1
|
Kahraman E, Vasconcelos D, Ribeiro B, Monteiro AC, Mastromatteo E, Bortolin A, Couto M, Boschis L, Lamghari M, Neto E. Deciphering cartilage neuro-immune interactions and innervation profile through 3D engineered osteoarthritic micropathophysiological system. Mater Today Bio 2025; 31:101491. [PMID: 39896288 PMCID: PMC11786692 DOI: 10.1016/j.mtbio.2025.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Osteoarthritis (OA) is an inflammatory musculoskeletal disorder that results in cartilage breakdown and alterations in the surrounding tissue microenvironment. Imbalances caused by inflammation and catabolic processes potentiate pathological nerves and blood vessels outgrowth toward damaged areas leading to pain in the patients. Yet, the precise mechanisms leading the nerve sprouting into the aneural cartilaginous tissue remain elusive. In this work, we aim to recapitulate in vitro the hallmarks of OA pathophysiology, including the sensory innervation profile, and provide a sensitive and reliable analytical tool to monitor the in vitro disease progression at microscale. Leveraging the use of patient-derived cells and bioengineering cutting-edge technologies, we engineered cartilage-like microtissues composed of primary human chondrocytes encapsulated in gelatin methacrylate hydrogel. Engineered constructs patterned inside microfluidic devices show the expression of cartilage markers, namely collagen type II, aggrecan, SOX-9 and glycosaminoglycans. Upon pro-inflammatory triggering, using primary human pro-inflammatory macrophage secretome, hallmarks of OA are recapitulated namely catabolic processes of human chondrocytes and the sensory innervation profile, supported by gene expression and functional assays. To monitor the OA micropathological system, a highly sensitive technology - EliChip™ - is presented to quantitively assess the molecular signature of cytokines and growth factors (interleukin 6 and nerve growth factor) produced from a single microfluidic chip. Herein, we report a miniaturized pathophysiological model and analytical tool to foster the neuro-immune interactions playing a role in cartilage-related disorders.
Collapse
Affiliation(s)
- Emine Kahraman
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Daniela Vasconcelos
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Beatriz Ribeiro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Ana Carolina Monteiro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Enzo Mastromatteo
- Trustech Innovation Technology, Via Baraggino, 76, 10034, Chivasso, Torino, Italy
| | - Andrea Bortolin
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Marina Couto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Laura Boschis
- Trustech Innovation Technology, Via Baraggino, 76, 10034, Chivasso, Torino, Italy
| | - Meriem Lamghari
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Estrela Neto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| |
Collapse
|
2
|
Gusar V, Kan N, Leonova A, Chagovets V, Tyutyunnik V, Khachatryan Z, Yarotskaya E, Sukhikh G. Non-Invasive Assessment of Neurogenesis Dysfunction in Fetuses with Early-Onset Growth Restriction Using Fetal Neuronal Exosomes Isolating from Maternal Blood: A Pilot Study. Int J Mol Sci 2025; 26:1497. [PMID: 40003962 PMCID: PMC11855093 DOI: 10.3390/ijms26041497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The vector of modern obstetrics is aimed at finding ways to predict various placenta-associated complications, including those associated with neuronal dysfunction on in fetal growth restriction (FGR). The technology of fetal neuronal exosome (FNE) isolation from the maternal bloodstream opens up unique opportunities for detecting early signs of fetal brain damage. Using this method, FNEs were isolated from the blood of pregnant women with and without early-onset FGR, and the expression of a number of proteins in their composition was assessed (Western blotting). Significant changes in the level of proteins involved in neurogenesis (pro-BDNF (brain-derived neurotrophic factor), pro-NGF (nerve growth factor), TAG1/Contactin2) and presynaptic transmission (Synapsin 1, Synaptophysin) were revealed. The preliminary data on the expression of FNE proteins that perform post-translational modifications-sumoylation (SUMO 1, UBC9) and neddylation (NEDD8, UBC12)-were obtained. A relationship was established between altered protein expression and neonatal outcomes in newborns with growth restriction. Our study opens up new possibilities for non-invasive prenatal monitoring of fetal neurodevelopment disorders and possibilities of their correction in placenta-associated diseases.
Collapse
Affiliation(s)
- Vladislava Gusar
- Laboratory of Applied Transcriptomics, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Natalia Kan
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| | - Anastasia Leonova
- Department of Molecular Diagnostic Methods and Personalized Medicine, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Vitaliy Chagovets
- Laboratory of Metabolomics and Bioinformatics, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Victor Tyutyunnik
- Center for Scientific and Clinical Research, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Zarine Khachatryan
- JSC “European Medical Center”, 35, Shchepkina Street, 129090 Moscow, Russia;
| | - Ekaterina Yarotskaya
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| | - Gennadiy Sukhikh
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| |
Collapse
|
3
|
Gu CL, Zhang L, Zhu Y, Bao TY, Zhu YT, Chen YT, Pang HQ. Exploring the cellular and molecular basis of nerve growth factor in cerebral ischemia recovery. Neuroscience 2025; 566:190-197. [PMID: 39742942 DOI: 10.1016/j.neuroscience.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Vascular obstruction often causes inadequate oxygen and nutrient supply to the brain. This deficiency results in cerebral ischemic injury, which significantly impairs neurological function. This review aimed to explore the neuroprotective and regenerative effects of nerve growth factor (NGF) in cerebral ischemic injury. NGF, a crucial neurotrophic factor, could inhibit neuronal apoptosis, reduce inflammatory responses, and promote axon regeneration and angiogenesis through its interaction with TrkA, a high-affinity receptor. These functions were closely related to the activation of Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) and Mitogen-Activated Protein Kinase (MAPK) pathways. Moreover, the mechanisms of NGF in the acute and recovery phases, along with the strategies to enhance its therapeutic effects using delivery systems (such as intranasal administration, nanovesicles, and gene therapy) were also summarized. Although NGF shows great potential for clinical application, its delivery efficiency and long-term safety still need more research and improvements. Future research should focus on exploring the specific action mechanism of NGF, optimizing the delivery strategy, and evaluating its long-term efficacy and safety to facilitate its clinical transformation in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chen-Lin Gu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Lu Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yan Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Ting-Yu Bao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ting Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yu-Tong Chen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Gupta A, Mishra SK, Lascelles BDX. Emerging evidence of artemin/GFRα3 signaling in musculoskeletal pain. Osteoarthritis Cartilage 2025; 33:196-206. [PMID: 39374825 PMCID: PMC11757073 DOI: 10.1016/j.joca.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Chronic musculoskeletal pain is highly prevalent and poses a significant personal, societal, and economic burden. Management of chronic musculoskeletal pain remains a challenge. Long-term use of common analgesic medications such as nonsteroidal anti-inflammatory drugs and opioids is associated with adverse events, and in the case of opioids, drug addiction. Additionally, many individuals do not experience sufficient pain relief with these therapeutic approaches. Thus, there is an urgent need to develop clinically efficacious and safe therapeutics for musculoskeletal pain. Recent advances in our understanding of musculoskeletal pain neurobiology have helped identify the role of neurotrophic factors, specifically, the glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFL) and their associated signaling pathways. This review outlines our current understanding of the GFL signaling systems, discusses their role in inflammatory and chronic musculoskeletal pain and sensitivity, and comments on the analgesic therapeutic potential of targeting the GFL signaling system.
