1
|
Shi D, Liu C, Cheng Y, Cheng H, Zhang Q. Correlation between Escherichia coli infection during pregnancy and maternal-fetal outcomes: a retrospective analysis. BMC Infect Dis 2025; 25:609. [PMID: 40287649 PMCID: PMC12034207 DOI: 10.1186/s12879-025-10998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND There has been an increase in infections caused by Escherichia coli during pregnancy. E. coli is a major pathogen posing substantial risks to maternal and fetal health. However, knowledge of the impact of these infections on maternal and fetal outcomes is limited. This study aimed to investigate the high-risk factors related to Escherichia coli infection in pregnant women and associated maternal and fetal outcomes. METHODS This retrospective analysis was performed using clinical data of pregnant women hospitalized between January 2020 and December 2022 for conditions such as premature rupture of membranes (PROM), threatened preterm labor, threatened miscarriage, and fever, all of whom underwent microbiological testing. Patients were categorized into E. coli or non-E. coli infection groups based on bacterial culture results. High-risk factors for E. coli infection and associated pregnancy outcomes were assessed. RESULTS Microbiological analysis of 7,213 clinical specimens revealed 925 positive cases, with E. coli infection accounting for 202 cases. Primiparity (odds ratio = 2.981, 95% CI 1.877-4.709, P < 0.001) and a pre-pregnancy body mass index of ≥ 24 kg/m2 (odds ratio = 1.149, 95% CI 1.062-1.898, P = 0.017) were identified as independent risk factors for E. coli infection. E. coli infection was significantly associated with an increased incidence of preterm PROM. The E. coli infection group exhibited a higher rate of miscarriages before 28 weeks, a lower rate of full-term deliveries, and higher incidences of fetal distress during labor than the non-E. coli infection group. CONCLUSIONS The prevalence of E. coli is high among pregnant women. This observational study suggests an association between maternal E. coli infection and adverse pregnancy outcomes in high-risk populations.
Collapse
Affiliation(s)
- Dongdong Shi
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200082, China
| | - Chang Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200082, China
| | - Yan Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200082, China
| | - Haidong Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200082, China
| | - Qingying Zhang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200082, China.
| |
Collapse
|
2
|
Chetty K, Peters XQ, Omolo CA, Ismail EA, Gafar MA, Elhassan E, Kassam SZF, Govender J, Dlamini S, Govender T. Multifunctional Dual Enzyme-Responsive Nanostructured Lipid Carriers for Targeting and Enhancing the Treatment of Bacterial Infections. ACS APPLIED BIO MATERIALS 2025; 8:548-569. [PMID: 39714140 DOI: 10.1021/acsabm.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Bacterial infections pose an increasingly worrisome threat to the health of humankind, with antibiotic resistance contributing significantly to this burden. With current conventional antibiotics perpetuating the problem, and a paucity in developing antibiotics, drug delivery systems incorporating nanotechnology appear promising. As such, a dual enzyme-responsive multifunctional nanostructured lipid carrier (NLC) incorporating farnesol (FAN) and triglycerol monostearate (TGMS), was conceptualized for the codelivery of vancomycin (VCM) and antimicrobial peptide (AMP) to enhance the antibacterial activity of VCM. In silico studies and Microscale Thermophoresis demonstrated the strong binding relationships between the NLC constituents and two enzymes that exist in higher concentrations during host infection, namely lipase and a matrix metalloproteinase (MMP). The formulated nanosystem, VCM-AMP-TF-NLCs, had a particle size, polydispersity index, zeta potential, and entrapment efficiency of 149.00 ± 2.97 nm, 0.07 ± 0.01, -5.51 ± 1.21 mV, and 86.20% ± 1.47%, respectively. The NLCs, which showed stability, and biocompatibility, also demonstrated lipase- and MMP-responsiveness. The in vitro antibacterial studies revealed 2-fold and 8-fold reductions in the minimum inhibitory concentration for the NLCs compared to bare VCM, against methicillin-resistant Staphylococcal aureus (MRSA) and Escherichia coli, respectively. Furthermore, in vivo studies revealed that tissues treated with the VCM-AMP-TF-NLCs displayed significantly reduced bacterial burdens (up to 8.73-fold) and less histopathological cellular injury, edema, and necrosis compared to the tissues treated with bare VCM alone. The results support the superiority of the VCM-AMP-TF-NLCs as a multifunctional dual enzyme-responsive NLC compared to bare VCM.
Collapse
Affiliation(s)
- Kerisha Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
- Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634, Nairobi 00800, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Jasoda Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Sbongumusa Dlamini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| |
Collapse
|
3
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
4
|
Pucci Molineris M, Schibert F, Lima M, Accialini P, Cané L, Pelinsky P, Farina M, Herlax V. Induction of human-fetal-membrane remodeling in-vitro by the alpha hemolysin of Escherichia coli. Placenta 2024; 148:59-68. [PMID: 38401207 DOI: 10.1016/j.placenta.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.
