1
|
Lintao RCV, Richardson LS, Kammala AK, Chapa J, Yunque-Yap DA, Khanipov K, Golovko G, Dalmacio LMM, Menon R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun Biol 2024; 7:1041. [PMID: 39179795 PMCID: PMC11344061 DOI: 10.1038/s42003-024-06740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Chorion trophoblasts (CTCs) and immune cell-enriched decidua (DECs) comprise the maternal-fetal membrane interface called the chorio-decidual interface (CDi) which constantly gets exposed to maternal stressors without leading to labor activation. This study explored how CTCs act as a barrier at CDi. The roles of human leukocyte antigen (HLA)-G and progesterone receptor membrane component 2 (PGRMC2) in mediating immune homeostasis were also investigated. The CDi was recreated in a two-chamber microfluidic device (CDi-on-chip) with an outer chamber of primary DECs and immune cell line-derived innate immune cells and an inner chamber of wild-type or PGRMC2 or HLA-G knockout immortalized CTCs. To mimic maternal insults, DECs were treated with lipopolysaccharide, poly(I:C), or oxidative stress inducer cigarette smoke extract. Expression levels of inflammation and immunity genes via targeted RNA sequencing, production of soluble mediators, and immune cell migration into CTCs were determined. In CDi-on-chip, decidua and immune cells became inflammatory in response to insults while CTCs were refractory, highlighting their barrier function. HLA-G and PGRMC2 are found to be vital to immune homeostasis at the CDi, with PGRMC2 serving as an upstream regulator of inflammation, HLA-G expression, and mesenchymal-epithelial transition, and HLA-G serving as a frontline immunomodulatory molecule, thus preventing fetal membrane compromise.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Dianne Aster Yunque-Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
2
|
Vidal MS, Radnaa E, Vora N, Khanipov K, Antich C, Ferrer M, Urrabaz-Garza R, Jacob JE, Menon R. Establishment and comparison of human term placenta-derived trophoblast cells†. Biol Reprod 2024; 110:950-970. [PMID: 38330185 PMCID: PMC11484515 DOI: 10.1093/biolre/ioae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jeena E Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
3
|
Park HR, Hogan KA, Harris SM, Chames MC, Loch-Caruso R. Group B streptococcus induces cellular senescence in human amnion epithelial cells through a partial interleukin-1-mediated mechanism. Biol Reprod 2024; 110:329-338. [PMID: 37903065 PMCID: PMC10873272 DOI: 10.1093/biolre/ioad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased β-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced β-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1β confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Kelly A Hogan
- Department of Biochemistry & Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zhang X, Sun L. Inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration: A promising target for the treatment of preeclampsia. Chem Biol Interact 2023; 386:110752. [PMID: 37806381 DOI: 10.1016/j.cbi.2023.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Preeclampsia (PE) is a complex disease of pregnancy, and an important cause of this disease is insufficient trophoblast invasion and migration. However, the underlying mechanism of PE remains largely unknown. Here, transcriptome sequencing analysis found the high expression of hepatocyte nuclear factor 4 alpha (HNF4A) in PE placentas. Meanwhile, we found that HNF4A expression was up-regulated in the placentas of PE patients. Thus, we assumed that HNF4A might be involved in PE progression. To validate our hypothesis, l-arginine methyl ester (l-NAME) or lipopolysaccharide (LPS)-treated rats were used to mimic the pathological status of PE in vivo. Consistently, HTR8/SVneo cells were treated with hypoxia/reoxygenation (H/R) or LPS to simulate PE progression in vitro. The results observed an increase in elevated urine protein levels, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which indicated that the PE-like rat model was successfully established. Meanwhile, the expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-1β was increased in PE placentas. HTR8/SVneo cells were used to further explore the underlying mechanism of PE in vitro. H/R conditions up-regulated the acetylation level of HNF4A. Further analysis showed that HNF4A overexpression inhibited trophoblast invasion and migration, while HNF4A knockdown promoted the progression. Additionally, inhibiting HNF4A was found to reduce the levels of IL-6 and IL-1β secretion in HTR8/SVneo cells following H/R or LPS exposure. Conclusively, these findings suggest that inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration in PE, providing a promising target for the treatment of PE.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
5
|
Menon R, Muglia LJ, Levin LH. Review on new approach methods to gain insight into the feto-maternal interface physiology. Front Med (Lausanne) 2023; 10:1304002. [PMID: 38098843 PMCID: PMC10720461 DOI: 10.3389/fmed.2023.1304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and - with continued scientific effort - may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, United States
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
6
|
Palacios-Luna JE, López-Marrufo MV, Bautista-Bautista G, Velarde-Guerra CS, Villeda-Gabriel G, Flores-Herrera O, Osorio-Caballero M, Aguilar-Carrasco JC, Palafox-Vargas ML, García-López G, Díaz-Ruíz O, Arechavaleta-Velasco F, Flores-Herrera H. Progesterone modulates extracellular heat-shock proteins and interlukin-1β in human choriodecidual after Escherichia coli infection. Placenta 2023; 142:85-94. [PMID: 37659254 DOI: 10.1016/j.placenta.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Chorioamnionitis is an adverse condition in human pregnancy caused by many bacterial pathogens including Escherichia coli (E. coli); which has been associated with higher risk of preterm birth. We recently reported that human maternal decidua (MDec) tissue responds to E. coli infection by secreting extracellular heat-shock proteins (eHsp)-60, -70 and interlukin-1β (IL-1β). Previous studies have shown that progesterone (P4) regulates the immune response, but it is unknown whether P4 inhibits the secretion of eHsp. The aim of this investigation was to determine the role of P4 on the secretion of eHsp-27, -60, -70 and IL-1β in MDec after 3, 6, and 24 h of E. coli infection. METHODS Nine human feto-maternal interface (HFMi) tissues were included and mounted in the Transwell culture system. Only the maternal decidua (MDec) was stimulated for 3, 6 and 24 h with E. coli alone or in combination with progesterone and RU486. After each treatment, the HFMi tissue was recovered to determine histological changes and the culture medium recovered to evaluate the levels of eHsp-27, -60, -70 and IL-1β by ELISA and mRNA expression by RT-PCR. RESULTS No structural changes were observed in the HFMi tissue treated with P4 and RU486. However, stimulation with E. coli produces diffuse inflammation and ischemic necrosis. E. coli induced infection decreases, in time- and dose-dependent manner, eHsp-27 and increases eHsp-60, eHsp-70 and IL-1β levels. In contrast, incubation of HFMi tissue with E. coli + P4 reversed eHsp and IL-1β secretion levels relative to E. coli stimulation group but not relative to the control group. The same profile was observed on the expression of eHsp-27 and eHsp-60. DISCUSSION we found that progesterone modulates the anti-inflammatory (eHsp-27) and pro-inflammatory (eHsp-60 and eHsp-70) levels of eHsp induced by E. coli infection in human choriodecidual tissue. eHsp-60 and eHsp-70 levels were not completely reversed; maintaining the secretion of IL-1β, which has been associated with adverse events during pregnancy.
Collapse
Affiliation(s)
- Janelly Estefania Palacios-Luna
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Mariana Victoria López-Marrufo
- Departamento de Ginecología y Obstetricia. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Cinthia Selene Velarde-Guerra
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e Infectología, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Jose Carlos Aguilar-Carrasco
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabián Arechavaleta-Velasco
- Unidad de Investigación en Medicina Reproductiva. Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala" Instituto Mexicano Del Seguro Social, Ciudad de México. Mexico.
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico.
| |
Collapse
|
7
|
Kammala AK, Mosebarger A, Radnaa E, Rowlinson E, Vora N, Fortunato SJ, Sharma S, Safarzadeh M, Menon R. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023; 14:1196453. [PMID: 37600782 PMCID: PMC10437065 DOI: 10.3389/fimmu.2023.1196453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Emma Rowlinson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephen J. Fortunato
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
8
|
Wang Y, Liu S, Cui H, Chang Y. Downregulation of TCL6 protected human trophoblast cells from LPS-induced inflammation and ferroptosis. Funct Integr Genomics 2023; 23:226. [PMID: 37420113 DOI: 10.1007/s10142-023-01148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Dysregulation of noncoding RNAs has been reported to have a close correlation with preeclampsia(PE)development. TCL6 was upregulated in patients with PE. In this study, we examined the impacts of TCL6 on modulating HTR-8/SVneo cells induced by LPS. LPS (100 and 200 ng/ml) was applied to induce inflammation in trophoblast cells HTR-8/SVneo. Cell viability, apoptosis, and transwell experiments were conducted. The ELISA methods were used for pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. MDA, GSH, and GPX kits were employed. Transfection was performed for expression regulation of TCL6, miR-485-5p, and TFRC in cells. Bioinformatic online tools were used to predict the targeting sites. Luciferase and RNA immunoprecipitation-qPCR were done to verify the interactions of TCL6, miR-485-5p, and TFRC. RNA expression levels were measured using RT-qPCR, and protein expression of TFRC and GPX4 was detected using a western blot. The free Fe (II) contents were measured. LPS decreased viability, invasion, and migration but enhanced apoptosis, ferroptosis, and inflammation. TCL6 expression was enhanced by LPS induction. The knockdown of TCL6 increased HTR-8/SVneo cell viability and invasion but inhibited cell apoptosis, inflammation, and ferroptosis while inhibition of miR-485-5p could reverse this through TFRC regulation. Moreover, miR-485-5p was sponged by TCL6 and bound to TFRC. TCL6 protected trophoblast cells from LPS-induced injury through the TFRC pathway.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Shasha Liu
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Hongyan Cui
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China.