Collapse
Affiliation(s)
- Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - B Duncan X Lascelles
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2025; 14:e2400496. [PMID: 38850170 PMCID: PMC11834377 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Ciências Biomédicas Abel SalazarUniversidade do Porto – ICBASRua Jorge de Viterbo Ferreira 228Porto4050–313Portugal
| | - Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Escola Superior de SaúdeInstituto Politécnico do PortoRua Dr. António Bernardino de Almeida 400Porto4200‐072Portugal
| | - Bruno Sarmento
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Universitário de Ciências da Saúde – IUCS‐CESPURua Central de Gandra, 1317Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| |
Collapse
|
6
|
Gong Z, Chen Z, Li D, Lu X, Wu J, Sun H, Wang X, Liu S, Xia X, Lu F, Jiang J, Sun C, Wang H, Zeng F, Ma X. Hydrogel loaded with cerium-manganese nanoparticles and nerve growth factor enhances spinal cord injury repair by modulating immune microenvironment and promoting neuronal regeneration. J Nanobiotechnology 2025; 23:29. [PMID: 39833803 PMCID: PMC11748312 DOI: 10.1186/s12951-025-03098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair. METHODS CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification. Transmission Electron Microscopy, Selected-Area Electron Diffraction, X-ray Diffraction and X-ray Photoelectron Spectroscopy confirmed their crystalline structure, mixed-valence states, and redox properties. Size uniformity, biocompatibility, and catalytic activity were assessed via hydrodynamic diameter, zeta potential, and elemental analysis. The Lightgel/NGF/CeMn NP-PEG composite was synthesized and characterized via electron microscopy, compression testing, rheological analysis, NGF release kinetics, and 30-day degradation studies. Both in vitro and in vivo experiments were conducted to evaluate the therapeutic effects of the composite on SCI. RESULTS The Lightgel/NGF/CeMn NP-PEG composite was successfully synthesized, exhibiting favorable physical properties. At a CeMn NP-PEG concentration of 4 µg/mL, the composite maintained cell viability and demonstrated enhanced biological activity. It also showed superior mechanical properties and an effective NGF release profile. Notably, the composite significantly upregulated the expression of nerve growth-associated proteins, reduced inflammatory cytokines, scavenged reactive oxygen species (ROS), and promoted M2 macrophage polarization by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. In a rat SCI model, it facilitated functional recovery and attenuated inflammation. CONCLUSION The Lightgel/NGF/CeMn NP-PEG composite shows significant therapeutic promise for SCI, effectively eliminating ROS, promoting M2 macrophage polarization, reducing pro-inflammatory cytokines, and supporting neuronal regeneration. These effects substantially enhance motor function in SCI rats, positioning it as a promising candidate for future clinical applications.
Collapse
Affiliation(s)
- Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Dachuan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Jianwei Wu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Hanqiu Sun
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Ximeng Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Chi Sun
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Feng Zeng
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
7
|
Su Y, Liu T, Zhao M, Wu D, Wang Y, Wu X. Isoviolanthin promotes Schwann cells activity in peripheral nerve regeneration via Fhl3-mediated epithelial-mesenchymal transition-like process: An in vitro study. Heliyon 2025; 11:e41087. [PMID: 39811297 PMCID: PMC11731196 DOI: 10.1016/j.heliyon.2024.e41087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration. We represented the first evidence that isoviolanthin possesses the capability to enhance Schwann cell proliferation and migration. Then, transcriptome sequencing was employed to examine the Differential Expressed Genes (DEGs), resulting in the identification of 193 DEGs. Following this, the expression levels of the top 5 up-regulated genes were confirmed through RT-qPCR, with Fhl3 demonstrating the most significant up-regulation. Schwann cells were transduced with virus particles made in HEK-293T/17 cells by transfection with lentivirus packaging plasmids containing Fhl3. A notable enhancement in Schwann cell proliferation and migration was observed following transduction. Furthermore, the Fhl3-up group exhibited a significant upregulation of Vimentin expression compared to the control group. These results suggested that isoviolanthin plays a positive role in enhancing Schwann cells' activity via increasing Fhl3 expression, and the mechanism may be related to the EMT(epithelial-mesenchymal transition)-like process.
Collapse
Affiliation(s)
- Yajuan Su
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tiantian Liu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Minjun Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Wu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuehua Wang
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xubo Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
8
|
Dewi MM, Imron A, Risan NA, Mediana G, Judistiani RTD, Setiabudiawan B. The Association of Vitamin D, Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), and Glial Cell-Derived Neurotrophic Factor (GDNF) with Development in Children. CHILDREN (BASEL, SWITZERLAND) 2025; 12:60. [PMID: 39857891 PMCID: PMC11763926 DOI: 10.3390/children12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Short stature remains a global problem and is associated with vitamin D status. Vitamin D is also a neurosteroid with regard to neurotrophic factors but its role in development is unclear. Therefore, this study analyzed the relationships between vitamin D, NGF, GDNF, and BDNF and developmental status in children with a history of short stature (<2 years). METHODS This research is a prospective cross-sectional study conducted in March 2022. The vitamin D, NGF, GDNF, and BDNF levels were measured in stored biological materials from children aged 2-4 years, and their Ages and Stages Questionnaire (ASQ-3) scores were also assessed. The results were analyzed via the chi-square test, Fisher's exact test, Mann-Whitney test for NGF, unpaired t-test, and Spearman rank correlation. RESULTS Among the 85 study subjects, 41.2% were short in stature, with 37% having developmental deviation. Male sex (p = 0.038) and low maternal education (p = 0.024) were associated with short stature. The mean vitamin D level was lower (p = 0.041) in children with short stature (27.65 ng/dL). The risk factors associated with short stature were vitamin D levels ≤ 32.7 ng/dL, GDNF levels ≤ 12.99 ng/mL, male sex, and low maternal education. Children with short stature (<2 years old) also demonstrated impaired problem-solving as assessed by the ASQ-3 (p = 0.005). Vitamin D was also associated with gross motor skills (p = 0.035) and personal social development (p = 0.038). CONCLUSIONS There was no association of vitamin D with NGF, GDNF, or BDNF levels. Vitamin D levels are associated with short stature and development in children, especially gross motor skills, personal social development, and problem solving.
Collapse
Affiliation(s)
- Mia Milanti Dewi
- Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, West Java, Indonesia; (N.A.R.); (B.S.)
| | - Akhmad Imron
- Neurosurgery Department, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, West Java, Indonesia;
| | - Nelly Amalia Risan
- Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, West Java, Indonesia; (N.A.R.); (B.S.)
| | - Grace Mediana
- Bandung City Health Service, Bandung 40161, West Java, Indonesia;
| | - Raden Tina Dewi Judistiani
- Public Health Department, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia;
| | - Budi Setiabudiawan
- Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung 40161, West Java, Indonesia; (N.A.R.); (B.S.)