Collapse
Affiliation(s)
- Melisa Pucci Molineris
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina.
| | - Florencia Schibert
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - María Lima
- Cátedra B de Patología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - Paula Accialini
- Laboratorio de Fisiopatología Placentaria, CEFyBO -Facultad de Medicina, Universidad de Buenos Aires, Paraguay N° 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Cané
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - Pablo Pelinsky
- Servicio de Ginecología y Obstetricia, Hospital Español de La Plata, 9 N° 175, La Plata, Buenos Aires, Argentina
| | - Mariana Farina
- Laboratorio de Fisiopatología Placentaria, CEFyBO -Facultad de Medicina, Universidad de Buenos Aires, Paraguay N° 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
6
|
Flores-Espinosa P, Mancilla-Herrera I, Olmos-Ortiz A, Díaz L, Zaga-Clavellina V. Culture of Human Fetal Membranes in a Two Independent Compartment Model: An Ex Vivo Approach. Methods Mol Biol 2024; 2781:61-69. [PMID: 38502443 DOI: 10.1007/978-1-0716-3746-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
During pregnancy, the fetal membranes composed of the amnion and chorodecidua constitute a selective barrier separating two distinct environments, maternal and fetal. These tissues have the function of delimiting the amniotic cavity. Their histological complexity gives them physical, mechanical, and immunological properties to protect the fetus. Although the study of the amnion, chorion, and decidua separately provides knowledge about the functions of the fetal membranes, the protocol we describe in this chapter has the advantage of maintaining the biological and functional complexity of these tissues. In addition, this experimental model allows the researcher to recreate various pathological scenarios because this model allows for differential stimulation of the amnion or choriodecidua.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Department of Infectology and Immunology, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Andrea Olmos-Ortiz
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Verónica Zaga-Clavellina
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| |
Collapse
|
7
|
Lee AY, Kong D, Cho H, Choi E, Hwang S, Song Y, Choi EK, Kim YB, Geum DH, Kim HY, Cho GJ, Ahn K, Oh MJ, Kim HJ, Hong SC. Investigating the regenerative effects of folic acid on human amniotic epithelial stem cells and amniotic pore culture technique (APCT) model in vitro using an integrated pharmacological-bioinformatic approach. Placenta 2023; 138:60-67. [PMID: 37196582 DOI: 10.1016/j.placenta.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
INTRODUCTION Disruption of fetal membranes before the onset of labor is referred to as premature rupture of membranes (PROM). Lack of maternal folic acid (FA) supplementation reportedly leads to PROM. However, there is a lack of information on the location of FA receptors in the amniotic tissue. Additionally, the regulatory role and potential molecular targets of FA in PROM in vitro have rarely been investigated. METHODS The three FA receptors (folate receptor α isoform [FRα], transporter of reduced folate [RFC], and proton-coupled folate transporter [PCFT]) in human amniotic epithelial stem cells (hAESCs) and amniotic tissue were localized using immunohistochemistry and immunocytochemistry staining. Effect and mechanism analyses of FA were performed in hAESCs and amniotic pore culture technique (APCT) models. An integrated pharmacological-bioinformatics approach was utilized to explore the potential targets of FA for the treatment of PROM. RESULTS The three FA receptors were widely expressed in human amniotic tissue, especially in the hAESC cytoplasm. FA stimulated the amnion regeneration in the in vitro APCT model. This mimics the PROM status, in which cystathionine-β-synthase, an FA metabolite enzyme, may play an important role. The top ten hub targets (STAT1, mTOR, PIK3R1, PTPN11, PDGFRB, ABL1, CXCR4, NFKB1, HDAC1, and HDAC2) of FA for preventing PROM were identified using an integrated pharmacological-bioinformatic approach. DISCUSSION FRα, RFC, and PCFT are widely expressed in human amniotic tissue and hAESCs. FA aids the healing of ruptured membrane.
Collapse
Affiliation(s)
- Ah-Young Lee
- Korea University College of Medicine, Seoul, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
| | - Deqi Kong
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Heeryun Cho
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Eunsaem Choi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Soowon Hwang
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Yuni Song
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Republic of Korea.