| | - Ying Chang
- Tianjin Central Obstetrics and Gynecology Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China.
| |
Collapse
|
9
|
LPS-induced PTGS2 manipulates the inflammatory response through trophoblast invasion in preeclampsia via NF-κB pathway. Reprod Biol 2022; 22:100696. [DOI: 10.1016/j.repbio.2022.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
|
10
|
Zeng M, Xu M, Li X, Li J, Liu Y. PAD4 silencing inhibits inflammation whilst promoting trophoblast cell invasion and migration by inactivating the NEMO/NF‑κB pathway. Exp Ther Med 2022; 24:568. [PMID: 35978928 PMCID: PMC9366263 DOI: 10.3892/etm.2022.11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Preeclampsia (PE), presenting with onset hypertension and proteinuria, is a pregnancy-specific disorder that can result in maternal and fetal morbidity and mortality. Insufficient trophoblast invasion and migration has been considered to be an important cause of this disease. The present study aimed to investigate the role of peptidyl arginine deiminase 4 (PAD4), whose knockdown has been previously indicated to reduce inflammation and susceptibility to pregnancy loss in mice, in the development of PE in vitro. Lipopolysaccharide (LPS) was used to treat a human trophoblast cell line (HTR8/SVneo). After PAD4 silencing via transfection with short hairpin RNA against PAD4, the concentrations of inflammatory factors IL-6, IL-12 and monocyte chemoattractant protein (MCP)-1 were measured using ELISA. Cell viability was also measured using Cell Counting Kit-8 assay. HTR8/SVneo cell invasion and migration were detected using Transwell and wound healing assays, respectively. Western blotting was used to measure the expression of citrullinated NF-κB essential modulator (NEMO) and nuclear NF-κB p65 protein levels. TNF-α was applied for evaluating the potential regulatory effects of PAD4 on NF-κB in LPS-stimulated HTR8/SVneo cells. LPS increased the levels of IL-6, IL-12 and MCP-1 and reduced the migration and invasion of HTR8/SVneo cells. PAD4-knockdown was found to markedly reduce the levels of IL-6, IL-12 and MCP-1 secretion. HTR8/SVneo cell invasion and migration was also significantly elevated after PAD4 silencing following LPS exposure. In addition, LPS stimulation notably upregulated the protein levels of citrullinated NEMO and nuclear NF-κB p65, which was restored by PAD4 knockdown. Furthermore, TNF-α treatment partially counteracted the effects of PAD4 knockdown on the secretion of IL-6, MCP-1 and IL-12, which are markers of inflammation, and invasion and migration in LPS-induced HTR8/SVneo cells. To conclude, these results suggest that PAD4 silencing can suppress inflammation whilst promoting invasion and migration by trophoblast cells through inhibiting the NEMO/NF-κB pathway. These findings furthered the understanding in the complex molecular mechanism that can trigger PE and provide a promising target for the treatment of this disease.
Collapse
Affiliation(s)
- Min Zeng
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Minjuan Xu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Xiafang Li
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Junying Li
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Yuanyuan Liu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| |
Collapse
|
11
|
Wang X, Zhang J, Ji J. IL‑1β‑induced pentraxin 3 inhibits the proliferation, invasion and cell cycle of trophoblasts in preeclampsia and is suppressed by IL‑1β antagonists. Mol Med Rep 2022; 25:115. [PMID: 35137920 PMCID: PMC8855162 DOI: 10.3892/mmr.2022.12631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022] Open
Abstract
Pentraxin 3 (PTX3), a member of the c‑reactive protein family, is a long pentraxin protein and a pro‑inflammatory marker. However, the role of PTX3 in preeclampsia (PE) remains to be elucidated. Thus, the present study aimed to investigate the biological role and mechanisms underlying PTX3 in PE. In the present study, PTX3 was overexpressed in trophoblasts and the subsequent changes in cell proliferation, cycle distribution and invasion were observed using Cell Counting Kit‑8, flow cytometry and Transwell assays, respectively. Moreover, the expression levels of MMP2 and MMP9, proteins associated with the development of PE, were detected using reverse transcription‑quantitative PCR and western blot analysis. Following treatment with interleukin (IL)‑1β, the expression levels of PTX3 were measured. Furthermore, subsequent changes in cell proliferation, cycle distribution and invasion were investigated following overexpression of PTX3 and treatment with IL‑1 receptor antagonist (IL‑1Ra). Overexpression of PTX3 inhibited the proliferation, cycle and invasion of HTR‑8/SV neo and JEG3 cells. Moreover, treatment with IL‑1β increased the expression of PTX3 in HTR‑8/SV neo and JEG3 cells, which was suppressed following treatment with the IL‑1β antagonist. Following PTX3 overexpression and treatment with IL‑1Ra, the inhibitory effects of PTX3 overexpression alone on the invasion of HTR‑8/SV neo and JEG3 cells were attenuated. In conclusion, these results indicated that IL‑1β could induce PTX3 upregulation, which led to the inhibition of the proliferation, invasion and cell cycle of trophoblasts, thereby promoting the progression of PE.
Collapse
Affiliation(s)
- Xiaoxi Wang
- Department of Obstetrics and Gynecology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Maternity Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Jing Ji
- Obstetric Ward II, The Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
13
|
Li J, Quan X, Lei S, Huang Z, Wang Q, Xu P. PFOS Inhibited Normal Functional Development of Placenta Cells via PPARγ Signaling. Biomedicines 2021; 9:biomedicines9060677. [PMID: 34203907 PMCID: PMC8232579 DOI: 10.3390/biomedicines9060677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS), a persistent environmental pollutant, has adverse effects on gestation pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in angiogenesis, metabolic processes, anti-inflammatory, and reproductive development. However, the function of PPARγ in PFOS evoked disadvantageous effects on the placenta remain uncertain. Here, we explored the role of PPARγ in PFOS-induced placental toxicity. Cell viability, cell migration, angiogenesis, and mRNA expression were monitored by CCK-8 assay, wound healing assay, tube formation assay, and real-time PCR, respectively. Activation and overexpression of PPARγ were conducted by rosiglitazone or pcDNA-PPARγ, and inhibition and knockdown of PPARγ were performed by GW9662 or si-PPARγ. Results revealed that PFOS decreased cell growth, migration, angiogenesis, and increased inflammation in human HTR-8/SVneo and JEG-3 cells. Placenta diameter and fetal weight decreased in mice treated with PFOS (12.5 mg/kg). In addition, rosiglitazone or pcDNA-PPARγ rescued cell proliferation, migration, angiogenesis, and decreased inflammation induced by PFOS in HTR8/SVneo and JEG-3 cells. Furthermore, GW9662 or si-PPARγ exacerbated the inhibition of cell viability, migration, angiogenesis, and aggravated inflammation induced by PFOS in HTR-8/SVneo and JEG-3 cells. Meanwhile, the results of mRNA expression level were consistent with the cell representation. In conclusion, our findings revealed that PFOS induced placenta cell toxicity and functional damage through PPARγ pathway.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Xiaojie Quan
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Qi Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Pengfei Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Correspondence: ; Tel.: +1-412-708-4694
| |
Collapse
|
14
|
Park S, Shin J, Bae J, Han D, Park SR, Shin J, Lee SK, Park HW. SIRT1 Alleviates LPS-Induced IL-1β Production by Suppressing NLRP3 Inflammasome Activation and ROS Production in Trophoblasts. Cells 2020; 9:cells9030728. [PMID: 32188057 PMCID: PMC7140679 DOI: 10.3390/cells9030728] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence indicates that aberrant maternal inflammation is associated with several pregnancy-related disorders such as preeclampsia, preterm birth, and intrauterine growth restriction. Sirtuin1 (SIRT1), a class III histone deacetylase, is involved in the regulation of various physiopathological processes including cellular inflammation and metabolism. However, the effect of SIRT1 on the placental proinflammatory environment remains to be elucidated. In this study, we investigated the effect of SIRT1 on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human first-trimester trophoblasts (Sw.71 and HTR-8/SVneo cells). Treatment with LPS elevated SIRT1 expression and induced NLRP3 inflammasome activation in mouse placental tissues and human trophoblasts. Knockdown of SIRT1 enhanced LPS-induced NLRP3 inflammasome activation, inflammatory signaling, and subsequent interleukin (IL)-1β secretion. Furthermore, knockdown of NLRP3 considerably attenuated the increase of IL-1β secretion in SIRT1-knockdown cells treated with LPS. Moreover, SIRT1 inhibited LPS-induced NLRP3 inflammasome activation by reducing oxidative stress. This study revealed a novel mechanism via which SIRT1 exerts anti-inflammatory effects, suggesting that SIRT1 is a potential therapeutic target for the prevention of inflammation-associated pregnancy-related complications.