| |
Collapse
|
9
|
Wang J, Tang X, Liu F, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Sources, metabolism, health benefits and future development of saponins from plants. Food Res Int 2024; 197:115226. [PMID: 39593311 DOI: 10.1016/j.foodres.2024.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Saponins are a class of glycoside compounds whose aglycones are triterpenoids or spirostanes, widely exist in a variety of Chinese herbs. Saponins are one of the important active components of medicinal plants and have a wide range of bioactivities. In order to promote the better development and utilization of saponins, the process of digestion, absorption and metabolism of saponins in vivo was reviewed in this paper. At the same time, the main bioactivities of common saponins and their potential mechanisms for alleviating diseases were summarized. Finally, the potential of saponins as functional food has been pointed out, and microbial transformation can make saponins better play this potential in the future.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Fei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
10
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
11
|
Da Vitoria Lobo M, Hardowar L, Valentine T, Tomblin L, Guest C, Sharma D, Dickins B, Paul-Clark M, Hulse RP. Early-life cisplatin exposure induces neuroinflammation and chemotherapy-induced neuropathic pain. Dis Model Mech 2024; 17:dmm052062. [PMID: 39428813 PMCID: PMC11625889 DOI: 10.1242/dmm.052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse health-related comorbidity that manifests later in life in patients with paediatric cancer. Current analgesia is ineffective, aligning closely with our lack of understanding of CINP. The aim of this study was to investigate how cisplatin induces nerve growth factor (NGF)-mediated neuroinflammation and nociceptor sensitisation. In a rat model of cisplatin-induced survivorship pain, cisplatin induced a neuroinflammatory environment in the dorsal root ganglia (DRG), demonstrated by NGF-positive macrophages infiltrating into the DRG. Cisplatin-treated CD11b- and F4/80-positive macrophages expressed more NGF compared to those treated with vehicle control. Mouse primary DRG sensory neuronal cultures demonstrated enhanced NGF-dependent TRPV1-mediated nociceptor activity after cisplatin treatment. Increased nociceptor activity was also observed when cultured mouse DRG neurons were treated with conditioned medium from cisplatin-activated macrophages. Elevated nociceptor activity was inhibited in a dose-dependent manner by an NGF-neutralising antibody. Intraperitoneal administration of the NGF-neutralising antibody reduced cisplatin-induced mechanical hypersensitivity and aberrant nociceptor intraepidermal nerve fibre density. These findings identify that a monocyte- or macrophage-driven NGF-TrkA pathway is a novel analgesic target for adult survivors of childhood cancer.
Collapse
Affiliation(s)
- Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lydia Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Charlotte Guest
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Dhyana Sharma
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Mark Paul-Clark
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
12
|
Gul MK, Sahin M, Demirci E, Ozmen S, Tahtasakal R, Sener EF. Nerve growth factor and angiotensin converting enzyme 2 levels in children with neurodevelopmental disorders. Int J Neurosci 2024; 134:1235-1241. [PMID: 37691578 DOI: 10.1080/00207454.2023.2257871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Neurodevelopmental disorders (NDDs) are the most common psychiatric disorders in childhood, and there are many factors in their etiology. In recent years, many biomarkers have been studied to elucidate the etiology of these disorders. In this study, it was aimed to investigate the levels of nerve growth factor (NGF) and angiotensin converting enzyme 2 (ACE2) in attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and intellectual disability (ID). METHODS The study included 74 children with NDDs (the number of patients in ADHD, ASD and ID groups were 24, 25 and 25 respectively) and 30 healthy controls (HCs). Serum NGF and ACE2 levels were studied with ELISA kits, also complete blood count (CBC), levels of fasting glucose and serum lipids were assessed. RESULTS ACE2 levels were found to be lower in NDD group than HCs in girls. In boys with ASD, triglyceride levels were significantly higher than other groups. Also a positive correlation was found between ACE2 and NGF levels when all sample assessed together. CONCLUSIONS This study is a premise for investigating ACE2 and NGF in NDDs. The role of these markers in ADHD, ASD, ID and other NDDs and their associations with gender should be assessed by studies in which both larger sample groups and more disorders.
Collapse
Affiliation(s)
- Melike Kevser Gul
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Murside Sahin
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Esra Demirci
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Sevgi Ozmen
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Reyhan Tahtasakal
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Elif Funda Sener
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| |
Collapse
|
13
|
Kim SG, Hwang JS, George NP, Jang YE, Kwon M, Lee SS, Lee G. Integrative Metabolome and Proteome Analysis of Cerebrospinal Fluid in Parkinson's Disease. Int J Mol Sci 2024; 25:11406. [PMID: 39518959 PMCID: PMC11547079 DOI: 10.3390/ijms252111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recent studies have highlighted the significant role of cerebrospinal fluid (CSF) in reflecting pathophysiological PD brain conditions by analyzing the components of CSF. Based on the published literature, we created a single network with altered metabolites in the CSF of patients with PD. We analyzed biological functions related to the transmembrane of mitochondria, respiration of mitochondria, neurodegeneration, and PD using a bioinformatics tool. As the proteome reflects phenotypes, we collected proteome data based on published papers, and the biological function of the single network showed similarities with that of the metabolomic network. Then, we analyzed the single network of integrated metabolome and proteome. In silico predictions based on the single network with integrated metabolomics and proteomics showed that neurodegeneration and PD were predicted to be activated. In contrast, mitochondrial transmembrane activity and respiration were predicted to be suppressed in the CSF of patients with PD. This review underscores the importance of integrated omics analyses in deciphering PD's complex biochemical networks underlying neurodegeneration.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
14
|
Svenningsson AL, Bocancea DI, Stomrud E, van Loenhoud A, Barkhof F, Mattsson-Carlgren N, Palmqvist S, Hansson O, Ossenkoppele R. Biological mechanisms of resilience to tau pathology in Alzheimer's disease. Alzheimers Res Ther 2024; 16:221. [PMID: 39396028 PMCID: PMC11470552 DOI: 10.1186/s13195-024-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND In Alzheimer's disease (AD), the associations between tau pathology and brain atrophy and cognitive decline are well established, but imperfect. We investigate whether cerebrospinal fluid (CSF) biomarkers of biological processes (vascular, synaptic, and axonal integrity, neuroinflammation, neurotrophic factors) explain the disconnection between tau pathology and brain atrophy (brain resilience), and tau pathology and cognitive decline (cognitive resilience). METHODS We included 428 amyloid positive participants (134 cognitively unimpaired (CU), 128 with mild cognitive impairment (MCI), 166 with AD dementia) from the BioFINDER-2 study. At baseline, participants underwent tau positron emission tomography (tau-PET), magnetic resonance imaging (MRI), cognitive testing, and lumbar puncture. Longitudinal data were available for MRI (mean (standard deviation) follow-up 26.4 (10.7) months) and cognition (25.2 (11.4) months). We analysed 18 pre-selected CSF proteins, reflecting vascular, synaptic, and axonal integrity, neuroinflammation, and neurotrophic factors. Stratifying by cognitive status, we performed linear mixed-effects models with cortical thickness (brain resilience) and global cognition (cognitive resilience) as dependent variables to assess whether the CSF biomarkers interacted with tau-PET levels in its effect on cortical atrophy and cognitive decline. RESULTS Regarding brain resilience, interaction effects were observed in AD dementia, with vascular integrity biomarkers (VEGF-A (βinteraction = -0.009, pFDR = 0.047) and VEGF-B (βinteraction = -0.010, pFDR = 0.037)) negatively moderating the association between tau-PET signal and atrophy. In MCI, higher NfL levels were associated with more longitudinal cortical atrophy (β = -0.109, pFDR = 0.033) and lower baseline cortical thickness (β = -0.708, pFDR = 0.033) controlling for tau-PET signal. Cognitive resilience analyses in CU revealed interactions with tau-PET signal for inflammatory (GFAP, IL-15; βinteraction -0.073--0.069, pFDR 0.001-0.045), vascular (VEGF-A, VEGF-D, PGF; βinteraction -0.099--0.063, pFDR < 0.001-0.046), synaptic (14-3-3ζ/δ; βinteraction = -0.092, pFDR = 0.041), axonal (NfL; βinteraction = -0.079, pFDR < 0.001), and neurotrophic (NGF; βinteraction = 0.091, pFDR < 0.001) biomarkers. In MCI higher NfL levels (βmain = -0.690, pFDR = 0.025) were associated with faster cognitive decline independent of tau-PET signal. CONCLUSIONS Biomarkers of co-existing pathological processes, in particular vascular pathology and axonal degeneration, interact with levels of tau pathology on its association with the downstream effects of AD pathology (i.e. brain atrophy and cognitive decline). This indicates that vascular pathology and axonal degeneration could impact brain and cognitive resilience.
