which may have roles in diapause regulation. Conclusions Our results provide clear molecular evidence for the consequences and benefits of mating at the immune level as it precedes the selective increased abundance of antimicrobial peptides that are sustained throughout diapause. In addition, our results provide novel insights into the molecular mechanisms by which bumblebees prepare for, survive, and recover from diapause, insights that may have implications for our general understanding of these processes in other insect groups.
Collapse
Affiliation(s)
- Thomas J Colgan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, County Cork, Ireland. .,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Sive Finlay
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
20
|
iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae. Int J Mol Sci 2019; 20:ijms20246113. [PMID: 31817210 PMCID: PMC6940845 DOI: 10.3390/ijms20246113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023] Open
Abstract
The silkworm is an oligophagous insect for which mulberry leaves are the sole diet. The nutrients needed for vital activities of the egg, pupal, and adult stages, and the proteins formed in the cocoon, are all derived from the larval stages. The silkworm feeds and grows quickly during the larval stages. In particular, the amount of leaf ingested and digested quickly increases from the ecdysis to the gluttonous stage in the fifth instar period. In this study, we used the iTRAQ proteomic technique to identify and analyze silkworm larval digestive juice proteins during this period. A total of 227 proteins were successfully identified. These were primarily serine protease activity, esterase activity, binding, and serine protease inhibitors, which were mainly involved in the digestion and overcoming the detrimental effects of mulberry leaves. Moreover, 30 genes of the identified proteins were expressed specifically in the midgut. Temporal proteomic analysis of digestive juice revealed developmental dynamic features related to molecular mechanisms of the principal functions of digesting, resisting pathogens, and overruling the inhibitory effects of mulberry leaves protease inhibitors (PIs) with a dynamic strategy, although overruling the inhibitory effects has not yet been confirmed by previous study. These findings will help address the potential functions of digestive juice in silkworm larvae.
Collapse
|
21
|
Liu H, Lin Y, Gu J, Ruan Y, Shen G, Zhang Y, Wang H, Meng Z, Li K, Xia Q. The increase of amino acids induces the expression of vitellogenin after spinning in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103913. [PMID: 31302015 DOI: 10.1016/j.jinsphys.2019.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Silkworms are economically important insects because of the value of their silk. After finishing silk spinning, silkworms begin another important physiological process, vitellogenesis. In this study, we explored the relationship between silk spinning and vitellogenin (BmVg) expression in silkworms. In silkworms with the silk fibroin heavy chain gene knocked-out, the concentration of amino acids in the hemolymph was found to be significantly higher than that in the wild type, and the expression of BmVg was advanced at day 7 of the fifth instar stage and 0 h after spinning. Furthermore, through culturing fat body in vitro with different substances treatment including glucose, trehalose, amino acids, 20-hydroxyecdysone, and insulin, we found that only amino acids could induce BmVg expression. RNA interference of BmTOR1 in female silkworms could down-regulate BmVg transcription, resulting in shortened egg ducts and smaller eggs relative to the control. Therefore, these results showed that amino acids could induce BmVg expression through the TOR signaling pathway. Fat body cultured with amino acids in vitro and experiments involving amino acids injected into the silkworm showed that the majority of main amino acids of silk protein could induce BmVg expression. These results suggested that BmVg expression is related to silk spinning and this study would lay a foundation for elucidating the stage specificity expression of BmVg.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China
| | - Jianjian Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Yang Ruan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China
| | - Yujing Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Huijuan Wang
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Ziwang Meng
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Kairong Li
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China.