Collapse
Affiliation(s)
- Sumi Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Jiha Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Jeongyun Bae
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Seok-Rae Park
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Department of Microbiology, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Sung Ki Lee
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea
- Correspondence: (S.K.L.); (H.-W.P.); Tel.: +82-42-600-8677 (H.-W.P.)
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Correspondence: (S.K.L.); (H.-W.P.); Tel.: +82-42-600-8677 (H.-W.P.)
| |
Collapse
|
15
|
Park H, Hong S, Yoo HN, Kim YM, Lee SJ, Park KH. The Identification of Immune-Related Plasma Proteins Associated with Spontaneous Preterm Delivery and Intra-Amniotic Infection in Women with Premature Cervical Dilation or an Asymptomatic Short Cervix. J Korean Med Sci 2020; 35:e26. [PMID: 32080985 PMCID: PMC7036344 DOI: 10.3346/jkms.2020.35.e26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/22/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND We aimed to investigate whether various immune-related plasma proteins, alone or in combination with conventional clinical risk factors, can predict spontaneous preterm delivery (SPTD) and intra-amniotic infection in women with premature cervical dilation or a short cervix (≤ 25 mm). METHODS This retrospective study included 80 asymptomatic women with premature cervical dilation (n = 50) or a short cervix (n = 30), who underwent amniocentesis at 17-29 weeks. Amniotic fluid (AF) was cultured, and maternal plasma was assayed for interleukin (IL)-6, matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinases (TIMP)-1, and complements C3a and C5a, using enzyme-linked immunosorbent assay (ELISA) kits. The primary outcome measures were SPTD at < 32 weeks and positive AF cultures. RESULTS The plasma levels of IL-6, C3a, and C5a, but not of MMP-9 and TIMP-1, were significantly higher in women with SPTD at < 32 weeks than in those who delivered at ≥ 32 weeks. The women who delivered at < 32 weeks had more advanced cervical dilatation, and higher rates of antibiotic and tocolytic administration and were less likely to be given vaginal progesterone than those who delivered at ≥ 32 weeks. Using a stepwise regression analysis, a combined prediction model was developed, which included the plasma IL-6 and C3a levels, and cervical dilatation (area under the curve [AUC], 0.901). The AUC for this model was significantly greater than that for any single variable included in the predictive model. In the univariate analysis, plasma IL-6 level was the only significant predictor of intra-amniotic infection. CONCLUSION In women with premature cervical dilation or a short cervix, maternal plasma IL-6, C3a, and C5a levels could be useful non-invasive predictors of SPTD at < 32 weeks. A combination of these biomarkers and conventional clinical factors may clearly improve the predictability for SPTD, as compared with the biomarkers alone. An increased plasma level of IL-6 predicted intra-amniotic infection.
Collapse
Affiliation(s)
- Hyunsoo Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Subeen Hong
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ha Na Yoo
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yu Mi Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Se Jin Lee
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
16
|
Rosiglitazone blocks first trimester in-vitro placental injury caused by NF-κB-mediated inflammation. Sci Rep 2019; 9:2018. [PMID: 30765769 PMCID: PMC6376060 DOI: 10.1038/s41598-018-38336-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Increased inflammation and abnormal placentation are common features of a wide spectrum of pregnancy-related disorders such as intra uterine growth restriction, preeclampsia and preterm birth. The inflammatory response of the human placenta has been mostly investigated in relation to cytokine release, but the direct molecular consequences on trophoblast differentiation have not been investigated. This study measured the general effects of LPS on both extravillous and villous trophoblast physiology, and the involvement of the transcription factors PPARγ and NF-κB, specifically using 1st trimester explants and HTR-8/ SVneo cell line models. While both proteins are known for their roles in inflammatory pathways, PPARγ has been identified as an important molecule in trophoblast differentiation, suggesting its potential role in mediating a crosstalk between inflammation and trophoblast differentiation. Here, LPS (1 µg/ml) exposure of first trimester placental villous explants resulted in secretion of inflammatory cytokines, induction of apoptosis and reduction in trophoblast cell proliferation. Additionally, LPS significantly reduced expression of the trophoblast differentiation proteins GCM1 and β-hCG, and increased invasion of the extravillous trophoblast. Activation of PPARγ by Rosiglitazone (10 µM) reversed the LPS-mediated effects on inflammatory cytokine release, trophoblast apoptosis and proliferation compared to controls. Lastly, markers of trophoblast differentiation and invasion reverted to control levels upon activation of PPARγ and concomitant inhibition of NF-κB (either by Rosiglitazone or NF-κB specific inhibitor), revealing a new role for NF-κB in trophoblast invasion. This study reveals a novel PPARγ - NF-κB axis that coordinates inflammatory and differentiation pathways in the human placenta. The ability to reverse trophoblast-associated inflammation with Rosiglitazone offers promise that the PPARγ - NF-κB pathway could one day provide a therapeutic target for placental dysfunction associated with both inflammation and abnormal trophoblast differentiation.
Collapse
|
17
|
Cross SN, Nelson RA, Potter JA, Norwitz ER, Abrahams VM. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner. Am J Reprod Immunol 2018; 80:e12861. [PMID: 29709093 DOI: 10.1111/aji.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. METHOD OF STUDY Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. RESULTS Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. CONCLUSION Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection.
Collapse
Affiliation(s)
- Sarah N Cross
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Rachel A Nelson
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Noda-Nicolau NM, Polettini J, da Silva MG, Peltier MR, Menon R. Polybacterial stimulation suggests discrete IL-6/IL-6R signaling in human fetal membranes: Potential implications on IL-6 bioactivity. J Reprod Immunol 2018. [PMID: 29524791 DOI: 10.1016/j.jri.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The polybacterial invasion of the amniotic cavity and risk of preterm birth is often due to cervicovaginal bacteria such as genital mycoplasmas (Mycoplasma hominis and Ureaplasma urealyticum) and Gardnerella vaginalis. The most studied biomarker associated with preterm birth is interleukin-6 (IL-6), a pleiotropic cytokine that performs different functions based on classical or trans-signaling mechanisms. This study evaluated the changes in IL-6 and IL-6 function associated accessory molecules by human fetal membranes to determine the functional availability of IL-6 assessment in an in vitro model of polybacterial infection. Fetal membranes were treated with LPS or heat-inactivated genital mycoplasmas and G. vaginalis alone or in combination. IL-6 and its soluble receptors (sgp130, sIL-6R) were assessed in conditioned medium by immunoassays and membrane-bound receptors were evaluated in the tissue using immunohistochemistry and RT-PCR. Data from protein and gene expression were evaluated using linear mixed effects models. Data from immunohistochemistry were evaluated using one-way analysis of variance followed by the Tukey test. Genital mycoplasmas alone, or in combination, inhibited IL-6 trans-signaling with increased sgp130 production. G. vaginalis activated the classical IL-6 signaling pathway, as did LPS. Polybacterial treatment resulted in a balanced response with neither pathway being favored. The increase in IL-6 production by fetal membranes in response to infection is likely a non-specific innate response and not an indicator of a functional mediator of any labor-inducing pathways. This suggests that correlating the risk of adverse pregnancy outcomes and designing interventions based on IL-6 levels without considering soluble receptors may be an ineffective strategy.