Collapse
Affiliation(s)
- Anna L Svenningsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden.
| | - Diana I Bocancea
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Anita van Loenhoud
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, WC1N 3BG, UK
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Department of Neurology, Skåne University Hospital, 211 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Pandamooz S, Safari A, Ghorbani N, Jamhiri I, Zare S, Belém-Filho IJA, Dolati P, Salehi MS. Dimethyl Fumarate Preconditioning can Reinforce the Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells through Trophic Factor Profile Enhancement. Adv Biomed Res 2024; 13:37. [PMID: 39224404 PMCID: PMC11368223 DOI: 10.4103/abr.abr_298_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have confirmed the therapeutic efficacy of bone marrow-derived mesenchymal stem cells (BM-MSCs) in addressing neurologic disorders. To date, several preconditioning strategies have been designed to improve the therapeutic potential of these stem cells. This study was designed to evaluate the preconditioning effect of dimethyl fumarate (DMF) on the expression of main trophic factors in human BM-MSCs. Materials and Methods Initially, the identity of stem cells was confirmed through the evaluation of surface markers and their capacity for osteogenic and adipogenic differentiation using flow cytometry and differentiation assay, respectively. Subsequently, stem cells were subjected to different concentrations of DMF for 72 hours and their viability was defined by MTT assay. Following 72-hour preconditioning period with 10 µM DMF, gene expression was assessed by quantitative RT-PCR. Results Our findings demonstrated that the isolated stem cells expressed cardinal MSC surface markers and exhibited osteogenic and adipogenic differentiation potential. MTT results confirmed that 10 µM DMF was an optimal dose for maintaining cell viability. Preconditioning of stem cells with DMF significantly upregulated the expression of BDNF, NGF, and NT-3. Despite a slight increase in transcript level of GDNF and VEGF after DMF preconditioning, this difference was not statistically significant. Conclusions Our findings suggest that DMF preconditioning can enhance the expression of major neurotrophic factors in human BM-MSCs. Given the curative potential of both BM-MSCs and DMF in various neurological disease models and preconditioning outcomes, their combined use may synergistically enhance their neuroprotective properties.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Ghorbani
- Department of Nursing, College of Nursing, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Iman Jamhiri
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parisa Dolati
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Chaldakov GN, Aloe L, Yanev SG, Fiore M, Tonchev AB, Vinciguerra M, Evtimov NT, Ghenev P, Dikranian K. Trackins (Trk-Targeting Drugs): A Novel Therapy for Different Diseases. Pharmaceuticals (Basel) 2024; 17:961. [PMID: 39065809 PMCID: PMC11279958 DOI: 10.3390/ph17070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Many routes may lead to the transition from a healthy to a diseased phenotype. However, there are not so many routes to travel in the opposite direction; that is, therapy for different diseases. The following pressing question thus remains: what are the pathogenic routes and how can be they counteracted for therapeutic purposes? Human cells contain >500 protein kinases and nearly 200 protein phosphatases, acting on thousands of proteins, including cell growth factors. We herein discuss neurotrophins with pathogenic or metabotrophic abilities, particularly brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), pro-NGF, neurotrophin-3 (NT-3), and their receptor Trk (tyrosine receptor kinase; pronounced "track"). Indeed, we introduced the word trackins, standing for Trk-targeting drugs, that play an agonistic or antagonistic role in the function of TrkBBDNF, TrkCNT-3, TrkANGF, and TrkApro-NGF receptors. Based on our own published results, supported by those of other authors, we aim to update and enlarge our trackins concept, focusing on (1) agonistic trackins as possible drugs for (1a) neurotrophin-deficiency cardiometabolic disorders (hypertension, atherosclerosis, type 2 diabetes mellitus, metabolic syndrome, obesity, diabetic erectile dysfunction and atrial fibrillation) and (1b) neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and multiple sclerosis), and (2) antagonistic trackins, particularly TrkANGF inhibitors for prostate and breast cancer, pain, and arrhythmogenic right-ventricular dysplasia. Altogether, the druggability of TrkANGF, TrkApro-NGF, TrkBBDNF, and TrkCNT-3 receptors via trackins requires a further translational pursuit. This could provide rewards for our patients.
Collapse
Affiliation(s)
- George N. Chaldakov
- Departments of Anatomy and Cell Biology and Translational Stem Cell Biology, Research Institute, Medical University, 9002 Varna, Bulgaria
| | - Luigi Aloe
- Fondazione Iret, Tecnopolo R. Levi-Montalcini, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Stanislav G. Yanev
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council, IBBC-CNR, 00185 Rome, Italy
| | - Anton B. Tonchev
- Departments of Anatomy and Cell Biology and Translational Stem Cell Biology, Research Institute, Medical University, 9002 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University, 9002 Varna, Bulgaria
| | - Nikolai T. Evtimov
- Department of Urology, University St Anna Hospital, 9002 Varna, Bulgaria
| | - Peter Ghenev
- Department of General and Clinical Pathology, Medical University, 9002 Varna, Bulgaria
| | - Krikor Dikranian
- Department of Neuroscience, Medical School, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Capossela L, Gatto A, Ferretti S, Di Sarno L, Graglia B, Massese M, Soligo M, Chiaretti A. Multifaceted Roles of Nerve Growth Factor: A Comprehensive Review with a Special Insight into Pediatric Perspectives. BIOLOGY 2024; 13:546. [PMID: 39056738 PMCID: PMC11273967 DOI: 10.3390/biology13070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nerve growth factor (NGF) is a neurotrophic peptide largely revealed for its ability to regulate the growth and survival of peripheral sensory, sympathetic, and central cholinergic neurons. The pro-survival and regenerative properties of neurotrophic factors propose a therapeutic potential in a wide range of brain diseases, and NGF, in particular, has appeared as an encouraging potential treatment. In this review, a summary of clinical studies regarding NGF and its therapeutic effects published to date, with a specific interest in the pediatric context, will be attempted. NGF has been studied in neurological disorders such as hypoxic-ischemic encephalopathy, traumatic brain injury, neurobehavioral and neurodevelopmental diseases, congenital malformations, cerebral infections, and in oncological and ocular diseases. The potential of NGF to support neuronal survival, repair, and plasticity in these contexts is highlighted. Emerging therapeutic strategies for NGF delivery, including intranasal administration as well as advanced nanotechnology-based methods, are discussed. These techniques aim to enhance NGF bioavailability and target specificity, optimizing therapeutic outcomes while minimizing systemic side effects. By synthesizing current research, this review underscores the promise and challenges of NGF-based therapies in pediatric neurology, advocating for continued innovation in delivery methods to fully harness NGF's therapeutic potential.