| |
Collapse
|
22
|
Dutta A, Dandapat J, Mohanty N. First report on transferrin in the silkworm, Antheraea mylitta, with a putative role in antioxidant defense: Insights from proteomic analysis and immunodetection. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:23-34. [DOI: 10.1016/j.cbpb.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/13/2023]
|
23
|
Zaghloul Y, Sayed R, Abdallah R. Study the impact of gamma irradiation on the vitellogenin gene in Galleria mellonella females by using the comparative CT method. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y.S. Zaghloul
- Natural Products Department, National Center for Radiation Research and Technology, Cairo, Egypt
| | - R.M. Sayed
- Natural Products Department, National Center for Radiation Research and Technology, Cairo, Egypt
| | - R.S. Abdallah
- Natural Products Department, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
24
|
Abdelli N, Peng L, Keping C. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35048-35054. [PMID: 30374720 DOI: 10.1007/s11356-018-3442-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Silkworms, Bombyx mori, are a promising model animal in health safety and environmental pollution assessment due to their sensitivity to chemical compounds like pesticides, drugs, and heavy metals, in addition to other features like their low cost and body characteristics and their full genome sequencing. In this review, we summarize the silkworm advantages as a model organism in toxicological research. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Nouara Abdelli
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lü Peng
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chen Keping
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
25
|
Kruse A, Ramsey JS, Johnson R, Hall DG, MacCoss MJ, Heck M. Candidatus Liberibacter asiaticus Minimally Alters Expression of Immunity and Metabolism Proteins in Hemolymph of Diaphorina citri, the Insect Vector of Huanglongbing. J Proteome Res 2018; 17:2995-3011. [DOI: 10.1021/acs.jproteome.8b00183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Angela Kruse
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States
- Boyce Thompson
Institute, Ithaca, New York 14853, United States
| | - John S. Ramsey
- Boyce Thompson
Institute, Ithaca, New York 14853, United States
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculature Agricultural Research Service (USDA ARS), Ithaca, New York 14853, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Subtropical Insects and Horticulture Research Unit, USDA Agricultural Research Service, Fort Pierce, Florida 34945, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States
- Boyce Thompson
Institute, Ithaca, New York 14853, United States
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculature Agricultural Research Service (USDA ARS), Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Wang D, Zhang Y, Dong Z, Guo P, Ma S, Guo K, Xia Q, Zhao P. Serine protease P-IIc is responsible for the digestion of yolk proteins at the late stage of silkworm embryogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:42-49. [PMID: 27137459 DOI: 10.1016/j.ibmb.2016.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
In silkworms, yolk proteins comprise vitellin, egg-specific protein and 30K proteins, which are sequentially degraded by endogenous proteases strictly regulated during embryogenesis. Although the process has been extensively investigated, there is still a gap in the knowledge about the degradation of silkworm yolk proteins on the last two days of embryonic development. In the present study, we isolated and purified a gut serine protease P-IIc, which demonstrated optimal activity at 25 °C and pH 11. Semi-quantitative RT-PCR combined with western blotting showed that P-IIc was actively expressed and significantly accumulated in the gut on the last two days of embryogenesis. When natural yolk proteins were incubated with P-IIc in vitro, vitellin and ESP were selectively degraded. P-IIc also demonstrated activity towards 30K proteins as evidenced by rapid and complete digestion of BmLP1 and partial digestion of BmLP2 and BmLP3. Furthermore, RNAi knockdown of P-IIc in silkworm embryos significantly reduced the degradation rate of residual yolk proteins on embryonic day 10. Taken together, our results indicate that P-IIc represents an embryonic gut protease with a relatively broad substrate specificity, which plays an important role in the degradation of yolk proteins at the late stage of silkworm embryogenesis.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
27
|
Singh D, Chetia H, Kabiraj D, Sharma S, Kumar A, Sharma P, Deka M, Bora U. A comprehensive view of the web-resources related to sericulture. Database (Oxford) 2016; 2016:baw086. [PMID: 27307138 PMCID: PMC4909305 DOI: 10.1093/database/baw086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 12/03/2022]
Abstract
Recent progress in the field of sequencing and analysis has led to a tremendous spike in data and the development of data science tools. One of the outcomes of this scientific progress is development of numerous databases which are gaining popularity in all disciplines of biology including sericulture. As economically important organism, silkworms are studied extensively for their numerous applications in the field of textiles, biomaterials, biomimetics, etc. Similarly, host plants, pests, pathogens, etc. are also being probed to understand the seri-resources more efficiently. These studies have led to the generation of numerous seri-related databases which are extremely helpful for the scientific community. In this article, we have reviewed all the available online resources on silkworm and its related organisms, including databases as well as informative websites. We have studied their basic features and impact on research through citation count analysis, finally discussing the role of emerging sequencing and analysis technologies in the field of seri-data science. As an outcome of this review, a web portal named SeriPort, has been created which will act as an index for the various sericulture-related databases and web resources available in cyberspace.Database URL: http://www.seriport.in/.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hasnahana Chetia
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debajyoti Kabiraj
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swagata Sharma
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anil Kumar
- Centre for Biological Sciences (Bioinformatics), Central University of South Bihar (CUSB), Patna 800014, India
| | - Pragya Sharma
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Manab Deka
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Mugagen Laboratories Pvt. Ltd, Technology Incubation Centre, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
28
|
Li J, Qin S, Yu H, Zhang J, Liu N, Yu Y, Hou C, Li M. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains. PLoS One 2016; 11:e0155329. [PMID: 27159277 PMCID: PMC4861282 DOI: 10.1371/journal.pone.0155329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS) and Lan10 (L10) are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR) were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes). Nine enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield.