Collapse
Affiliation(s)
- Nathalia Mayumi Noda-Nicolau
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jossimara Polettini
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil; Master's Course in Health Sciences, University of Western São Paulo, UNOESTE, Presidente Prudente, São Paulo, Brazil
| | - Márcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Morgan R Peltier
- Department of Biomedical Research, NYU-Winthrop University Hospital, Mineola, NY, United States; Department of Obstetrics and Gynecology, NYU-Winthrop University Hospital, Mineola, NY, United States
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
19
|
Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Immunol 2018; 125:89-99. [DOI: 10.1016/j.jri.2017.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023]
|
20
|
Noda-Nicolau NM, Polettini J, Peltier MR, da Silva MG, Menon R. Combinations and loads of bacteria affect the cytokine production by fetal membranes: An in vitro study. Am J Reprod Immunol 2017; 76:504-511. [PMID: 27870156 DOI: 10.1111/aji.12596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023] Open
Abstract
PROBLEM The polybacterial invasion and inflammation of the amniotic cavity is a common scenario in PTB, and then, we analyzed the cytokine production by human fetal membranes to better understand the host response to polybacterial infections. METHOD OF STUDY Fetal membranes were treated by heat-inactivated genital mycoplasmas and Gardnerella vaginalis at 103 or 106 colony/color-forming units/mL alone or in combination. Cytokines/receptors were measured in the medium by immunoassays. RESULTS Stimulation of genital mycoplasmas did not increase the proinflammatory cytokines, except Ureaplasma urealyticum that increased IL-8 levels. However, U. urealyticum and Mycoplasma hominis significantly increased IL-10 and IL-13 levels. G. vaginalis alone or in combination with genital mycoplasmas showed an increased proinflammatory and anti-inflammatory cytokines. CONCLUSIONS G. vaginalis sustain a proinflammatory response in the fetal membranes in vitro, while genital mycoplasmas induce a strong control of the inflammatory response. The ability of genital mycoplasmas to control the proinflammatory response may favor their survival in the upper genital tract.
Collapse
Affiliation(s)
- Nathalia Mayumi Noda-Nicolau
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jossimara Polettini
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Morgan R Peltier
- Department of Obstetrics & Gynecology, Winthrop University Hospital, Mineola, NY, USA.,Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, USA
| | - Márcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
21
|
Scott LM, Bryant AH, Rees A, Down B, Jones RH, Thornton CA. Production and regulation of interleukin-1 family cytokines at the materno-fetal interface. Cytokine 2017; 99:194-202. [DOI: 10.1016/j.cyto.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022]
|
22
|
Garcia-Ruíz G, Flores-Espinosa P, Preciado-Martínez E, Bermejo-Martínez L, Espejel-Nuñez A, Estrada-Gutierrez G, Maida-Claros R, Flores-Pliego A, Zaga-Clavellina V. In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta. Reprod Biol Endocrinol 2015; 13:115. [PMID: 26446923 PMCID: PMC4596542 DOI: 10.1186/s12958-015-0111-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND During human pregnancy, infection/inflammation represents an important factor that increases the risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and degradation of extracellular matrix markers. METHODS Placentas were obtained under sterile conditions from pregnancies delivered at term before the onset of labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different concentrations of progesterone (0.01, 01, 1.0 μM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli. Cytokines TNFα, IL-1β, IL-6, IL-8, MIP-1α, IL-10 concentrations in the culture medium were then measured by specific ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by one-way ANOVA followed by the appropriate ad hoc test; P < 0.05 was considered statistically significant. RESULTS In comparison to the explants incubated with vehicle, the LPS treatment led to a significant increase in the level of all cytokines. In comparison to the explants treated only with LPS, pre-treatment with 0.01-1.0 μM progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-α, IL-1β, IL-6, IL-8, MIP-1α, IL-10, respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone. CONCLUSIONS The present results support the concept that progesterone could be part of the compensatory mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during gestation.
Collapse
Affiliation(s)
- G Garcia-Ruíz
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de Mexico, Ciudad de Mexico, 54700, Mexico.
| | - P Flores-Espinosa
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
| | - E Preciado-Martínez
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de Mexico, Ciudad de Mexico, 54700, Mexico.
| | - L Bermejo-Martínez
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
| | - A Espejel-Nuñez
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
| | - G Estrada-Gutierrez
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
| | - R Maida-Claros
- Neonatology Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virreyes, Ciudad de Mexico, 11000, México.
| | - A Flores-Pliego
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
| | - Veronica Zaga-Clavellina
- Inmunobiochemistry Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Lomas Virrreyes, Ciudad de Mexico, 11000, Mexico.
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de Mexico, Ciudad de Mexico, 54700, Mexico.
| |
Collapse
|
23
|
Osorio-Caballero M, Perdigón-Palacio C, García-López G, Flores-Herrera O, Olvera-Sánchez S, Morales-Méndez I, Sosa-González I, Acevedo JF, Guzmán-Grenfell AM, Molina-Hernández A, Díaz NF, Flores-Herrera H. Escherichia coli-induced temporal and differential secretion of heat-shock protein 70 and interleukin-1β by human fetal membranes in a two-compartment culture system. Placenta 2014; 36:262-9. [PMID: 25600910 DOI: 10.1016/j.placenta.2014.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Escherichia coli is recognized as an etiological bacteria associated with chorioamnionitis and the preterm premature rupture of fetal membranes. This pathological condition induces pro-inflammatory cytokines and degradative metalloproteinases, which are considered biological markers secreted in an acute stage of infection. Heat-shock proteins (HSPs) are an important component of the innate immunity response and are found in different pathological conditions. They have not been previously measured in human fetal membranes in response to infectious conditions. We hypothesized that the choriodecidual tissue and amniotic epithelium secreted temporal and differential Hsp-60, Hsp-70, and interleukin (IL)-1β mediated by E. coli infection. METHODS Fetal membranes were mounted in a two-compartment culture system and infected with two passes of live E. coli at different doses (10², 10⁴, 10⁵, and 10⁶ colony-forming units (CFU)/mL) and intervals of incubation (3, 6, and 24 h). The culture medium was collected, and Hsp-60, Hsp-70, and IL-1β were assessed using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS After 3 and 6 h of infection, E. coli induced an increase in Hsp-70 secretion in the choriodecidual tissue. However, after 24 h of incubation, Hsp-70 was downregulated and we observed an increase in IL-1β secretion. By contrast, E. coli induced a lower Hsp-60 secretion in the amnion compared to Hsp-70. DISCUSSION Human fetal membranes responded actively to E. coli infection, with an increase in Hsp-70 during the first hours of infection. After 24 h, there was an increase in the liberation of IL-1β.
Collapse
Affiliation(s)
- M Osorio-Caballero
- Department of Obstetrics and Gynecology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Montes Urales #800, Col. Lomas de Virreyes cp, 11000 Mexico City, Mexico
| | - C Perdigón-Palacio
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - G García-López
- Department of Cellular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - O Flores-Herrera
- Department of Biochemistry, School of Medicine, UNAM. Apdo. Postal 70-159, Copilco, Coyoacán, Mexico City, Mexico
| | - S Olvera-Sánchez
- Department of Biochemistry, School of Medicine, UNAM. Apdo. Postal 70-159, Copilco, Coyoacán, Mexico City, Mexico
| | - I Morales-Méndez
- Department of Infectology and Immunology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - I Sosa-González
- Department of Infectology and Immunology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - J F Acevedo
- Department of Obstetrics and Gynecology, University of Texas SouthWestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - A M Guzmán-Grenfell
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - A Molina-Hernández
- Department of Cellular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - N F Díaz
- Department of Cellular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - H Flores-Herrera
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico.
| |
Collapse
|
24
|
Alzamil HA, Pawade J, Fortier MA, Bernal AL. Expression of the prostaglandin F synthase AKR1B1 and the prostaglandin transporter SLCO2A1 in human fetal membranes in relation to spontaneous term and preterm labor. Front Physiol 2014; 5:272. [PMID: 25126080 PMCID: PMC4115629 DOI: 10.3389/fphys.2014.00272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/01/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Human labor is a complex series of cellular and molecular events that occur at the materno-fetal and uterine levels. Many hypotheses have been proposed for the initiation of human labor, one hypothesis suggests that maturation of the fetus releases a signal in the amniotic fluid that will be transmitted to myometrium via the fetal membranes and initiate uterine contractions. There is strong evidence that prostaglandins (PGs) play a central role in initiation and progression of human labor. OBJECTIVES In this study we intended to investigate the expression of prostaglandin F synthase and the prostaglandin transporter in the human fetal membranes and to explore the relationship between cytokines and PGs in the mechanism of human labor. METHODS We used fetal membranes obtained before labor at term and after spontaneous labor at term or preterm to identify the changes in prostaglandin F synthase (AKR1B1) and human prostaglandin transporter (SLCO2A1) proteins in relation to parturition. Using fetal membranes explants we tested the effect of cytokines (interleukin-1 and tumor necrosis factor alpha) on PG production and the concomitant changes in cyclooxygenase-2 (PTGS2), AKR1B1 and SLCO2A1 expression. RESULTS Expression of PTGS2 and AKR1B1 was upregulated in the fetal membranes in association with term labor while SLCO2A1 was downregulated with advancing gestation and during term labor. Before labor, IL-1 increased the expression of PTGS2, however during labor TNF upregulated PTGS2 and AKR1B1 proteins. CONCLUSIONS The prostaglandin F synthase AKR1B1 is upregulated while prostaglandin transporter is downregulated during term labor. The amnion is more responsive than choriodecidua to stimulation with pro-inflammatory cytokines. The mechanisms of term and preterm labor are different.