Collapse
Affiliation(s)
- Lavinia Capossela
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Antonio Gatto
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Serena Ferretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Lorenzo Di Sarno
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Benedetta Graglia
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Miriam Massese
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy;
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| |
Collapse
|
18
|
Mendes AX, Caballero Aguilar L, do Nascimento AT, Duchi S, Charnley M, Nisbet DR, Quigley AF, Kapsa RMI, Moraes Silva S, Moulton SE. Integrating Graphene Oxide-Hydrogels and Electrical Stimulation for Controlled Neurotrophic Factor Encapsulation: A Promising Approach for Efficient Nerve Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4175-4192. [PMID: 38830774 DOI: 10.1021/acsabm.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.
Collapse
Affiliation(s)
- Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith Caballero Aguilar
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Melbourne, Victoria 3065, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000 Australia
| | - David R Nisbet
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Melbourne, Victoria 3065, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Saimon Moraes Silva
- Department of Biochemistry and Chemistry, Biomedical and Environmental Sensor Technology Centre, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
19
|
Gavioli E, Mantelli F, Cesta MC, Sacchetti M, Allegretti M. The History of Nerve Growth Factor: From Molecule to Drug. Biomolecules 2024; 14:635. [PMID: 38927039 PMCID: PMC11201509 DOI: 10.3390/biom14060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve growth factor (NGF), the first neurotrophin to be discovered, has a long and eventful research journey with a series of turning points, setbacks, and achievements. Since the groundbreaking investigations led by Nobel Prize winner Rita Levi-Montalcini, advancements in the comprehension of NGF's functions have revolutionized the field of neuroscience, offering new insights and opportunities for therapeutic innovation. However, the clinical application of NGF has historically been hindered by challenges in determining appropriate dosing, administration strategies, and complications related to the production process. Recent advances in the production and scientific knowledge of recombinant NGF have enabled its clinical development, and in 2018, the United States Food and Drug Administration approved cenegermin-bkbj, a recombinant human NGF, for the treatment of all stages of neurotrophic keratitis. This review traces the evolutionary path that transformed NGF from a biological molecule into a novel therapy with potential research applications beyond the eye. Special emphasis is put on the studies that advanced NGF from discovery to the first medicinal product approved to treat a human disease.
Collapse
Affiliation(s)
| | - Flavio Mantelli
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Maria Candida Cesta
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Marta Sacchetti
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Marcello Allegretti
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| |
Collapse
|
20
|
Kakinen A, Jiang Y, Davis TP, Teesalu T, Saarma M. Brain Targeting Nanomedicines: Pitfalls and Promise. Int J Nanomedicine 2024; 19:4857-4875. [PMID: 38828195 PMCID: PMC11143448 DOI: 10.2147/ijn.s454553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yuhao Jiang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Metallinou C, Staneloudi C, Nikolettos K, Asimakopoulos B. NGF, EPO, and IGF-1 in the Male Reproductive System. J Clin Med 2024; 13:2918. [PMID: 38792459 PMCID: PMC11122040 DOI: 10.3390/jcm13102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Several studies have demonstrated interesting results considering the implication of three growth factors (GFs), namely nerve growth factor (NGF), erythropoietin (EPO), and the insulin-like growth factor-I (IGF-1) in the physiology of male reproductive functions. This review provides insights into the effects of NGF, EPO, and IGF-1 on the male reproductive system, emphasizing mainly their effects on sperm motility and vitality. In the male reproductive system, the expression pattern of the NGF system varies according to the species and testicular development, playing a crucial role in morphogenesis and spermatogenesis. In humans, it seems that NGF positively affects sperm motility parameters and NGF supplementation in cryopreservation media improves post-thaw sperm motility. In animals, EPO is found in various male reproductive tissues, and in humans, the protein is present in seminal plasma and testicular germ cells. EPO receptors have been discovered in the plasma membrane of human spermatozoa, suggesting potential roles in sperm motility and vitality. In humans, IGF-1 is expressed mainly in Sertoli cells and is present in seminal plasma, contributing to cell development and the maturation of spermatozoa. IGF-1 seems to modulate sperm motility, and treatment with IGF-1 has a positive effect on sperm motility and vitality. Furthermore, lower levels of NGF or IGF-1 in seminal plasma are associated with infertility. Understanding the mechanisms of actions of these GFs in the male reproductive system may improve the outcome of sperm processing techniques.
Collapse
Affiliation(s)
- Chryssa Metallinou
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Chrysovalanto Staneloudi
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Nikolettos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| |
Collapse
|
22
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|
24
|
Balkrishna A, Bhattacharya K, Shukla S, Varshney A. Neuroprotection by Polyherbal Medicine Divya-Medha-Vati Against Scopolamine-Induced Cognitive Impairment Through Modulation of Oxidative Stress, Acetylcholine Activity, and Cell Signaling. Mol Neurobiol 2024; 61:1363-1382. [PMID: 37707741 DOI: 10.1007/s12035-023-03601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer disease is associated with cognitive impairments and neuronal damages. In this study, Scopolamine, a model drug used for the generation of Alzheimer-like symptoms induced cognitive dysfunction in C57BL/6 mice. It also elevated acetylcholine esterase (AcHE) activity, and reduced antioxidant (superoxide dismutase and catalase) activity in cortex tissue. Scop reduced neuronal density and increased pyknotic neurons in hippocampus tissue. In mouse neuroblastoma (Neuro2a) cells, Scop triggered a dose-dependent loss of cell viability and neurite outgrowth reduction. Scop-treated Neuro2a cells showed oxidative stress and reduction in mRNA expression for brain-derived neurotrophic factor (BDNF), nerve growth factor-1 (NGF-1), and Synapsin-1 (SYN-1) genes. Mice treated with Divya-Medha-Vati (DMV), an Ayurvedic polyherbal medicine showed protection against Scop-induced cognitive impairment (Morris Water Maze Escape Latency, and Elevated Plus Maze Transfer Latency). DMV protected against Scop-induced AcHE activity, and loss of antioxidant activities in the mice brain cortex while sustaining neuronal density in the hippocampus region. In the Neuro2a cells, DMV reduced Scop-induced loss of cell viability and neurite outgrowth loss. DMV protected the cells against induction of oxidative stress and promoted mRNA expression of BDNF, NGF-1, and SYN-1 genes. Phytochemical profiling of DMV showed the presence of Withanolide A, Withanolide B, Bacopaside II, Jujubogenin, Apigenin, Gallic acid, Caffeic acid, and Quercetin that are associated with antioxidant and neurostimulatory activities. In conclusion, the study showed that Divya-Medha-Vati was capable of promoting neuronal health and inhibiting Alzheimer-like cognitive dysfunction through enhanced antioxidant activities and modulation of neuronal activities.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Uttarakhand, Haridwar, 249 405, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G41 1AU, UK
- Vedic Acharya Samaj Foundation Inc, NFP 21725 CR 33, Groveland, FL, 34736, USA
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India.
| | - Sunil Shukla
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India.
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Uttarakhand, Haridwar, 249 405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
25
|
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes (Basel) 2024; 15:266. [PMID: 38540325 PMCID: PMC10970414 DOI: 10.3390/genes15030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.