Collapse
Affiliation(s)
- Juan Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Sheng Qin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang Jiangsu 212018, China
| | - Huanjun Yu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Jing Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Na Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Ye Yu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang Jiangsu 212018, China
| | - Muwang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang Jiangsu 212018, China
- * E-mail:
| |
Collapse
|
29
|
Changes in 30K protein synthesis during delayed degeneration of the silk gland by a caspase-dependent pathway in a Bombyx (silkworm) mutant. J Comp Physiol B 2016; 186:689-700. [DOI: 10.1007/s00360-016-0990-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/19/2022]
|
30
|
Hou Y, Zhang Y, Gong J, Tian S, Li J, Dong Z, Guo C, Peng L, Zhao P, Xia Q. Comparative proteomics analysis of silkworm hemolymph during the stages of metamorphosis via liquid chromatography and mass spectrometry. Proteomics 2016; 16:1421-31. [DOI: 10.1002/pmic.201500427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 03/03/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Jing Gong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Sha Tian
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Jianwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Chao Guo
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Li Peng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology; Southwest University; Beibei, Chongqing P. R. China
| |
Collapse
|
31
|
Xu J, Zhang P, Kusakabe T, Mon H, Li Z, Zhu L, Iiyama K, Banno Y, Morokuma D, Lee JM. Comparative proteomic analysis of hemolymph proteins from Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-sensitive or -resistant silkworm strains during infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:36-47. [DOI: 10.1016/j.cbd.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023]
|
32
|
Nie Z, Zhu H, Zhou Y, Wu C, Liu Y, Sheng Q, Lv Z, Zhang W, Yu W, Jiang C, Xie L, Zhang Y, Yao J. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori. Proteomics 2015; 15:3253-66. [DOI: 10.1002/pmic.201500001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zuoming Nie
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
- College of Materials and Textile; Zhejiang Sci-Tech University; Hangzhou P. R. China
| | - Honglin Zhu
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Yong Zhou
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Chengcheng Wu
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Yue Liu
- Zhejiang Economic and Trade Polytechnic; Hangzhou P. R. China
| | - Qing Sheng
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Zhengbing Lv
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Wenping Zhang
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Wei Yu
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Caiying Jiang
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | | | - Yaozhou Zhang
- College of Life Sciences; Zhejiang Sci-Tech University; Hanghzou P. R. China
| | - Juming Yao
- College of Materials and Textile; Zhejiang Sci-Tech University; Hangzhou P. R. China
| |
Collapse
|
33
|
Shi XF, Li YN, Yi YZ, Xiao XG, Zhang ZF. Identification and Characterization of 30 K Protein Genes Found in Bombyx mori (Lepidoptera: Bombycidae) Transcriptome. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev057. [PMID: 26078299 PMCID: PMC4535582 DOI: 10.1093/jisesa/iev057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
The 30 K proteins, the major group of hemolymph proteins in the silkworm, Bombyx mori (Lepidoptera: Bombycidae), are structurally related with molecular masses of ∼30 kDa and are involved in various physiological processes, e.g., energy storage, embryonic development, and immune responses. For this report, known 30 K protein gene sequences were used as Blastn queries against sequences in the B. mori transcriptome (SilkTransDB). Twenty-nine cDNAs (Bm30K-1-29) were retrieved, including four being previously unidentified in the Lipoprotein_11 family. The genomic structures of the 29 genes were analyzed and they were mapped to their corresponding chromosomes. Furthermore, phylogenetic analysis revealed that the 29 genes encode three types of 30 K proteins. The members increased in each type is mainly a result of gene duplication with the appearance of each type preceding the differentiation of each species included in the tree. Real-Time Quantitative Polymerase Chain Reaction (Q-PCR) confirmed that the genes could be expressed, and that the three types have different temporal expression patterns. Proteins from the hemolymph was separated by SDS-PAGE, and those with molecular mass of ∼30 kDa were isolated and identified by mass spectrometry sequencing in combination with searches of various databases containing B. mori 30K protein sequences. Of the 34 proteins identified, 13 are members of the 30 K protein family, with one that had not been found in the SilkTransDB, although it had been found in the B. mori genome. Taken together, our results indicate that the 30 K protein family contains many members with various functions. Other methods will be required to find more members of the family.