Collapse
Affiliation(s)
- Hana A Alzamil
- Department of Physiology, King Saud University Riyadh, Saudi Arabia
| | - Joya Pawade
- Pathology, University Hospitals Bristol Haemato-Oncology Diagnostic Service, Bristol Royal Infirmary Bristol, UK
| | - Michel A Fortier
- Axe Reproduction, Santé Périnatale et Pédiatrie, Centre Hospitalier Universitaire de Québec, Université Laval QC, Canada
| | - A López Bernal
- Academic Unit of Obstetrics and Gynaecology, School of Clinical Sciences, University of Bristol Bristol, UK
| |
Collapse
|
25
|
Hoang M, Potter JA, Gysler SM, Han CS, Guller S, Norwitz ER, Abrahams VM. Human fetal membranes generate distinct cytokine profiles in response to bacterial Toll-like receptor and nod-like receptor agonists. Biol Reprod 2014; 90:39. [PMID: 24429216 DOI: 10.1095/biolreprod.113.115428] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial infection-associated inflammation is thought to be a major cause of preterm premature rupture of membranes. Proinflammatory cytokines, such as interleukin 1B (IL1B), can weaken fetal membranes (FM) by upregulating matrix metalloproteinases and inducing apoptosis. The mechanism by which infection leads to inflammation at the maternal-fetal interface and subsequent preterm birth is thought to involve innate immune pattern recognition receptors (PRR), such as the Toll-like receptors (TLR) and Nod-like receptors (NLR), which recognize pathogen-associated molecular patterns (PAMPs). The objective of this study was to determine the cytokine profile generated by FMs in response to the bacterial TLR and NLR agonists peptidoglycan (PDG; TLR2), lipopolysaccharide (LPS; TLR4), flagellin (TLR5), CpG ODN (TLR9), iE-DAP (Nod1), and MDP (Nod2). PDG, LPS, flagellin, iE-DAP, and MDP triggered FMs to generate an inflammatory response, but the cytokine profiles were distinct for each TLR and NLR agonist, and only IL1B and RANTES were commonly upregulated in response to all five PAMPs. CpG ODN, in contrast, had a mild stimulatory effect only on MCP-1 and primarily downregulated basal FM cytokine production. IL1B secretion induced by PDG, LPS, flagellin, iE-DAP, and MDP was associated with its processing. Furthermore, FM IL1B secretion in response to TLR2, TLR4, and TLR5 activation was caspase 1-dependent, whereas Nod1 and Nod2 induced IL1B secretion independent of caspase 1. These findings demonstrate that FMs respond to different bacterial TLR and NLR PAMPs by generating distinct inflammatory cytokine profiles through distinct mechanisms that are specific to the innate immune PRR activated.
Collapse
Affiliation(s)
- Mai Hoang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | |
Collapse
|
26
|
Zaga-Clavellina V, Flores-Espinosa P, Pineda-Torres M, Sosa-González I, Vega-Sánchez R, Estrada-Gutierrez G, Espejel-Núñez A, Flores-Pliego A, Maida-Claros R, Estrada-Juárez H, Chávez-Mendoza A. Tissue-specific IL-10 secretion profile from term human fetal membranes stimulated with pathogenic microorganisms associated with preterm labor in a two-compartment tissue culture system. J Matern Fetal Neonatal Med 2013; 27:1320-7. [PMID: 24138141 DOI: 10.3109/14767058.2013.857397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Interleukin (IL)-10 is a cytokine with anti-inflammatory properties that plays pivotal roles in immune recognition and maintenance of pregnancy, limiting the harmful effects of pro-inflammatory modulators. The aim of this work was to characterize the contribution of amnion and choriodecidua regions of the human fetal membranes in the production of IL-10 after selective stimulation with Candida albicans, Gardnerella vaginalis and Streptococcus agalactiae. METHODS Pre-labor human fetal membranes were cultured in a two-compartment tissue culture system and stimulated with 1 × 10(6) CFU/ml of each pathogen added to either the amniotic or choriodecidual region or both. RESULTS Candida albicans and G. vaginalis were the pathogens most effective in inducing IL-10 secretion, increasing 20 and 10 times, respectively, the levels of this cytokine in the choriodecidual compartment. Stimulation with S. agalactiae was effective only in the choriodecidual region, increasing two times IL-10 concentration. CONCLUSIONS Synthesis and secretion of IL-10 in response to three different pathogens associated with intrauterine infection and preterm birth are differential and depend on the nature of the microorganism and initial contact region.
Collapse
|
27
|
Stampalija T, Chaiworapongsa T, Romero R, Tarca AL, Bhatti G, Chiang PJ, Than NG, Ferrazzi E, Hassan SS, Yeo L. Soluble ST2, a modulator of the inflammatory response, in preterm and term labor. J Matern Fetal Neonatal Med 2013; 27:111-21. [PMID: 23688338 DOI: 10.3109/14767058.2013.806894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Intra-amniotic infection/inflammation (IAI) is causally linked with spontaneous preterm labor and delivery. The ST2L receptor and its soluble form (sST2) are capable of binding to interleukin (IL)-33, a member of the IL-1 superfamily. Members of this cytokine family have been implicated in the onset of spontaneous preterm labor in the context of infection. Soluble ST2 has anti-inflammatory properties, and plasma concentrations are elevated in systemic inflammation, such as sepsis, acute pyelonephritis in pregnancy and the fetal inflammatory response syndrome. The aims of this study were to examine: (1) whether amniotic fluid concentrations of sST2 change with IAI, preterm, and term parturition; and (2) if mRNA expression of ST2 in the chorioamniotic membranes changes with acute histologic chorioamnionitis in women who deliver preterm. METHOD A cross-sectional study was conducted to determine amniotic fluid concentrations of sST2 in: (1) women with preterm labor (PTL) who delivered at term (n=49); (2) women with PTL who delivered preterm without IAI (n=21); (3) women with PTL who delivered preterm with IAI (n=31); (4) term pregnancies not in labor (n=13); and (5) term pregnancies in labor (n=43). The amniotic fluid concentration of sST2 was determined by ELISA. The mRNA expression of ST2 in the chorioamniotic membranes of women who delivered preterm with (n=24), and without acute histologic chorioamnionitis (n=19) was determined by qRT-PCR. RESULTS (1) Patients with PTL who delivered preterm with IAI had a lower median amniotic fluid concentration of sST2 compared to those with PTL who delivered preterm without IAI [median 410 ng/mL, inter-quartile range (IQR) 152-699 ng/mL versus median 825 ng/mL, IQR 493-1216 ng/mL; p=0.0003] and those with PTL who delivered at term [median 410 ng/mL, IQR 152-699 ng/mL versus median 673 ng/mL, IQR 468-1045 ng/mL; p=0.0003]; (2) no significant differences in the median amniotic fluid concentration of sST2 were observed between patients with PTL who delivered at term and those who delivered preterm without IAI (p=0.4), and between women at term in labor and those at term not in labor (p=0.9); (3) the mean mRNA expression of ST2 was 4-fold lower in women who delivered preterm with acute histologic chorioamnionitis than in those without this lesion (p=0.008). CONCLUSIONS The median sST2 amniotic fluid concentration and mRNA expression of ST2 by chorioamniotic membranes is lower in PTL associated with IAI and acute histologic chorioamnionitis than in PTL without these conditions. Changes in the median amniotic fluid sST2 concentration are not observed in preterm and term parturition without IAI. Thus, amniotic fluid sST2 in the presence of IAI behaves differently when compared to sST2 in the plasma of individuals affected by fetal inflammatory response syndrome, acute pyelonephritis in pregnancy, and adult sepsis. Decreased concentrations of sST2 in IAI are likely to promote a pro-inflammatory response, which is important for parturition in the context of infection.