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
| | - Dong Ho Geum
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Ho Yeon Kim
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Geum Joon Cho
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Kihoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Soon-Cheol Hong
- Korea University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Nguyen LM, Aronoff DM, Eastman AJ. Matrix metalloproteinases in preterm prelabor rupture of membranes in the setting of chorioamnionitis: A scoping review. Am J Reprod Immunol 2023; 89:e13642. [PMID: 36300889 PMCID: PMC11729612 DOI: 10.1111/aji.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Fetal or gestational membranes extend from the placenta to enclose the fetus and amniotic fluid. While the membranes spontaneously rupture at term in normal pregnancies, they can rupture prematurely before the onset of labor, termed preterm prelabor rupture of membranes (PPROM). PPROM can be triggered by bacterial infection or sterile inflammation in the membranes, known as chorioamnionitis (CAM). The membranes derive their tensile strength from a collagen-rich extracellular matrix (ECM); as such, understanding the enzymes and processes that can degrade the membrane ECM are of paramount importance. Matrix metalloproteinases (MMPs) are a class of enzymes capable of degrading collagen and other components of the ECM, and can be induced by inflammation. We used a scoping review to address the question of how MMP activity is associated with PPROM, particularly their induction due to sterile or nonsterile CAM. We have found that the most studied MMPs in PPROM were MMPs 2, 8, and 9. Additionally, some MMPs are constitutively active, while others are induced by inflammation. Mechanistic studies of the pathways that induce MMP activation are sparse, and this area is ripe for future studies. Targeting MMP activation could be a future strategy to delay or prevent PPROM.
Collapse
Affiliation(s)
- Lynsa M. Nguyen
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Flores-Espinosa P, Olmos-Ortíz A, Granados-Cepeda M, Quesada-Reyna B, Vega-Sánchez R, Velázquez P, Zaga-Clavellina V. Prolactin Protects the Structural Integrity of Human Fetal Membranes by Downregulating Inflammation-induced Secretion of Matrix Metalloproteinases. Immunol Invest 2021; 51:1313-1329. [PMID: 34132165 DOI: 10.1080/08820139.2021.1936012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Prolactin (PRL) is a pleiotropic hormone with a key role in pregnancy. In fetal membranes, PRL can regulate the secretion of pro-inflammatory factors, which induces the activation of matrix metalloproteinases (MMPs). The increase and activation of MMPs deregulate the turnover of the extracellular matrix in the fetal membranes, altering its structure and function, causing premature rupture of the membranes and preterm labor. In this work, we evaluate the effect of PRL upon the secretion of MMP-1, MMP-2, MMP-9, MMP-13, and the tissue inhibitors of metalloproteinases (TIMPs) in human fetal membranes after lipopolysaccharide (LPS) challenge. Nine fetal membranes from healthy non-laboring cesarean deliveries at term were cultured in a 2-independent chamber system and pre-treated with 250, 500, 1000 or 4000 ng/ml of PRL for 24 h, then choriodecidual region was stimulated with 500 ng/ml of LPS plus fresh PRL for 24 h. The MMPs and TIMPs secretion were quantified by ELISA, additionally MMP-2 and MMP-9 gelatinolytic activity was measured by zymography. LPS induced the MMP-9 and MMP-1 secretion, but no MMP-2 or MMP-13 in comparison with basal levels. PRL co-treatment decreased the MMP-2, MMP-9 and MMP-1 secretion induced by LPS. The active forms were present in the tissue extract, showing a response consistent with the secretion profile. TIMP-1 and TIMP-2 secretion was decreased after LPS treatment and the PRL co-treatment reverts this effect. The present results support that PRL may favor the balance between these factors involved in the structural maintenance of fetal membranes in an inflammatory event.