Collapse
Affiliation(s)
- Xiao-Feng Shi
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street Beijing, 100081, China The College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Yi-Nü Li
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street Beijing, 100081, China
| | - Yong-Zhu Yi
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, 212018, China
| | - Xing-Guo Xiao
- The College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Zhi-Fang Zhang
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street Beijing, 100081, China
| |
Collapse
|
34
|
Zhou L, Li H, Hao F, Li N, Liu X, Wang G, Wang Y, Tang H. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx mori L.). J Proteome Res 2015; 14:2331-47. [PMID: 25825269 DOI: 10.1021/acs.jproteome.5b00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using (1)H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development.
Collapse
Affiliation(s)
- Lihong Zhou
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Huihui Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ning Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Liu
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Wang
- ¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yulan Wang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,⊥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Chen J, Shu T, Lv Z, Nie Z, Chen J, Chen H, Yu W, Gai Q, Zhang Y. Purification and functional characterization of a protein: Bombyx mori human growth hormone like protein in silkworm pupa. PLoS One 2014; 9:e114351. [PMID: 25469649 PMCID: PMC4254979 DOI: 10.1371/journal.pone.0114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/09/2014] [Indexed: 11/30/2022] Open
Abstract
Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people’s interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.
Collapse
Affiliation(s)
- Jianqing Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tejun Shu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuoming Nie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hao Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Yu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qijing Gai
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yaozhou Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Pharmacy, Tianjin University, Tianjin 300073, China
- * E-mail:
| |
Collapse
|
36
|
Yang P, Chen XM. Protein profiles of Chinese white wax scale, Ericerus pela, at the male pupal stage by high-throughput proteomics. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:214-233. [PMID: 25186183 DOI: 10.1002/arch.21191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Chinese white wax scale insect (Ericerus pela) is sexually dimorphic with holometabolous males and hemimetabolous females. Holometabolous insects were assumed to originate from hemimetabolous ancestors. Therefore, the male pupal stage is a major innovation compared with hemimetabolous female insects. Here, the protein profiles of the male pupae were obtained by high-throughput proteomics and analyzed using bioinformatics methods. A total of 1,437 peptides were identified and assigned to 677 protein groups. Most of the proteins had molecular weights below 40 kDa and isoelectric points from 4 to 7. Gene Ontology terms were assigned to 331 proteins, including metabolic process, developmental process, and cellular process. Kyoto Encyclopedia of Genes and Genomes annotations identified 142 pathways and most proteins were assigned to metabolism events. Pathways involved in cell growth and death, signal transduction, folding, and sorting and degradation were also identified. Six proteins that had undergone positive selection were classified into four groups, protein biosynthesis, protein degeneration, signal transduction, and detoxification. Many of the high-abundance proteins were enzymes involved in carbohydrate, lipid, and amino acid metabolism; signal transduction; degradation; and immunization, which indicated that metabolism, disruption, and development occurred intensely at the pupal stage. These processes are closely related to the physiological status of pupae. The results also suggested that these related proteins may be fundamental factors in the formation of pupae. This study describes pupal characterization at the molecular level and provides a basis for further physiological studies.