Collapse
Affiliation(s)
- Tamara Stampalija
- Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, Maryland, and Detroit, Michigan , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flores-Espinosa P, Pineda-Torres M, Vega-Sánchez R, Estrada-Gutiérrez G, Espejel-Nuñez A, Flores-Pliego A, Maida-Claros R, Paredes-Vivas Y, Morales-Méndez I, Sosa-González I, Chávez-Mendoza A, Zaga-Clavellina V. Progesterone elicits an inhibitory effect upon LPS-induced innate immune response in pre-labor human amniotic epithelium. Am J Reprod Immunol 2013; 71:61-72. [PMID: 24128422 DOI: 10.1111/aji.12163] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022] Open
Abstract
PROBLEM Infection of human fetal membranes elicits secretion of pro-inflammatory modulators through its innate immune capacities. We investigated the effect of lipopolysacharide (LPS) and progesterone (P4) upon expression of TLR-4/MyD88, TNFα, IL-6, IL-8, IL-10, and HBD2 on the human amniotic epithelium. METHOD OF STUDY Explants of the human amniotic epithelium were pre-treated with 0.01, 0.1, and 1.0 μM of P4; then cotreated with 1000 ng/mL LPS. TLR-4 was immuno-detected, and concentrations of MyD88, TNFα, IL-6, IL-8, IL-10, and HBD2 were quantified by ELISA. RESULTS P4 significantly reduced the expression of LPS-induced TLR-4/MyD88. LPS increased the concentrations of TNFα, IL-6, IL-8, IL-10, and HBD2 by factors of 30-, eight, three, three, and fivefold, respectively. P4 at 1.0 μM was the most effective dose to blunt the secretion of TNFα, IL-6, and HBD-2. RU-486 blocks the effect of P4. CONCLUSION P4 inhibited LPS-induced TLR-4/MyD88 and pro-inflammatory factors in the human amniotic epithelium. These results could explain partially how P4 can protect the amniotic region of fetal membranes and generate a compensatory mechanism that limits the secretion of pro-inflammatory modulators, which could jeopardize the immune privilege during pregnancy.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Department of Cell Biology, Instituto Nacional de Perinatología 'Isidro Espinosa de los Reyes', Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Whidbey C, Harrell MI, Burnside K, Ngo L, Becraft AK, Iyer LM, Aravind L, Hitti J, Adams Waldorf KM, Rajagopal L. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. J Exp Med 2013; 210:1265-81. [PMID: 23712433 PMCID: PMC3674703 DOI: 10.1084/jem.20122753] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/01/2013] [Indexed: 01/18/2023] Open
Abstract
Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury.
Collapse
Affiliation(s)
- Christopher Whidbey
- Department of Pediatric Infectious Diseases and Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
- Center for Childhood Infections and Prematurity Research, Seattle Children’s Hospital Research Institute, Seattle, WA 98101
- Department of Global Health, University of Washington School of Public Health, Seattle, WA 98195
| | - Maria Isabel Harrell
- Center for Childhood Infections and Prematurity Research, Seattle Children’s Hospital Research Institute, Seattle, WA 98101
| | - Kellie Burnside
- Department of Pediatric Infectious Diseases and Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Lisa Ngo
- Center for Childhood Infections and Prematurity Research, Seattle Children’s Hospital Research Institute, Seattle, WA 98101
| | - Alexis K. Becraft
- Center for Childhood Infections and Prematurity Research, Seattle Children’s Hospital Research Institute, Seattle, WA 98101
| | - Lakshminarayan M. Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894
| | - L. Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894
| | - Jane Hitti
- Department of Pediatric Infectious Diseases and Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Kristina M. Adams Waldorf
- Department of Pediatric Infectious Diseases and Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases and Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
- Center for Childhood Infections and Prematurity Research, Seattle Children’s Hospital Research Institute, Seattle, WA 98101
- Department of Global Health, University of Washington School of Public Health, Seattle, WA 98195
| |
Collapse
|
30
|
Boldenow E, Jones S, Lieberman RW, Chames MC, Aronoff DM, Xi C, Loch-Caruso R. Antimicrobial peptide response to group B Streptococcus in human extraplacental membranes in culture. Placenta 2013; 34:480-5. [PMID: 23562109 PMCID: PMC3664555 DOI: 10.1016/j.placenta.2013.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Streptococcus agalactiae (GBS) is an important cause of chorioamnionitis. This study characterizes GBS colonization and stimulation of antimicrobial responses in human extraplacental membranes using an ex vivo transwell two-compartment system of full-thickness membranes and live GBS. STUDY DESIGN Human extraplacental membranes were affixed to transwell frames (without synthetic membranes). Live GBS was added to the decidual side of membranes in transwell cultures, and cocultures were incubated for 4, 8 and 24 h. GBS recovery from homogenized membranes and culture medium was determined by enumerating colony forming units (CFU) on blood agar. Antimicrobial peptide expression was identified using immunohistochemistry and ELISA. GBS killing by HBDs was assessed in vitro by incubating GBS with different human beta defensins (HBDs) for 3 h, then enumerating CFU. RESULTS GBS recovery from membranes markedly decreased over time (P < 0.05). The antimicrobial peptides HBD-1, HBD-2, HBD-3, and lactoferrin were expressed in both GBS-exposed and non-exposed tissues. Notably, a pattern of localized increased HBD-2 in the amnion of GBS-infected tissue was observed. Moreover, GBS-treated membranes released increased amounts of HBD-2 into the amniotic and decidual compartments of the transwell cultures after 24 h (P < 0.05). In bacterial cultures, HBD-2 decreased GBS viability in a concentration-dependent manner (P < 0.05). CONCLUSION Innate immune responses in ex vivo human extraplacental membranes suppress GBS growth. HBD-2 was implicated in this GBS suppression with evidence of signal transduction across the tissue. Antimicrobial peptides may be important for innate immune defense against intrauterine GBS infections during pregnancy.
Collapse
Affiliation(s)
- Erica Boldenow
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| | - Sarah Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| | - Richard W. Lieberman
- Departments of Pathology and of Obstetrics and Gynecology, Medical School, University of Michigan, 4215 Med Sci I SPC 5602, Ann Arbor, MI 48109-5602 USA
- Department of Obstetrics and Gynecology, Medical School, University of Michigan, Von Voigtlander Women’s Hospital, 1540 E. Hospital Drive, Floor 9, Room 109, Ann Arbor, MI 48109-4264 USA
| | - Mark C. Chames
- Departments of Pathology and of Obstetrics and Gynecology, Medical School, University of Michigan, 4215 Med Sci I SPC 5602, Ann Arbor, MI 48109-5602 USA
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, Medical School, University of Michigan, 5510-E MSRB I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5680 USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
31
|
Kacerovsky M, Celec P, Vlkova B, Skogstrand K, Hougaard DM, Cobo T, Jacobsson B. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PLoS One 2013; 8:e60399. [PMID: 23555967 PMCID: PMC3608618 DOI: 10.1371/journal.pone.0060399] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/25/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
32
|
Anderson MJ, Parks PJ, Peterson ML. A mucosal model to study microbial biofilm development and anti-biofilm therapeutics. J Microbiol Methods 2012; 92:201-8. [PMID: 23246911 DOI: 10.1016/j.mimet.2012.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022]
Abstract
Biofilms are a sessile colony of bacteria which adhere to and persist on surfaces. The ability of bacteria to form biofilms is considered a virulence factor, and in fact is central to the pathogenesis of some organisms. Biofilms are inherently resistant to chemotherapy and host immune responses. Clinically, biofilms are considered a primary cause of a majority of infections, such as otitis media, pneumonia in cystic fibrosis patients and endocarditis. However, the vast majority of the data on biofilm formation comes from traditional microtiter-based or flow displacement assays with no consideration given to host factors. These assays, which have been a valuable tool in high-throughput screening for biofilm-related factors, do not mimic a host-pathogen interaction and may contribute to an inappropriate estimation of the role of some factors in clinical biofilm formation. We describe the development of a novel ex vivo model of biofilm formation on a mucosal surface by an important mucosal pathogen, methicillin resistant S. aureus (MRSA). This model is being used for the identification of microbial virulence factors important in mucosal biofilm formation and novel anti-biofilm therapies.
Collapse
Affiliation(s)
- Michele J Anderson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
33
|
Abrahams VM, Potter JA, Bhat G, Peltier MR, Saade G, Menon R. Bacterial modulation of human fetal membrane Toll-like receptor expression. Am J Reprod Immunol 2012; 69:33-40. [PMID: 22967004 DOI: 10.1111/aji.12016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Preterm premature rupture of fetal membranes (pPROM) occurs in 30-40% of spontaneous preterm births (PTB) and is associated with intra-amniotic infection and inflammation. The membranes may sense and respond to microbes via Toll-like receptors (TLRs); however, little is known about their expression and regulation in this tissue. The objective of this study was to evaluate the expression of TLRs 1-10 in fetal membranes after exposure to pathogens associated with intra-amniotic infection and PTB. METHOD OF STUDY Normal human term fetal membrane explants were exposed to various bacteria. After 24 hrs, RNA was extracted and quantitative RT-PCR performed for TLRs1-10. RESULTS Treatment of fetal membranes with Mycoplasma hominis increased expression of TLR4, TLR6, and TLR8 mRNA. Ureaplasma parvum upregulated TLR8 mRNA, and Porphyromonas gingivalis significantly increased fetal membrane TLR7 expression. In contrast, treatment with Gram-negative Escherichia coli (and its cell wall component lipopolysaccharide) downregulated TLR10 mRNA. No effect was detected for Ureaplasma urealyticum, Gardnerella vaginalis, or Group B Streptococcus. CONCLUSION These findings demonstrate that different types of bacteria have distinct effects on fetal membrane TLR expression patterns. Moreover, these findings highlight the disparity of fetal membrane responses to infection and thus suggest heterogeneity in the mechanisms by which infection-associated pregnancy complications, such as pPROM and PTB, arise.