Collapse
Affiliation(s)
- Hannah E. Snyder
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Kevin C. Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| |
Collapse
|
26
|
Yin T, Wang G, Wang L, Mudgal P, Wang E, Pan CC, Alexander PB, Wu H, Cao C, Liang Y, Tan L, Huang D, Chong M, Chen R, Lim BJW, Xiang K, Xue W, Wan L, Hu H, Loh YH, Wang XF, Li QJ. Breaking NGF-TrkA immunosuppression in melanoma sensitizes immunotherapy for durable memory T cell protection. Nat Immunol 2024; 25:268-281. [PMID: 38195702 PMCID: PMC11377935 DOI: 10.1038/s41590-023-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guoping Wang
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Rui Chen
- Hervor Therapeutics, Hangzhou, China
| | - Bryan Jian Wei Lim
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wei Xue
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology and Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hailan Hu
- Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
27
|
Fang W, Chai C, Lu J. The causal effects of circulating cytokines on sepsis: a Mendelian randomization study. PeerJ 2024; 12:e16860. [PMID: 38313013 PMCID: PMC10838533 DOI: 10.7717/peerj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Background In observational studies, sepsis and circulating levels of cytokines have been associated with unclear causality. This study used Mendelian randomization (MR) to identify the causal direction between circulating cytokines and sepsis in a two-sample study. Methods An MR analysis was performed to estimate the causal effect of 41 cytokines on sepsis risk. The inverse-variance weighted random-effects method, the weighted median-based method, and MR-Egger were used to analyze the data. Heterogeneity and pleiotropy were assessed using MR-Egger regression and Cochran's Q statistic. Results Genetically predicted beta-nerve growth factor (OR = 1.12, 95% CI [1.037-1.211], P = 0.004) increased the risk of sepsis, while RANTES (OR = 0.92, 95% CI [0.849-0.997], P = 0.041) and fibroblast growth factor (OR = 0.869, 95% CI [0.766-0.986], P = 0.029) reduced the risk of sepsis. These findings were robust in extensive sensitivity analyses. There was no clear association between the other cytokines and sepsis risk. Conclusion The findings of this study demonstrate that beta-nerve growth factor, RANTES, and fibroblast growth factor contribute to sepsis risk. Investigations into potential mechanisms are warranted.
Collapse
Affiliation(s)
- Weijun Fang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China, Wuhan, China
| | - Chen Chai
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China, Wuhan, China
| | - Jiawei Lu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China, Wuhan, China
| |
Collapse
|
28
|
Zheng L, Shi L, Wu X, Hu P, Zhang B, Han X, Wang K, Li X, Yang F, Wang Y, Li X, Qiao R. Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status. Animals (Basel) 2024; 14:374. [PMID: 38338017 PMCID: PMC10854898 DOI: 10.3390/ani14030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Saliva is an important exocrine fluid that is easy to collect and is a complex mixture of proteins and other molecules from multiple sources from which considerable biological information can be mined. Pig saliva, as an easily available biological liquid rich in bioactive ingredients, is rich in nucleic acid analytes, such as eggs, enzymes, amino acids, sugars, etc. The expression levels of these components in different diseases have received extensive attention, and the analysis of specific proteins, metabolites, and biological compositions in pig saliva has become a new direction for disease diagnosis and treatment. The study of the changes in analytes in pig saliva can provide a new strategy for early diagnosis, prognosis assessment, and treatment of diseases. In this paper, the detection methods and research progress of porcine salivary analytes are reviewed, the application and research progress of porcine salivary analytes in diseases are discussed, and the future application prospect is presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (L.S.)
| |
Collapse
|
29
|
Agerskov RH, Nyeng P. Innervation of the pancreas in development and disease. Development 2024; 151:dev202254. [PMID: 38265192 DOI: 10.1242/dev.202254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The autonomic nervous system innervates the pancreas by sympathetic, parasympathetic and sensory branches during early organogenesis, starting with neural crest cell invasion and formation of an intrinsic neuronal network. Several studies have demonstrated that signals from pancreatic neural crest cells direct pancreatic endocrinogenesis. Likewise, autonomic neurons have been shown to regulate pancreatic islet formation, and have also been implicated in type I diabetes. Here, we provide an overview of recent progress in mapping pancreatic innervation and understanding the interactions between pancreatic neurons, epithelial morphogenesis and cell differentiation. Finally, we discuss pancreas innervation as a factor in the development of diabetes.
Collapse
Affiliation(s)
- Rikke Hoegsberg Agerskov
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| | - Pia Nyeng
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| |
Collapse
|
30
|
Chaker SC, Saad M, Mayes T, Lineaweaver WC. Burn Injury-related Growth Factor Expressions and Their Potential Roles in Burn-related Neuropathies. J Burn Care Res 2024; 45:25-31. [PMID: 37978864 DOI: 10.1093/jbcr/irad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
In the context of burn injury, growth factors (GFs) play a significant role in mediating the complex local and systematic processes that occur. Among the many systemic complications that arise following a burn injury, peripheral neuropathy remains one of the most common. Despite the broad understanding of the effects GFs have on multiple tissues, their potential implications in both wound healing and neuropathy remain largely unexplored. Therefore, this review aims to investigate the expression patterns of GFs prominent during the burn wound healing process and explore the potential contributions these GFs have on the development of burn-related peripheral neuropathy.
Collapse
Affiliation(s)
- Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Taylor Mayes
- Middle Tennessee State University, Murfreesboro, TN, 37132USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| |
Collapse
|
31
|
Tiberi A, Borgonovo G, Testa G, Pacifico P, Jacob A, Di Caprio M, Totaro V, Calvello M, Cattaneo A, Capsoni S. Reversal of neurological deficits by painless nerve growth factor in a mouse model of Rett syndrome. Brain 2024; 147:122-134. [PMID: 37633263 PMCID: PMC10766238 DOI: 10.1093/brain/awad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.
Collapse
Affiliation(s)
- Alexia Tiberi
- Institute of Neuroscience, CNR, 56124 Pisa, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Giulia Borgonovo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Giovanna Testa
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Paola Pacifico
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Ajesh Jacob
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | | | - Valentino Totaro
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | | | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), 00161 Roma, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
32
|
Zhao YX, Yao MJ, Shen JW, Zhang WX, Zhou YX. Electroacupuncture attenuates nociceptive behaviors in a mouse model of cancer pain. Mol Pain 2024; 20:17448069241240692. [PMID: 38443317 PMCID: PMC11010748 DOI: 10.1177/17448069241240692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| | - Ming-Jiang Yao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Jian-Wu Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
- Urology Department of Xiyuan Hospital, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xi Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| | - Yuan-Xi Zhou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| |
Collapse
|
33
|
Gatto A, Capossela L, Conti G, Eftimiadi G, Ferretti S, Manni L, Curatola A, Graglia B, Di Sarno L, Calcagni ML, Di Giuda D, Cecere S, Romeo DM, Soligo M, Picconi E, Piastra M, Della Marca G, Staccioli S, Ruggiero A, Cocciolillo F, Pulitanò S, Chiaretti A. Intranasal human-recombinant NGF administration improves outcome in children with post-traumatic unresponsive wakefulness syndrome. Biol Direct 2023; 18:61. [PMID: 37789391 PMCID: PMC10546699 DOI: 10.1186/s13062-023-00418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is one of the most dramatic events in pediatric age and, despite advanced neuro-intensive care, the survival rate of these patients remains low. Children suffering from severe TBI show long-term sequelae, more pronounced in behavioral, neurological and neuropsychological functions leading to, in the most severe cases, an unresponsive wakefulness syndrome (UWS). Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. In experimental animal models, human- recombinant Nerve Growth Factor (hr-NGF) promotes neural recovery supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated processes. Only a few studies reported the efficacy of intranasal hr-NGF administration in children with post- traumatic UWS. METHODS Children with the diagnosis of post-traumatic UWS were enrolled. These patients underwent a treatment with intranasal hr-NGF administration, at a total dose of 50 gamma/kg, three times a day for 7 consecutive days. The treatment schedule was performed for 4 cycles, at one month distance each. Neuroradiogical evaluation by Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG), and Power Spectral Density (PSD) was determined before the treatment and one month after the end. Neurological assessment was also deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS Three children with post-traumatic UWS were treated. hr-NGF administration improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary movements, facial mimicry, attention and verbal comprehension, ability to cry, cough reflex, oral motility, and feeding capacity, with a significant improvement of their neurological scores. No side effects were reported. CONCLUSION These promising results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from severe TBI and in patients with better baseline neurological conditions, to explore more thoroughly the benefits of this new approach on neuronal function recovery after traumatic brain damage.