Collapse
Affiliation(s)
- Pu Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | | |
Collapse
|
37
|
Pietrzyk AJ, Bujacz A, Łochynska M, Jaskolski M, Bujacz G. Crystal structure of Bombyx mori lipoprotein 6: comparative structural analysis of the 30-kDa lipoprotein family. PLoS One 2014; 9:e108761. [PMID: 25379889 PMCID: PMC4224370 DOI: 10.1371/journal.pone.0108761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/04/2014] [Indexed: 01/22/2023] Open
Abstract
The 30-kDa lipoprotein (LP) family of mulberry silkworm comprises major hemolymph proteins specific to the fifth instar larvae. The family consists of 46 members, 24 of which are referred to as typical 30-kDa LPs. To date, two crystal structures of 30-kDa LPs from Bombyx mori have been described (Bmlp3 and Bmlp7). Here, we present the crystal structure of Bmlp6, another 30-kDa LP member. Bmlp6 is comprised of two domains characteristic of this family, the VHS-type N-terminal domain and β-trefoil C-terminal domain. The structures of the three 30-kDa LPs have been compared and a number of differences are noted, including loop conformation, the surface electrostatic potential, and the potential binding cavities. We discuss the observed structural differences in the light of the potential different roles of the particular 30-kDa LP members in silkworm physiology.
Collapse
Affiliation(s)
- Agnieszka J. Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
| | | | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Grzegorz Bujacz
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
38
|
Hou Y, Li J, Li Y, Dong Z, Xia Q, Yuan YA. Crystal structure of Bombyx mori arylphorins reveals a 3:3 heterohexamer with multiple papain cleavage sites. Protein Sci 2014; 23:735-46. [PMID: 24639361 PMCID: PMC4093950 DOI: 10.1002/pro.2457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China,Department of Biological Sciences and Center for Bioimaging Sciences, National University of SingaporeSingapore, 117543, Singapore,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Jianwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Y Adam Yuan
- Department of Biological Sciences and Center for Bioimaging Sciences, National University of SingaporeSingapore, 117543, Singapore,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China,National University of Singapore (Suzhou) Research InstituteJiangsu, 215123, China,*Correspondence to: Y. Adam Yuan, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore. E-mail:
| |
Collapse
|
39
|
Zhong XW, Wang XH, Tan X, Xia QY, Xiang ZH, Zhao P. Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. Int J Mol Sci 2014; 15:1946-61. [PMID: 24473143 PMCID: PMC3958831 DOI: 10.3390/ijms15021946] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 11/16/2022] Open
Abstract
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. PM proteins are important determinants for PM structure and formation. In this study, the silkworm Bombyx mori midgut PM protein BmCDA7 was identified by proteomic tools. The full-length BmCDA7 cDNA is 1357 bp; the deduced protein is composed of 379 amino acid residues and includes a 16 amino acid residue signal peptide, a putative polysaccharide deacetylase-like domain and 15 cysteine residues present in three clusters. The heterologously expressed proteins of the BmCDA7 gene in yeast displayed chitin deacetylase activity. Expression of B. mori BmCDA7 was detected in the midgut at both the transcriptional and translational levels. The BmCDA7 gene was expressed by the newly hatched silkworm larvae until day seven of the fifth instar and was expressed at a high level in the newly exuviated larvae of different instars. The functions and regulatory mechanism of BmCDA7, however, need further investigation.