Collapse
Affiliation(s)
- Vikki M Abrahams
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Uchide N, Ohyama K, Bessho T, Takeichi M, Toyoda H. Possible roles of proinflammatory and chemoattractive cytokines produced by human fetal membrane cells in the pathology of adverse pregnancy outcomes associated with influenza virus infection. Mediators Inflamm 2012; 2012:270670. [PMID: 22899878 PMCID: PMC3415106 DOI: 10.1155/2012/270670] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/27/2012] [Indexed: 12/12/2022] Open
Abstract
Pregnant women are at an increased risk of influenza-associated adverse outcomes, such as premature delivery, based on data from the latest pandemic with a novel influenza A (H1N1) virus in 2009-2010. It has been suggested that the transplacental transmission of influenza viruses is rarely detected in humans. A series of our study has demonstrated that influenza virus infection induced apoptosis in primary cultured human fetal membrane chorion cells, from which a factor with monocyte differentiation-inducing (MDI) activity was secreted. Proinflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-β, were identified as a member of the MDI factor. Influenza virus infection induced the mRNA expression of not only the proinflammatory cytokines but also chemoattractive cytokines, such as monocyte chemoattractant protein (MCP)-1, regulated on activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein (MIP)-1β, IL-8, growth-regulated oncogene (GRO)-α, GRO-β, epithelial cell-derived neutrophil-activating protein (ENA)-78, and interferon inducible protein (IP)-10 in cultured chorion cells. These cytokines are postulated to associate with human parturition. This paper, therefore, reviews (1) lessons from pandemic H1N1 2009 in pregnancy, (2) production of proinflammatory and chemoattractive cytokines by human fetal membranes and their functions in gestational tissues, and (3) possible roles of cytokines produced by human fetal membranes in the pathology of adverse pregnancy outcomes associated with influenza virus infection.
Collapse
Affiliation(s)
- Noboru Uchide
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | |
Collapse
|
35
|
Zaga-Clavellina V, Martha RVM, Flores-Espinosa P. In vitro secretion profile of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, and of human beta-defensins (HBD)-1, HBD-2, and HBD-3 from human chorioamniotic membranes after selective stimulation with Gardnerella vaginalis. Am J Reprod Immunol 2011; 67:34-43. [PMID: 21752147 DOI: 10.1111/j.1600-0897.2011.01054.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PROBLEM Preterm labor associated with infection is a major clinical condition; in this work, we analyze the response of human chorioamniotic membranes stimulated with Gardnerella vaginalis. METHOD OF STUDY Using a two-compartment experimental model, 1 × 10(6) CFU/mL of G. vaginalis were added to either the amnion or choriodecidua face or to both. Concentrations of IL-1β, TNF-α, and IL-6, as well as human beta defensins (HBD) 1-3 were quantified by ELISA. RESULTS In comparison with control conditions and regardless of the stimulation modality, IL-1β and IL-6 increased 4-fold and 28-fold, respectively, in the choriodecidual compartment. HBD-1 increased 2-fold mainly in the amniotic compartment when the stimulus was applied directly to this region. HBD-2 and HBD-3 increased an average of 2- and 8-fold, respectively, in the choriodecidual region. CONCLUSIONS Stimulation with G. vaginalis induced a tissue-specific secretion profile of 1L-1β, IL-6, and HBD 1-3 in the chorioamniotic membranes.
Collapse
Affiliation(s)
- Veronica Zaga-Clavellina
- Cell Biology Department, Instituto Nacional de Perinatologia 'Isidro Espinosa de los Reyes', Mexico City, Mexico.
| | | | | |
Collapse
|
36
|
Zaga-Clavellina V, Garcia-Lopez G, Flores-Pliego A, Merchant-Larios H, Vadillo-Ortega F. In vitro secretion and activity profiles of matrix metalloproteinases, MMP-9 and MMP-2, in human term extra-placental membranes after exposure to Escherichia coli. Reprod Biol Endocrinol 2011; 9:13. [PMID: 21266053 PMCID: PMC3036613 DOI: 10.1186/1477-7827-9-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Premature rupture of fetal membranes (PROM) complicated with intrauterine infection has been associated to alterations of the extracellular matrix (ECM) homeostasis. The aim of this work was to evaluate the integral/functional response of the amnion (AMN) and choriodecidua (CHD) to synthesis, secretion, and activity of MMP-2 and MMP-9 and of their inhibitors TIMP-1, -2, and -4, after stimulation with Escherichia coli. METHODS Full-thickness membranes were mounted on a Transwell device, constituting two independent chambers, Escherichia coli (1×10 (6) CFU/mL) were added to either the amniotic or the choriodecidual face or to both. Secretion profiles of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-4 were quantified by ELISA and gelatinolytic activity by zymography. Immunoreactivity for MMP-2 and MMP-9 was revealed by immunohistochemistry and the collagen content was assessed by the hydroxyproline assay. RESULTS Levels of MMP-9 in CHD and AMN increased 4- and 8-fold, respectively, after simultaneous infection. MMP-2 secreted to the medium by CHD increased a mean of 3 times after direct stimulation. Secretion profiles of TIMP-1, TIMP-2, and TIMP-4 remained without significant changes. Collagen content was significantly decreased (4-fold) in infected membranes, and was associated with loss of structural continuity and co-localization with immunoreactive forms of MMP-2 and MMP-9. CONCLUSIONS Infection of chorioamniotic membranes with E. coli induces an increase in the secretion of inactive forms and an association to ECM of active forms of MMP-2 and MMP-9 without changes in TIMP-1, -2, and -4. These changes could explain the significant decrease of collagen content and loss of structural continuity.
Collapse
Affiliation(s)
- Veronica Zaga-Clavellina
- Biomedical Research Branch, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Guadalupe Garcia-Lopez
- Biomedical Research Branch, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Arturo Flores-Pliego
- Direction of Research, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Horacio Merchant-Larios
- Biomedical Research Institute, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Departament of Experimental Medicine, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
37
|
Garcia-Lopez G, Flores-Espinosa P, Zaga-Clavellina V. Tissue-specific human beta-defensins (HBD)1, HBD2, and HBD3 secretion from human extra-placental membranes stimulated with Escherichia coli. Reprod Biol Endocrinol 2010; 8:146. [PMID: 21122132 PMCID: PMC3001729 DOI: 10.1186/1477-7827-8-146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/01/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND During an ascending infection along the reproductive tract, the extra-placental membranes must act as a selective and competent barrier against pathogens. Human beta defensins (HBD)1, HBD2, and HBD3 are key elements of innate immunity that are secreted to neutralize/control the progression of infection. METHODS Full-thickness membranes were mounted on a Transwell device, constituted by two independent chambers, 1 × 10(6) CFU/ml of Escherichia coli were added to either the amnion (AMN) or the choriodecidual (CHD) face or to both. Secretion profiles of HBD1, HBD2, and HBD3 to the culture medium were quantified by ELISA. RESULTS In comparison with basal conditions, the secretion profile of HBD1 remained without significant changes; HBD2 level in CHD and AMN increased 1.9- and 1.4-times, respectively, after stimulation with bacteria. HBD3 secretion level increased significantly (7.8 +/- 1.9 pg/micrograms) in the CHD but only if the stimulus was applied on the AMN side. CONCLUSIONS Selective stimulation of extra-placental membranes with E. coli, results in a tissue specific secretion of HBD1, HBD2, and HBD3 mainly in the CHD, which is the first infected region during an ascending infection.
Collapse
Affiliation(s)
- Guadalupe Garcia-Lopez
- Cell Biology Department, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", México City, México
| | - Pilar Flores-Espinosa
- Cell Biology Department, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", México City, México
| | - Veronica Zaga-Clavellina
- Cell Biology Department, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", México City, México
| |
Collapse
|
38
|
Miller MF, Loch-Caruso R. Comparison of LPS-stimulated release of cytokines in punch versus transwell tissue culture systems of human gestational membranes. Reprod Biol Endocrinol 2010; 8:121. [PMID: 20950439 PMCID: PMC2965156 DOI: 10.1186/1477-7827-8-121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/15/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cytokine signaling within the amnionic, chorionic and decidual extraplacental gestational membranes plays an important role in membrane rupture and the timing of birth. The predominant in vitro explant culture system for evaluating cytokine induction in human gestational membranes has been the free-floating biopsy punch culture. Punch systems have been used to investigate the impact of various toxicants, pharmaceuticals and genetic variation on expression of pro-inflammatory cytokines. More recently, a dual compartment transwell culture system has been developed that more closely mimics the intrauterine compartment. The current study compares these two systems with respect to release of pro- and anti-inflammatory cytokines in response to lipopolysaccharide (LPS), a model stimulant. METHODS Tissue samples were exposed to 100 ng/ml LPS for 12 h and cytokines were measured by ELISA. Data are expressed as increase relative to non-treated controls. RESULTS Levels of interleukin-6 increased in punch culture medium samples to a significantly greater extent (34.2 fold) compared with medium from transwell cultures in the amnion (6.6 fold) or choriodecidual (7.1 fold) compartments. Interleukin-8 also showed a significantly greater induction in punch (4.8 fold) than transwell amnion (1.6 fold) or choriodecidual (1.7 fold) samples. The anti-inflammatory interleukin-10 showed a significant difference between punch (36.5 fold) and transwell amnion (15.4 fold) samples, but no difference was observed between punch and transwell choriodecidual (28.5 fold) samples. Neither interleukin-1beta nor tumor necrosis factor-alpha (TNF-alpha) showed a significant difference between the punch and transwell samples. CONCLUSIONS These results indicate that the pattern of LPS-stimulated cytokine release from gestational membranes in vitro depends on the culture system used, confounding comparisons of studies that use different gestational membrane culture systems to study inflammatory responses.