Collapse
Affiliation(s)
| | | | | | | | | | - Pilar Velázquez
- Gynecology and Obstetrics Branch, Hospital Ángeles México, Mexico City, Mexico
| | | |
Collapse
|
10
|
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, Fu Q, Li MQ. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci 2020; 16:2220-2234. [PMID: 32549767 PMCID: PMC7294936 DOI: 10.7150/ijbs.45586] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The survival and development of a semi-allogenic fetus during pregnancy require special immune tolerance microenvironment at the maternal fetal interface. During the establishment of a successful pregnancy, the endometrium undergoes a series of changes, and the extracellular matrix (ECM) breaks down and remodels. Collagen is one of the most abundant ECM. Emerging evidence has shown that collagen and its fragment are expressed at the maternal fetal interface. The regulation of expression of collagen is quite complex, and this process involves a multitude of factors. Collagen exerts a critical role during the successful pregnancy. In addition, the abnormal expressions of collagen and its fragments are associated with certain pathological states associated with pregnancy, including recurrent miscarriage, diabetes mellitus with pregnancy, preeclampsia and so on. In this review, the expression and potential roles of collagen under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Shao-Liang Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Deng Ao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Lu-Yu Ruan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, 264003, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
11
|
IGFs and IGF-Binding Proteins in the Synovial Fluid of Patients with Rheumatoid Arthritis and Osteoarthritis. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09835-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Increased Soluble Epoxide Hydrolase in Human Gestational Tissues from Pregnancies Complicated by Acute Chorioamnionitis. Mediators Inflamm 2019; 2019:8687120. [PMID: 31885501 PMCID: PMC6915158 DOI: 10.1155/2019/8687120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chorioamnionitis (CAM) is primarily a polymicrobial bacterial infection involving chorionic and amniotic membranes that is associated with increased risk of preterm delivery. Epoxyeicosatrienoic acids (EETs) are eicosanoids generated from arachidonic acid by cytochrome P450 enzymes and further metabolized mainly by soluble epoxide hydrolase (sEH) to produce dihydroxyeicosatrienoic acids (DHETs). As a consequence of this metabolism of EETs, sEH reportedly exacerbates several disease states; however, its role in CAM remains unclear. The objectives of this study were to (1) determine the localization of sEH and compare the changes it undergoes in the gestational tissues (placentas and fetal membranes) of women with normal-term pregnancies and those with pregnancies complicated by acute CAM; (2) study the effects of lipopolysaccharide (LPS) on the expression of sEH in the human gestational tissues; and (3) investigate the effect of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a specific sEH inhibitor, on LPS-induced changes in 14,15-DHET and cytokines such as interleukin- (IL-) 1β and IL-6 in human gestational tissues in vitro and in pregnant mice. We found that women with pregnancies complicated by acute CAM had higher levels of sEH mRNA and protein in fetal membranes and villous tissues compared to those in women with normal-term pregnancies without CAM. Furthermore, fetal membrane and villous explants treated with LPS had higher tissue levels of sEH mRNA and protein and 14,15-DHET than those present in the vehicle controls, while the administration of AUDA in the media attenuated the LPS-induced production of 14,15-DHET in tissue homogenates and IL-1β and IL-6 in the media of explant cultures. Administration of AUDA also reduced the LPS-induced changes of 14,15-DHET, IL-1β, and IL-6 in the placentas of pregnant mice. Together, these results suggest that sEH participates in the inflammatory changes in human gestational tissues in pregnancies complicated by acute CAM.
Collapse
|
13
|
Park HR, Harris SM, Boldenow E, McEachin RC, Sartor M, Chames M, Loch-Caruso R. Group B streptococcus activates transcriptomic pathways related to premature birth in human extraplacental membranes in vitro. Biol Reprod 2019; 98:396-407. [PMID: 29155939 DOI: 10.1093/biolre/iox147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) infection in pregnant women is the leading cause of infectious neonatal morbidity and mortality in the United States. Although inflammation during infection has been associated with preterm birth, the contribution of GBS to preterm birth is less certain. Moreover, the early mechanisms by which GBS interacts with the gestational tissue to affect adverse pregnancy outcomes are poorly understood. We hypothesized that short-term GBS inoculation activates pathways related to inflammation and premature birth in human extraplacental membranes. We tested this hypothesis using GBS-inoculated human extraplacental membranes in vitro. In agreement with our hypothesis, a microarray-based transcriptomics analysis of gene expression changes in GBS-inoculated membranes revealed that GBS activated pathways related to inflammation and preterm birth with significant gene expression changes occurring as early as 4 h postinoculation. In addition, pathways related to DNA replication and repair were downregulated with GBS treatment. Conclusions based on our transcriptomics data were further supported by responses of prostaglandin E2 (PGE2), and matrix metalloproteinases 1 (MMP1) and 3 (MMP3), all of which are known to be involved in parturition and premature rupture of membranes. These results support our initial hypothesis and provide new information on molecular targets of GBS infection in human extraplacental membranes.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Erica Boldenow
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biology, Calvin College, Grand Rapids, Michigan
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark Chames
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Hung TH, Chen SF, Wu CP, Li MJ, Yeh YL, Hsieh TT. Micronized progesterone pretreatment affects the inflammatory response of human gestational tissues and the cervix to lipopolysaccharide stimulation. Placenta 2017; 57:1-8. [DOI: 10.1016/j.placenta.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/30/2022]
|
15
|
Wang HW, Zhao WP, Tan PP, Liu J, Zhao J, Zhou BH. The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice. Biol Trace Elem Res 2017; 178:253-260. [PMID: 28064417 DOI: 10.1007/s12011-016-0929-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023]
Abstract
A total of 84 healthy female mice were kept with various concentrations of sodium fluoride (F) (0, 50, 100, 150 mg F-/L in drinking water for 90 days) and were then mated with healthy male mice for 1 week to study the effect of excessive fluoride on female reproductive function, particularly in embryo implantation. The rate of pregnancy, litter size, and the birth weight of female mice were evaluated. Ultrastructural changes of uteri tissues were observed by transmission electron microscopy (TEM). The mRNA expression levels of MMP-9 and TIMP-1 were determined by quantitative real-time PCR. The protein expression levels of MMP-9 and TIMP-1 were analyzed by western blotting. Results showed a significant decrease of litter size in mice exposed to fluoride. TEM images of uteri tissue of mice that underwent a 150 mg/L F- treatment for 90 days showed a vague nucleus, reduced microvilli, increased lysosomes, a dilated endoplasmic reticulum, and a vacuolization mitochondrion when compared with the control group. Following the damage of the structure, the expression levels of MMP-9 and TIMP-1 in uteri tissues were significantly unregulated in the F 150 group. These results show that MMP-9/TIMP-1 system disturbance and changes of histological structure in uteri tissue are involved in fluoride-induced reproductive dysfunctions.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China.