Collapse
Affiliation(s)
- Xiao-Wu Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Xiao-Huan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Xiang Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Zhong-Huai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
40
|
Zhang Y, Dong Z, Wang D, Wu Y, Song Q, Gu P, Zhao P, Xia Q. Proteomics of larval hemolymph in Bombyx mori reveals various nutrient-storage and immunity-related proteins. Amino Acids 2014; 46:1021-31. [DOI: 10.1007/s00726-014-1665-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022]
|
41
|
Pietrzyk AJ, Bujacz A, Mueller-Dieckmann J, Łochynska M, Jaskolski M, Bujacz G. Crystallographic identification of an unexpected protein complex in silkworm haemolymph. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2353-64. [PMID: 24311577 DOI: 10.1107/s0907444913021823] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022]
Abstract
The first crystal structure of a complex formed by two storage proteins, SP2 and SP3, isolated from their natural source, mulberry silkworm (Bombyx mori L.) haemolymph, has been determined. The structure was solved by molecular replacement using arylphorin, a protein rich in aromatic amino-acid residues, from oak silkworm as the initial model. The quality of the electron-density maps obtained from the X-ray diffraction experiment allowed the authors to detect that the investigated crystal structure was composed of two different arylphorins: SP2 and SP3. This discovery was confirmed by N-terminal sequencing. SP2 has been extensively studied previously, whereas only a few reports on SP3 are available. However, to date no structural studies have been reported for these proteins. These studies revealed that SP2 and SP3 exist in the silkworm body as a heterohexamer formed by one SP2 trimer and one SP3 trimer. The overall fold, consisting of three haemocyanin-like subdomains, of SP2 and SP3 is similar. Both proteins contain a conserved N-glycosylation motif in their structures.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Xia Q, Li S, Feng Q. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. ANNUAL REVIEW OF ENTOMOLOGY 2013; 59:513-536. [PMID: 24160415 DOI: 10.1146/annurev-ento-011613-161940] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Significant progress has been achieved in silkworm (Bombyx mori) research since the last review on this insect was published in this journal in 2005. In this article, we review the new and exciting progress and discoveries that have been made in B. mori during the past 10 years, which include the construction of a fine genome sequence and a genetic variation map, the evolution of genomes, the advent of functional genomics, the genetic basis of silk production, metamorphic development, immune response, and the advances in genetic manipulation. These advances, which were accelerated by the genome sequencing project, have promoted B. mori as a model organism not only for lepidopterans but also for general biology.
Collapse
Affiliation(s)
- Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China;
| | | | | |
Collapse
|
43
|
Zhong XW, Zou Y, Liu SP, Yi QY, Hu CM, Wang C, Xia QY, Zhao P. Proteomic-based insight into Malpighian tubules of silkworm Bombyx mori. PLoS One 2013; 8:e75731. [PMID: 24098719 PMCID: PMC3787086 DOI: 10.1371/journal.pone.0075731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/15/2013] [Indexed: 11/18/2022] Open
Abstract
Malpighian tubules (MTs) are highly specific organs of arthropods (Insecta, Myriapoda and Arachnida) for excretion and osmoregulation. In order to highlight the important genes and pathways involved in multi-functions of MTs, we performed a systematic proteomic analysis of silkworm MTs in the present work. Totally, 1,367 proteins were identified by one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry, and as well as by Trans Proteomic Pipeline (TPP) and Absolute protein expression (APEX) analyses. Forty-one proteins were further identified by two-dimensional gel electrophoresis. Some proteins were revealed to be significantly associated with various metabolic processes, organic solute transport, detoxification and innate immunity. Our results might lay a good foundation for future functional studies of MTs in silkworm and other lepidoptera.