Collapse
Affiliation(s)
- Mark F Miller
- Department of Environmental Health Science, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
- United States Environmental Protection Agency HQ, 1200 Pennsylvania Avenue NW, Mailcall: 2842T, Washington, DC 20460, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Science, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
39
|
Thiex NW, Chames MC, Loch-Caruso RK. Tissue-specific cytokine release from human extra-placental membranes stimulated by lipopolysaccharide in a two-compartment tissue culture system. Reprod Biol Endocrinol 2009; 7:117. [PMID: 19857262 PMCID: PMC2774314 DOI: 10.1186/1477-7827-7-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/26/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The extra-placental gestational membranes secrete cytokines in response to bacteria and other infectious agents, with potentially adverse consequences for pregnancy. The present study used lipopolysaccharide (LPS) as a prototype endotoxin to investigate the pattern of stimulated cytokine release from the amniotic and choriodecidual sides of full-thickness human gestational membranes in a two-compartment tissue culture system. METHODS Gestational membranes were collected from healthy non-laboring caesarean deliveries at term. Full-thickness membranes from each placenta were cut into pieces, mounted on Transwell frames, and placed in culture wells to create a two-compartment culture with the gestational membranes serving as the barrier between compartments. The LPS (100 ng/ml) was added to the amniotic, choriodecidual or both chambers of the culture, and cytokines were assayed in the medium of the amniotic and choriodecidual chambers after 8 h of LPS exposure. Cytokine concentrations were analyzed by two-way analysis of variance for effects of treatment and side specificity of cytokine release from the membranes. RESULTS LPS exposure on the choriodecidual side of the membranes significantly increased TNF-alpha, IL-6, IL-10 and IL-8 in the choriodecidual compartment, whereas TNF-alpha was the only cytokine observed to increase in the amniotic compartment. When LPS treatment was to the amniotic side of the membranes, there were significant increases in TNF-alpha and IL-6 in the amniotic compartment as well as increased concentrations of TNF-alpha, IL-6 and IL-8 in the choriodecidual compartment; however, there were no statistically significant differences for IL-10 in either compartment. No statistically significant differences were observed for IL-1beta, TGF-beta or IL-4 concentrations in response to LPS, regardless of the exposure modality. CONCLUSION The amnion and choriodecidua exhibited distinct patterns of response to LPS with evidence of inflammatory signaling across the layers of the gestational membranes. These results suggest a complicated network of signaling within the gestational membranes, in which cytokine- and tissue-specific responses to inflammatory stimulation may have important implications for maintaining pregnancy in the challenge of microbial invasion of the uterine compartment.
Collapse
Affiliation(s)
- Natalie W Thiex
- Department of Environmental Health Sciences, School of Public Health, The University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, University of Michigan Health System, F4835 Mott Hospital, Ann Arbor, MI 48109-0264, USA
| | - Rita K Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, The University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
40
|
Grigsby PL, Novy MJ, Adams Waldorf KM, Sadowsky DW, Gravett MG. Choriodecidual inflammation: a harbinger of the preterm labor syndrome. Reprod Sci 2009; 17:85-94. [PMID: 19843879 DOI: 10.1177/1933719109348025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Causal, cellular, and inflammatory links between choriodecidual infection with group B streptococcus (GBS) and preterm labor were assessed in a nonhuman primate model. Rhesus monkeys received varying doses of a clinical isolate of GBS, type III or saline, via an indwelling catheter placed between the chorion/decidua and myometrium in the lower pole of the uterus. Choriodecidual inoculation of GBS was followed by a graded response in amniotic fluid (AF) leukocytes, proinflammatory cytokines, prostaglandin E(2) and F(2alpha), and uterine activity (P < .05). The magnitude of the inflammatory response in AF was related, in part, to the initial inoculum size and whether AF cultures remained negative or became positive for GBS. Microbial invasion of AF was associated with advanced inflammation and preterm labor. We provide experimental evidence that choriodeciduitis is a transitional stage of intrauterine infection, which may be self-limited, remain dormant, or progress to intraamniotic infection. These data, coupled with clinical observations, suggest that choriodecidual inflammation is an antecedent event in the pathogenesis of premature cervical ripening (functional cervical insufficiency), premature rupture of the fetal membranes, or preterm labor.
Collapse
Affiliation(s)
- Peta L Grigsby
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA.
| | | | | | | | | |
Collapse
|
41
|
Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am J Obstet Gynecol 2009; 201:306.e1-6. [PMID: 19733282 DOI: 10.1016/j.ajog.2009.06.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/11/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study compared cytokine and prostaglandin (PG) responses by fetal membranes stimulated with 4 different bacterial species associated with preterm birth (PTB). STUDY DESIGN Fetal membranes (n = 13 from normal term cesarean sections [not in labor]) in an organ explant system were stimulated with heat-killed Ureaplasma parvum, Gardanerella vaginalis, Escherichia coli, group B Streptococcus (GBS), or lipopolysaccharide (LPS). Cytokines (interleukin [IL]-1beta, IL-6, IL-8, IL-10, tumor necrosis factor [TNF]-alpha, and interferon-gamma) and PG (PGF(2alpha) and PGE(2)) concentrations were quantitated and compared. RESULTS LPS and E coli increased all cytokine and PG productions compared with controls. Cytokine profiles were similar after G vaginalis and GBS stimulation. G vaginalis increased PGE(2), whereas GBS increased PGF(2alpha). U parvum demonstrated the mildest response with only IL-10 and TNF-alpha concentrations being higher with no detectible effect on PGs. CONCLUSION Fetal membrane cytokine signatures of 4 different bacteria associated with PTB are distinct, suggesting that infection as a potential cause of PTB is not homogeneous in its presentation.
Collapse
|
42
|
Lockwood CJ, Murk W, Kayisli UA, Buchwalder LF, Huang ST, Funai EF, Krikun G, Schatz F. Progestin and thrombin regulate tissue factor expression in human term decidual cells. J Clin Endocrinol Metab 2009; 94:2164-70. [PMID: 19276228 PMCID: PMC2690421 DOI: 10.1210/jc.2009-0065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Perivascular cell membrane-bound tissue factor (TF) initiates hemostasis via thrombin generation. The identity and potential regulation of TF-expressing cells at the human maternal-fetal interface that confers hemostatic protection during normal and preterm delivery is unclear. OBJECTIVES The objective of the study were to identify TF-expressing cells at the maternal-fetal interface in term and preterm decidual sections by immunohistochemistry and evaluate progestin, thrombin, TNF-alpha, and IL-1beta effects on TF expression by cultured human term decidual cells (DCs). INTERVENTIONS AND MAIN OUTCOME MEASURES Serial placental sections were immunostained for TF. Leukocyte-free term DC monolayers were incubated with 10(-8) M estradiol (E2) or E2 plus 10(-7) M medroxyprogestrone acetate (MPA) +/- thrombin or TNF-alpha or IL-1beta. ELISA and Western blotting assessed TF in cell lysates. Quantitative real-time RT-PCR measured TF mRNA levels. RESULTS Immunolocalized TF in DC membranes in preterm and term placental sections displayed higher Histologic Scores than villous mesenchymal cells (P < 0.05). TF was undetected in interstitial or extravillous trophoblasts. Compared with DCs incubated with E2, MPA and 2.5 U/ml thrombin each doubled TF levels (P < 0.05) and E2 + MPA + thrombin further doubled TF levels (P < 0.05), whereas TNF-alpha and IL-1beta were ineffective. Western blotting confirmed the ELISA results. Quantitative RT-PCR revealed corresponding changes in TF mRNA levels. CONCLUSIONS In human term placental sections, DC-expressed TF exceeds that of other cell types at the maternal-fetal interface and is localized at the cell membranes in which it can bind to factor VII and meet the hemostatic demands of labor and delivery via thrombin formation. Unlike the general concept that TF is constitutive in cells that highly express it, MPA and thrombin significantly enhanced TF expression in term DC monolayers.
Collapse
Affiliation(s)
- C J Lockwood
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|