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471003, People's Republic of China.
| | - Wen-Peng Zhao
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Pan-Pan Tan
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Jing Liu
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Jing Zhao
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Bian-Hua Zhou
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| |
Collapse
|
16
|
Uchide N, Obatake K, Yamada R, Sadanari H, Matsubara K, Murayama T, Ohyama K. Regulation of Matrix Metalloproteinases-2 and -9 Gene Expression in Cultured Human Fetal Membrane Cells by Influenza Virus Infection. Biol Pharm Bull 2017; 39:1912-1921. [PMID: 27904034 DOI: 10.1248/bpb.b16-00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to understand a possible etiology of adverse pregnancy outcomes associated with intrauterine influenza virus infection, we examined the effect of influenza virus infection on gene expression of matrix metalloproteinases (MMPs) in cultured amnion epithelial, amnion mesenchymal and chorion trophoblast cells prepared from human fetal membrane tissues by gelatin zymography, Western blotting and reverse transcriptase-PCR. The cells were infected with influenza A (H1N1) virus. The levels of pro-MMP-9 activity in culture supernatants of three types of cells were increased during the period of 24-48 h after the virus infection as compared to those of mock infection. Chorion trophoblast cells spontaneously released a much greater level of pro-MMP-2 activity than amnion epithelial and amnion mesenchymal cells. The cleavage of pro-MMP-2 into an active intermediate form was enhanced in chorion trophoblast cells by the virus infection. The activity levels of MMP-2 and MMP-9 in culture supernatants were consistent with their protein levels. The virus infection induced the mRNA expression of MMP-9, but not MMP-2, in three types of cells. These results suggest that influenza virus infection induces the gene expression of MMP-9 and the cleavage of pro-MMP-2 into an active intermediate form in human fetal membrane cells, resulting in weakening of the membranes through extracellular matrix degradation. Therefore, it is possible that the regulation of MMPs gene expression in fetal membrane cells by influenza virus infection is implicated in a part of the etiology of adverse pregnancy outcomes associated with intrauterine infection with the virus.
Collapse
Affiliation(s)
- Noboru Uchide
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| | | | | | | | | | | | | |
Collapse
|
17
|
Ma J, Li R, Qu G, Liu H, Yan B, Xia T, Liu Y, Liu S. Carbon nanotubes stimulate synovial inflammation by inducing systemic pro-inflammatory cytokines. NANOSCALE 2016; 8:18070-18086. [PMID: 27714147 DOI: 10.1039/c6nr06041b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes (CNTs) have promising applications in a wide range of biomedical fields, including imaging, drug/gene delivery and other therapeutics; however, the biosafety concerns of CNTs should be addressed. To date, many reports have documented the toxicological effects on the cells, tissue or organs that are in direct contact with the tubes; however, there is limited evidence to unravel the secondary toxicity upon CNT treatment. Moreover, more effort is needed to gain a definitive understanding of the adverse outcome pathway (AOP) for CNTs, and a pragmatic framework for risk assessment has not been established yet. In the current study, we aimed to decipher the secondary toxicity to joints under CNT exposure. We demonstrated that carboxylated multi-wall CNTs (MWCNTs-COOH) significantly provoked systemic pro-inflammatory responses, leading to synovial inflammation within knee joints, as evidenced by the infiltration of pro-inflammatory cells in the synovium and meniscus. Mechanistic studies showed that MWCNTs-COOH stimulated pro-inflammatory effects by activating macrophages, and the secreted pro-inflammatory cytokines primed the synoviocytes and chondrocytes, resulting in enhanced production of a large array of enzymes involved in articular cartilage degeneration, including matrix metalloproteinase (MMP) members and cyclooxygenase (COX) members, and increased enzymatic activity of MMPs was demonstrated. Blockade of the cytokines by antibodies significantly attenuated the production of these enzymes. Our current study thus suggests that there is a novel secondary toxicity of CNTs, namely a new AOP to understand the indirect effects of carbon nanotubes: synovial inflammation due to the alteration of the priming state of synoviocytes and chondrocytes under CNT-induced systemic inflammatory conditions.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huiyu Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing 100035, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update 2016; 22:497-515. [PMID: 26912000 DOI: 10.1093/humupd/dmw004] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. METHODS We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. RESULTS Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. CONCLUSION Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms.