Collapse
Affiliation(s)
- Antonio Gatto
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lavinia Capossela
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Conti
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gemma Eftimiadi
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Ferretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Antonietta Curatola
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Benedetta Graglia
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Di Sarno
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Lucia Calcagni
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Cecere
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Marco Romeo
- Unità di Neurologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Enzo Picconi
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marco Piastra
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giacomo Della Marca
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Susanna Staccioli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A.Gemelli IRCCS - Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Cocciolillo
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Pulitanò
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Women's Health Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
34
|
Liu D, Liu M, Yu P, Li H. Brain-derived neurotrophic factor and nerve growth factor expression in endometriosis: A systematic review and meta-analysis. Taiwan J Obstet Gynecol 2023; 62:634-639. [PMID: 37678988 DOI: 10.1016/j.tjog.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 09/09/2023] Open
Abstract
Endometriosis is diagnosed by laparoscopic surgery. The availability of biomarkers can help understand the pathophysiology and aid in the diagnosis of the condition. In this context, this review aimed to examine levels of expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are increased amongst patients with endometriosis and if they can serve as a potential biomarker. PubMed, CENTRAL, Scopus, Web of Science, and Embase databases were searched for studies comparing BDNF or NGF levels amongst endometriosis patients and controls. Data were pooled for serum and tissue levels of BDNF and NGF. Ten fulfilled the inclusion criteria. On comparing BDNF levels, it was noted that endometrial tissue had significantly higher expression of BDNF levels as compared to controls (SMD: 1.73 95% CI: 0.64, 2.82 I2 = 89%). Similarly, the meta-analysis found significantly higher serum levels of BDNF in endometriosis patients as compared to controls (SMD: 1.66 95% CI: 0.73, 2.59 I2 = 95%). Pooled analysis showed significantly increased levels of NGF in endometrial tissue as compared to controls (SMD: 4.15 95% CI: 0.11, 8.18 I2 = 98%) but with unstable results on sensitivity analysis. Only one study showed higher levels of NGF in serum amongst endometriosis patients. Limited data shows higher expression of BDNF in endometrial lesions and increased serum levels of BDNF in endometriosis patients. Similar results were noted for NGF but with very scarce data. Further research is needed to establish BDNF and NGF as suitable biomarkers for the disease.
Collapse
Affiliation(s)
- Danqiu Liu
- Department of Gynaecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China.
| | - Minjie Liu
- Department of Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Pinling Yu
- Department of Gynaecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Hongfeng Li
- Department of Gynaecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| |
Collapse
|
35
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
36
|
Zerbini G, Maestroni S, Viganò I, Mosca A, Paleari R, Gabellini D, Galbiati S, Rama P. Progressive Thinning of Retinal Nerve Fiber Layer/Ganglion Cell Layer (RNFL/GCL) as Biomarker and Pharmacological Target of Diabetic Retinopathy. Int J Mol Sci 2023; 24:12672. [PMID: 37628852 PMCID: PMC10454227 DOI: 10.3390/ijms241612672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes-driven retinal neurodegeneration has recently been shown to be involved in the initial phases of diabetic retinopathy, raising the possibility of setting up a preventive strategy based on early retinal neuroprotection. To make this possible, it is crucial to identify a biomarker for early retinal neurodegeneration. To this end, in this study, we verified and confirmed that, in the Akita mouse model of diabetes, the thinning of the retinal nerve fiber layer/ganglion cell layer (the RNFL/GCL-the layer that contains the retinal ganglion cells) precedes the death of these same cells, suggesting that this dysfunction is a possible biomarker of retinal neurodegeneration. We then confirmed the validity of this assumption by starting a neuroprotective treatment (based on nerve growth factor eye drops) in concert with the first demonstration of RNFL/GCL thinning. In this way, it was possible not only to avoid the loss of retinal ganglion cells but also to prevent the subsequent development of the microvascular stage of diabetic retinopathy. In conclusion, in the case of diabetes, the thinning of the RNFL/GCL appears to be both a valid biomarker and a pharmacological target of diabetic retinopathy; it precedes the development of vascular dysfunctions and represents the ideal starting point for prevention.
Collapse
Affiliation(s)
- Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.M.); (I.V.); (D.G.); (S.G.)
| | - Silvia Maestroni
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.M.); (I.V.); (D.G.); (S.G.)
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.M.); (I.V.); (D.G.); (S.G.)
| | - Andrea Mosca
- Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME), Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (R.P.)
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), 20054 Milan, Italy
| | - Renata Paleari
- Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME), Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (R.P.)
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), 20054 Milan, Italy
| | - Daniela Gabellini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.M.); (I.V.); (D.G.); (S.G.)
| | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.M.); (I.V.); (D.G.); (S.G.)
| | - Paolo Rama
- Cornea and Ocular Surface Unit, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| |
Collapse
|
37
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Machairiotis N, Vrachnis D, Antonakopoulos N, Loukas N, Fotiou A, Pergialiotis V, Stavros S, Mantzou A, Maroudias G, Iavazzo C, Kanaka-Gantenbein C, Drakakis P, Troupis T, Vlasis K, Vrachnis N. Detection and Quantification of Neurotrophin-3 (NT-3) and Nerve Growth Factor (NGF) Levels in Early Second Trimester Amniotic Fluid: Investigation into a Possible Correlation with Abnormal Fetal Growth Velocity Patterns. J Clin Med 2023; 12:4131. [PMID: 37373824 DOI: 10.3390/jcm12124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Abnormal fetal growth is associated with adverse perinatal and long-term outcomes. The pathophysiological mechanisms underlying these conditions are still to be clarified. Nerve growth factor (NGF) and neurotrophin-3 (NT-3) are two neurotrophins that are mainly involved in the neuroprotection process, namely promotion of growth and differentiation, maintenance, and survival of neurons. During pregnancy, they have been correlated with placental development and fetal growth. In this study, we aimed to determine the early 2nd trimester amniotic fluid levels of NGF and NT-3 and to investigate their association with fetal growth. METHODS This is a prospective observational study. A total of 51 amniotic fluid samples were collected from women undergoing amniocentesis early in the second trimester and were stored at -80 °C. Pregnancies were followed up until delivery and birth weight was recorded. Based on birth weight, the amniotic fluid samples were divided into three groups: appropriate for gestational age (AGA), small for gestational age (SGA), and large for gestational age (LGA). NGF and NT-3 levels were determined by using Elisa kits. RESULTS NGF concentrations were similar between the studied groups; median values were 10.15 pg/mL, 10.15 pg/mL, and 9.14 pg/mL in SGA, LGA, and AGA fetuses, respectively. Regarding NT-3, a trend was observed towards increased NT-3 levels as fetal growth velocity decreased; median concentrations were 11.87 pg/mL, 15.9 pg/mL, and 23.5 pg/mL in SGA, AGA, and LGA fetuses, respectively, although the differences among the three groups were not statistically significant. CONCLUSIONS Our findings suggest that fetal growth disturbances do not induce increased or decreased production of NGF and NT-3 in early second trimester amniotic fluid. The trend observed towards increased NT-3 levels as fetal growth velocity decreased shows that there may be a compensatory mechanism in place that operates in conjunction with the brain-sparing effect. Further associations between these two neurotrophins and fetal growth disturbances are discussed.