Collapse
Affiliation(s)
- Xiao-wu Zhong
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Yong Zou
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Shi-ping Liu
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Qi-ying Yi
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Cui-mei Hu
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Chen Wang
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Qing-you Xia
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
- * E-mail:
| |
Collapse
|
44
|
Woltedji D, Fang Y, Han B, Feng M, Li R, Lu X, Li J. Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (Apis mellifera ligustica). J Proteome Res 2013; 12:5189-98. [DOI: 10.1021/pr400519d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dereje Woltedji
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Rongli Li
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xiaoshan Lu
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
45
|
Chen P, Li L, Wang J, Li H, Li Y, Lv Y, Lu C. BmPAH catalyzes the initial melanin biosynthetic step in Bombyx mori. PLoS One 2013; 8:e71984. [PMID: 23991017 PMCID: PMC3753331 DOI: 10.1371/journal.pone.0071984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/06/2013] [Indexed: 11/19/2022] Open
Abstract
Pigmentation during insect development is a primal adaptive requirement. In the silkworm, melanin is the primary component of larval pigments. The rate limiting substrate in melanin synthesis is tyrosine, which is converted from phenylalanine by the rate-limiting enzyme phenylalanine hydroxylase (PAH). While the role of tyrosine, derived from phenylalanine, in the synthesis of fiber proteins has long been known, the role of PAH in melanin synthesis is still unknown in silkworm. To define the importance of PAH, we cloned the cDNA sequence of BmPAH and expressed its complete coding sequence using the Bac-to-Bac baculovirus expression system. Purified recombinant protein had high PAH activity, some tryptophan hydroxylase activity, but no tyrosine hydroxylase activity, which are typical properties of PAH in invertebrates. Because melanin synthesis is most robust during the embryonic stage and larval integument recoloring stage, we injected BmPAH dsRNA into silkworm eggs and observed that decreasing BmPAH mRNA reduced neonatal larval tyrosine and caused insect coloration to fail. In vitro cultures and injection of 4th instar larval integuments with PAH inhibitor revealed that PAH activity was essential for larval marking coloration. These data show that BmPAH is necessary for melanin synthesis and we propose that conversion of phenylalanine to tyrosine by PAH is the first step in the melanin biosynthetic pathway in the silkworm.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Silkworm Genome Biology and College of Biotechnology, Southwest University, Chongqing, China ; College of Biotechnology, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
The hemolymph proteome of fed and starved Drosophila larvae. PLoS One 2013; 8:e67208. [PMID: 23840627 PMCID: PMC3688620 DOI: 10.1371/journal.pone.0067208] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/17/2013] [Indexed: 01/31/2023] Open
Abstract
The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.
Collapse
|
47
|
Zhang Y, Zhao P, Liu H, Dong Z, Yang Q, Wang D, Xia Q. The synthesis, transportation and degradation of BmLP3 and BmLP7, two highly homologous Bombyx mori 30K proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:827-834. [PMID: 23213653 DOI: 10.1016/j.ibmb.2012.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 30K proteins comprise about 35% of the total embryo yolk proteins and function as storage proteins during embryonic development of the domesticated silkworm Bombyx mori. The most abundant components of hemolymph are 30K proteins in the early and middle pupal stages. In the present study, the 30K protein BmLP7 was purified from larval hemolymph by chromatography. We prepared the antibody of this protein and found that it could bind to both BmLP3 and BmLP7. We used western blotting to analyze the dynamic change of BmLP3 and BmLP7 proteins in the hemolymph during development and found their concentration decreased dramatically from day 4 pupae, which appears to be linked to their accumulation in the oocyte for forming yolk granule since then. We found BmLP3 and BmLP7 proteins reduced significantly in day 10 eggs (the day before hatching). The crude extract of the newly hatched larvae showed proteolytic activity against BmLP3 and BmLP7 and immunohistochemistry showed BmLP3 and BmLP7 were degraded in the embryonic gut lumen in day 10 eggs. These systematic studies of BmLP3 and BmLP7 reveal their synthesis, transportation and degradation, which could represent the experience of all 30K proteins.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Celorio-Mancera MDLP, Sundmalm SM, Vogel H, Rutishauser D, Ytterberg AJ, Zubarev RA, Janz N. Chemosensory proteins, major salivary factors in caterpillar mandibular glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:796-805. [PMID: 22885177 DOI: 10.1016/j.ibmb.2012.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Research in the field of insect-host plant interactions has indicated that constituents of insect saliva play an important role in digestion and affect host chemical defense responses. However, most efforts have focused on studying the composition and function of regurgitant or saliva produced in the labial glands. Acknowledging the need for understanding the role of the mandibular glands in herbivory, we sought to make a qualitative and semi-quantitative comparison of soluble luminal protein fractions between mandibular and labial glands of Vanessa gonerilla butterfly larvae. Amylase and lysozyme were inspected as possible major enzymatic activities in the mandibular glands aiding in pre-digestion and antimicrobial defense. Although detected, neither of these enzymatic activities was prominent in the luminal protein preparation of a particular type of gland. Proteins isolated from the glands were identified by mass spectrometry and by searching an EST-library database generated for four other nymphalid butterfly species, in addition to the public NCBI database. The identified proteins were also quantified from the data using "Quanty", an in-house program. The proteomic analysis detected chemosensory proteins as the most abundant luminal proteins in the mandibular glands. In comparison to these proteins, the relative amounts of amylase and lysozyme were much lower in both gland types. Therefore, we speculate that the primary role of the mandibular glands in Lepidopteran larvae is chemoreception which may include the detection of microorganisms on plant surfaces, host plant recognition and communication with conspecifics.