Collapse
Affiliation(s)
- Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Vincent ZL, Mitchell MD, Ponnampalam AP. Regulation of TIMP-1 in Human Placenta and Fetal Membranes by lipopolysaccharide and demethylating agent 5-aza-2'-deoxycytidine. Reprod Biol Endocrinol 2015; 13:136. [PMID: 26691525 PMCID: PMC4687108 DOI: 10.1186/s12958-015-0132-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An appropriate transcriptional profile in the placenta and fetal membranes is required for successful pregnancy; any variations may lead to inappropriate timing of birth. Epigenetic regulation through reversible modification of chromatin has emerged as a fundamental mechanism for the control of gene expression in a range of biological systems and can be modified by pharmacological intervention, thus providing novel therapeutic avenues. TIMP-1 is an endogenous inhibitor of MMPs, and hence is intimately involved in maintaining the integrity of the fetal membranes until labor. OBJECTIVE AND METHODS To determine if TIMP-1 is regulated by DNA methylation in gestational tissues we employed an in vitro model in which gestational tissue explants were treated with demethylating agent 5-aza-2'-deoxycytidine (AZA) and lipopolysaccharide (LPS). RESULTS Quantitative Real-Time PCR (qRT-PCR) revealed that TIMP-1 transcription was significantly increased by combined treatment of AZA and LPS, but not LPS alone, in villous, amnion and choriodecidua explants after 24 and 48 hrs, whilst western blotting showed protein production was stimulated after 24 hrs only. Upon interrogation of the TIMP-1 promoter using Sequenom EpiTyper MassARRAY, we discovered sex-specific differential methylation, in part explained by x-linked methylation in females. Increased TIMP-1 in the presence of LPS was potentiated by AZA treatment, signifying that a change in chromatin structure, but not in DNA methylation at the promoter region, is required for transcriptional activators to access the promoter region of TIMP-1. CONCLUSIONS Collectively, these observations support a potential role for pharmacological agents that modify chromatin structure to be utilized in the therapeutic targeting of TIMP-1 to prevent premature rupture of the fetal membranes in an infectious setting.
Collapse
Affiliation(s)
- Zoë L Vincent
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Gravida: National Centre for Growth and Development, Palmerston North, New Zealand
| | - Murray D Mitchell
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Anna P Ponnampalam
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Gravida: National Centre for Growth and Development, Palmerston North, New Zealand.
- The Heart Foundation, Auckland, New Zealand.
| |
Collapse
|
20
|
Zielins ER, Brett EA, Luan A, Hu MS, Walmsley GG, Paik K, Senarath-Yapa K, Atashroo DA, Wearda T, Lorenz HP, Wan DC, Longaker MT. Emerging drugs for the treatment of wound healing. Expert Opin Emerg Drugs 2015; 20:235-46. [PMID: 25704608 DOI: 10.1517/14728214.2015.1018176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. AREAS COVERED A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. EXPERT OPINION The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.
Collapse
Affiliation(s)
- Elizabeth R Zielins
- Stanford University School of Medicine, Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine , 257 Campus Drive, Stanford, CA 94305-5148 , USA +1 650 736 1707 ; +1 650 736 1705 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang C, Lai JH, Hu B, Zhang S, Zhao J, Li W. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1170-82. [DOI: 10.1016/j.bbagrm.2014.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
22
|
Horgan CE, Roumimper H, Tucker R, Lechner BE. Altered decorin and Smad expression in human fetal membranes in PPROM. Biol Reprod 2014; 91:105. [PMID: 25232019 DOI: 10.1095/biolreprod.114.121236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Humans with Ehlers-Danlos syndrome, a subtype of which is caused by abnormal decorin expression, are at increased risk of preterm birth due to preterm premature rupture of fetal membranes (PPROM). In the mouse model, the absence of decorin leads to fetal membrane abnormalities, preterm birth, and dysregulation of decorin's downstream pathway components, including the transcription factor p-Smad-2. However, the role of decorin and p-Smad-2 in idiopathic human PPROM is unknown. Fetal membranes from 20-25 pregnancies per group were obtained as a cross-sectional sample of births at one institution between January 2010 and December 2012. The groups were term, preterm without PPROM, and preterm with PPROM. Immunohistochemical analysis of fetal membranes was performed for decorin and p-Smad-2 using localization and quantification assessment. Decorin expression is developmentally regulated in fetal membranes and is decreased in preterm birth with PPROM compared to preterm birth without PPROM. In preterm with PPROM samples, the presence of infection is associated with significant decorin downregulation compared to preterm with PPROM samples without infection. The preterm with PPROM group exhibited decreased p-Smad-2 staining compared to both the term controls and the preterm-without-PPROM group. Our findings suggest that dysregulation of decorin and its downstream pathway component p-Smad-2 occurs in fetal membranes during the second trimester in pathological pregnancies, thus supporting a role for decorin and p-Smad-2 in the pathophysiology of fetal membranes and adverse pregnancy outcomes. These findings may lead to the discovery of new targets for the diagnosis and treatment of PPROM.
Collapse
Affiliation(s)
- Casie E Horgan
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Hailey Roumimper
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island Brown University, Providence, Rhode Island
| | - Richard Tucker
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Beatrice E Lechner
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Nissi R, Talvensaari-Mattila A, Kotila V, Niinimäki M, Järvelä I, Turpeenniemi-Hujanen T. Circulating matrix metalloproteinase MMP-9 and MMP-2/TIMP-2 complex are associated with spontaneous early pregnancy failure. Reprod Biol Endocrinol 2013; 11:2. [PMID: 23320481 PMCID: PMC3566964 DOI: 10.1186/1477-7827-11-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trophoblast cell (CTB) invasion into the maternal endometrium plays a crucial role during human embryo implantation and placentation. This invasion is facilitated by the activity of matrix metalloproteinases, which are regulated by tissue inhibitors of MMPs (TIMPs). METHODS This study compares the serum levels of MMP-9, MMP-2/TIMP-2 complex, TIMP-1 and TIMP-2 in 129 patients with ongoing pregnancy (n = 40) or spontaneous early pregnancy failure (n = 89). RESULTS MMP-9 was markedly (p < 0.0001) elevated in missed abortions, as was MMP-2/TIMP-2 complex (p < 0.0005). However, the serum levels of TIMP-1 and TIMP-2 were markedly elevated (p < 0.0001) in ongoing pregnancies. CONCLUSIONS Human placentation is mediated by fetal trophoblastic cells that invade the maternal uterine endometrium. Trophoblast invasion requires a precisely regulated secretion of specific proteolytic enzymes able to degrade the endometrial basement membrane and extracellular matrix. The elevated levels of MMP-9 and MMP-2/TIMP-2 complex may play a role in spontaneous termination of pregnancy.
Collapse
Affiliation(s)
- Ritva Nissi
- Department of Obstetrics and Gynecology, Oulu University Hospital, Kajaanintie 52A, Oulu, 90220, Finland
| | - Anne Talvensaari-Mattila
- Department of Obstetrics and Gynecology, Oulu University Hospital, Kajaanintie 52A, Oulu, 90220, Finland
| | - Vesa Kotila
- Department of Electrical Engineering, Division of Mathematics, University of Oulu, Finland
| | - Maarit Niinimäki
- Department of Obstetrics and Gynecology, Oulu University Hospital, Kajaanintie 52A, Oulu, 90220, Finland
| | - Ilkka Järvelä
- Department of Obstetrics and Gynecology, Oulu University Hospital, Kajaanintie 52A, Oulu, 90220, Finland
| | - Taina Turpeenniemi-Hujanen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Kajaanintie 52A, Oulu, 90220, Finland
| |
Collapse
|
24
|
Flores-Herrera H, García-López G, Díaz NF, Molina-Hernández A, Osorio-Caballero M, Soriano-Becerril D, Zaga-Clavellina V. An experimental mixed bacterial infection induced differential secretion of proinflammatory cytokines (IL-1β, TNFα) and proMMP-9 in human fetal membranes. Placenta 2012; 33:271-7. [PMID: 22280559 DOI: 10.1016/j.placenta.2012.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022]
Abstract
Overall, 1-4% of all births in the US are complicated by choriamnionitis. Choriamnionitis is a polymicrobial infection most often due to ascending genital microbes which, in over 65% of positive amniotic fluid cultures, involves two or more organisms. In this study, we determine the cytokines expression (IL-1β, TNFα) and prometalloproteinase activation (proMMP-2 and proMMP-9) after double o single infection an in vitro model of human fetal membranes. Fetal membranes at term were mounted in the Transwell culture system and after 24 h of infection, choriodecidual, and amnion media was collected. IL-1β and TNFα were evaluated by ELISA, whereas proMMP-9 and proMMP-2 were determined by substrate gel zymography. The choriodecidual and amnion compartments actively respond to the infectious process, which induced the secretion of IL-1β, TNFα, and proMMP-9 after either mixed or single infection. The proMMP-2 secretion profile was the same after all experimental conditions. There was no synergy between Streptococcus agalactiae and Escherichia coli for inducing the secretion of inflammatory factors or degradative metalloproteinase. In conclusion, these two bacteria could initiate different pathways to induce chorioamnioitis.