Collapse
|
49
|
Bezdi MS, Toorchi M, Pourabad RF, Zarghami N, Nouri MZ, Komatsu S. Proteome analysis of gut and salivary gland proteins of fifth-instar nymph and adults of the sunn pest, Eurygaster integriceps. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:105-119. [PMID: 22951809 DOI: 10.1002/arch.21047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the digestive system of the sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), the salivary gland has a key role in extra oral digestion and the gut is the main site for digestion of food. In this study, proteomics was used to study the role of proteins involved in digestion. The amount of feeding on wheat grain by adult insects increased by comparison to fifth-instar nymphs. Proteins of the gut and salivary gland in adults and fifth-instar nymphs were analyzed 1 day after feeding. The proteins related to digestion, metabolism, and defense against toxins were accumulated in the gut of adult insects. Three plant proteins including serpin, dehydroascorbate reductase, and β-amylase were accumulated in guts of adults. In the salivary gland, phospholipase A2 and arginine kinase were increased in adults. Heat shock protein 70 increased in the gut of fifth-instar nymphs. Proteomic analysis revealed that most of changed proteins in digestive system of sunn pest were increased in adults. This study provided more targets derived from gut and salivary gland for pest management.
Collapse
|
50
|
Pérez-Hedo M, Sánchez-López I, Eizaguirre M. Comparative analysis of hemolymph proteome maps in diapausing and non-diapausing larvae of Sesamia nonagrioides. Proteome Sci 2012; 10:58. [PMID: 23021110 PMCID: PMC3542258 DOI: 10.1186/1477-5956-10-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/24/2012] [Indexed: 01/31/2023] Open
Abstract
Background Sesamia nonagrioides is a noctuid that feeds on maize, sugar cane and sorghum in North Africa and Southern Europe. Larvae reared under long day conditions pupate after 5 or 6 larval instars, whereas larvae reared under short day conditions enter diapause and undergo up to 12 molts before dying or pupating. To better understand the mechanism of larval development and diapause, we identified proteins with different expressions in the sixth instar of diapausing and non-diapausing larvae. Results A total of 52 differentially regulated proteins were detected in the hemolymph of the diapausing or non-diapausing larvae at the beginning or end of the sixth instar. From these proteins, 11 were identified by mass spectrometry (MALDI-TOF MS or MALDI-TOF/TOF MS/MS): 5 were upregulated in the hemolymph of non-diapausing larvae and 6 in the hemolymph of the diapausing larvae. Interestingly, some proteins were expressed only in non-diapausing larvae but none was expressed only in the hemolymph of diapausing larvae. The possible functions of some of these proteins related to diapause maintenance or to larval-pupal metamorphosis are discussed. Conclusions The 2-DE proteomic map of S. nonagrioides hemolymph shows differential protein expression in diapausing and non-diapausing larvae. Some proteins that showed higher expression in the diapausing larvae at the end of the sixth instar could be involved in JH level maintenance thus in the diapause status maintenance. On the contrary, other proteins that showed the highest expression or that were expressed only in the non-diapausing larvae could be involved in larval-pupal metamorphosis.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO Center, Rovira Roure 191, Lleida, 25198, Spain.
| | | | | |
Collapse
|