Collapse
Affiliation(s)
- H Flores-Herrera
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology Isidro Espinosa de los Reyes, Montes Urales # 800, Col. Lomas de Virreyes cp 11000, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
25
|
Adams Waldorf KM, Gravett MG, McAdams RM, Paolella LJ, Gough GM, Carl DJ, Bansal A, Liggitt HD, Kapur RP, Reitz FB, Rubens CE. Choriodecidual group B streptococcal inoculation induces fetal lung injury without intra-amniotic infection and preterm labor in Macaca nemestrina. PLoS One 2011; 6:e28972. [PMID: 22216148 PMCID: PMC3244436 DOI: 10.1371/journal.pone.0028972] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early events leading to intrauterine infection and fetal lung injury remain poorly defined, but may hold the key to preventing neonatal and adult chronic lung disease. Our objective was to establish a nonhuman primate model of an early stage of chorioamnionitis in order to determine the time course and mechanisms of fetal lung injury in utero. METHODOLOGY/PRINCIPAL FINDINGS Ten chronically catheterized pregnant monkeys (Macaca nemestrina) at 118-125 days gestation (term=172 days) received one of two treatments: 1) choriodecidual and intra-amniotic saline (n=5), or 2) choriodecidual inoculation of Group B Streptococcus (GBS) 1×10(6) colony forming units (n=5). Cesarean section was performed regardless of labor 4 days after GBS or 7 days after saline infusion to collect fetal and placental tissues. Only two GBS animals developed early labor with no cervical change in the remaining animals. Despite uterine quiescence in most cases, blinded review found histopathological evidence of fetal lung injury in four GBS animals characterized by intra-alveolar neutrophils and interstitial thickening, which was absent in controls. Significant elevations of cytokines in amniotic fluid (TNF-α, IL-8, IL-1β, IL-6) and fetal plasma (IL-8) were detected in GBS animals and correlated with lung injury (p<0.05). Lung injury was not directly caused by GBS, because GBS was undetectable in amniotic fluid (~10 samples tested/animal), maternal and fetal blood by culture and polymerase chain reaction. In only two cases was GBS cultured from the inoculation site in low numbers. Chorioamnionitis occurred in two GBS animals with lung injury, but two others with lung injury had normal placental histology. CONCLUSIONS/SIGNIFICANCE A transient choriodecidual infection can induce cytokine production, which is associated with fetal lung injury without overt infection of amniotic fluid, chorioamnionitis or preterm labor. Fetal lung injury may, thus, occur silently without symptoms and before the onset of the fetal systemic inflammatory response syndrome.
Collapse
|
26
|
Zaga-Clavellina V, Martha RVM, Flores-Espinosa P. In vitro secretion profile of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, and of human beta-defensins (HBD)-1, HBD-2, and HBD-3 from human chorioamniotic membranes after selective stimulation with Gardnerella vaginalis. Am J Reprod Immunol 2011; 67:34-43. [PMID: 21752147 DOI: 10.1111/j.1600-0897.2011.01054.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PROBLEM Preterm labor associated with infection is a major clinical condition; in this work, we analyze the response of human chorioamniotic membranes stimulated with Gardnerella vaginalis. METHOD OF STUDY Using a two-compartment experimental model, 1 × 10(6) CFU/mL of G. vaginalis were added to either the amnion or choriodecidua face or to both. Concentrations of IL-1β, TNF-α, and IL-6, as well as human beta defensins (HBD) 1-3 were quantified by ELISA. RESULTS In comparison with control conditions and regardless of the stimulation modality, IL-1β and IL-6 increased 4-fold and 28-fold, respectively, in the choriodecidual compartment. HBD-1 increased 2-fold mainly in the amniotic compartment when the stimulus was applied directly to this region. HBD-2 and HBD-3 increased an average of 2- and 8-fold, respectively, in the choriodecidual region. CONCLUSIONS Stimulation with G. vaginalis induced a tissue-specific secretion profile of 1L-1β, IL-6, and HBD 1-3 in the chorioamniotic membranes.
Collapse
Affiliation(s)
- Veronica Zaga-Clavellina
- Cell Biology Department, Instituto Nacional de Perinatologia 'Isidro Espinosa de los Reyes', Mexico City, Mexico.
| | | | | |
Collapse
|