Collapse
Affiliation(s)
- Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Nikolaos Antonakopoulos
- Third Department of Obstetrics and Gynecology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Obstetrics and Gynecology, University Hospital of Patras, Medical School, University of Patras, 26500 Patra, Greece
| | - Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 18536 Piraeus, Greece
| | - Alexandros Fotiou
- Third Department of Obstetrics and Gynecology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aimilia Mantzou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Georgios Maroudias
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 18536 Piraeus, Greece
| | - Christos Iavazzo
- Gynecologic Oncology Department, Metaxa Memorial Cancer Hospital, 18537 Piraeus, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Theodore Troupis
- Gynecologic Oncology Department, Metaxa Memorial Cancer Hospital, 18537 Piraeus, Greece
| | - Konstantinos Vlasis
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
39
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
40
|
Hao Z, Liu K, Zhou L, Chen P. Precious but convenient means of prevention and treatment: physiological molecular mechanisms of interaction between exercise and motor factors and Alzheimer's disease. Front Physiol 2023; 14:1193031. [PMID: 37362440 PMCID: PMC10285460 DOI: 10.3389/fphys.2023.1193031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Disproportionate to the severity of Alzheimer's disease (AD) and the huge number of patients, the exact treatment and prevention of AD is still being explored. With increasing ageing, the search for means to prevent and treat AD has become a high priority. In the search for AD, it has been suggested that exercise may be one of the more effective and less costly means of preventing and treating AD, and therefore a large part of current research is aimed at exploring the effectiveness of exercise in the prevention and treatment of AD. However, due to the complexity of the specific pathogenesis of AD, there are multiple hypotheses and potential mechanisms for exercise interventions in AD that need to be explored. This review therefore specifically summarises the hypotheses of the interaction between exercise and AD from a molecular perspective, based on the available evidence from animal models or human experiments, and explores them categorised according to the pathologies associated with AD: exercise can activate a number of signalling pathways inhibited by AD (e.g., Wnt and PI3K/Akt signalling pathways) and reactivate the effects of downstream factors regulated by these signalling pathways, thus acting to alleviate autophagic dysfunction, relieve neuroinflammation and mitigate Aβ deposition. In addition, this paper introduces a new approach to regulate the blood-brain barrier, i.e., to restore the stability of the blood-brain barrier, reduce abnormal phosphorylation of tau proteins and reduce neuronal apoptosis. In addition, this paper introduces a new concept." Motor factors" or "Exerkines", which act on AD through autocrine, paracrine or endocrine stimulation in response to movement. In this process, we believe there may be great potential for research in three areas: (1) the alleviation of AD through movement in the brain-gut axis (2) the prevention and treatment of AD by movement combined with polyphenols (3) the continued exploration of movement-mediated activation of the Wnt signalling pathway and AD.
Collapse
Affiliation(s)
- Zikang Hao
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| | - Kerui Liu
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Lu Zhou
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Ping Chen
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| |
Collapse
|
41
|
Huang WH, Ding SL, Zhao XY, Li K, Guo HT, Zhang MZ, Gu Q. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio 2023; 20:100639. [PMID: 37197743 PMCID: PMC10183670 DOI: 10.1016/j.mtbio.2023.100639] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.
Collapse
Affiliation(s)
- Wen-Hui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
| | - Hai-Tao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
- Corresponding author.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
- Corresponding author. Institute of Zoology, Chinese Academy of Sciences, No. 5 of Courtyard 1, Beichen West Road, Chaoyang District, Beijing 100101, PR China.
| |
Collapse
|
42
|
Perbal B, Perbal M, Perbal A. Cooperation is the key: the CCN biological system as a gate to high complex protein superfamilies' signaling. J Cell Commun Signal 2023:10.1007/s12079-023-00749-8. [PMID: 37166690 DOI: 10.1007/s12079-023-00749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Cellular signaling is generally understood as the support of communication between contiguous cells belonging to the same tissue or cells being far apart of each other, at a molecular scale, when the message emitted by the transmitters is traveling in liquid or solid matter to reach recipient targets. Subcellular signaling is also important to ensure the proper cell constitution and functioning. However cell signaling is mostly used in the first understanding, to describe how the message sent from one point to another one, will reach a target where it will be interpreted. The Cellular Communication Network (CCN) factors (Perbal et al. 2018) constitute a family of biological regulators thought to be responsible for signaling pathways coordination (Perbal 2018). Indeed, these proteins interact with a diverse group of cell receptors, such as integrins, low density lipoprotein receptors, heparan sulfate proteoglycan receptors (HSPG), and the immunoglobulin superfamily expressed exclusively in the nervous system, or with soluble factors such as bone morphogenetic proteins (BMPS) and other growth factors such as vascular endothelial growth factor, fibroblastic growth factor, and transforming growth factor (TGFbeta). Starting from the recapitulation of basic concepts in enzymology and protein-ligands interactions, we consider, in this manuscript, interpretations of the mechanistic interactions that have been put forward to explain the diversity of CCN proteins biological activities. We suggest that the cross-talks between superfamilies of proteins under the control of CCNs might play a central role in the coordination of developmental signaling pathways.
Collapse
Affiliation(s)
| | - Matthieu Perbal
- M2 Probabilités et Modèles Aléatoires, Sorbonne Université, Paris, France
| | | |
Collapse
|
43
|
Shang L, Zhao S, Shi H, Xing X, Zhang J, He Y. Nerve growth factor mediates activation of transient receptor potential vanilloid 1 in neurogenic pruritus of psoriasis. Int Immunopharmacol 2023; 118:110063. [PMID: 37004343 DOI: 10.1016/j.intimp.2023.110063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Pruritus is a common and painful symptom in psoriasis with profoundly negative impacts on quality of life. The underlying mechanisms of pruritus are complex and multifactorial, and accumulating evidence suggests that pruritus induced by neurogenic inflammation predominates in psoriasis. Nerve growth factor (NGF) -mediated transient receptor potential vanilloid receptor 1(TRPV1) pathway has emerged as a crucial node in the regulation of neurogenic pruritus. TRPV1 appears coupled to most pruritus-specific molecules via the neuro-immune axis. While the modes of regulation differ for each axis, TRPV1 is involved in substantial biochemical crosstalk-causing feedback loops with significant effects on neurogenic pruritus. Therefore, TRPV1 has emerged as a target molecular in drug development for pruritus in psoriasis. However, no significant clinical progress occurred in the development of systemic TRPV1 antagonists due to elevated core temperature. Thus, topical application of TRPV1 antagonists and interference with mediators linked to the TRPV1 activation pathway may be promising therapeutic options to ameliorate pruritus. This Review focuses on recent advances in complicated regulation of NGF-mediated TRPV1 pathway in psoriatic neurogenic pruritus, as well as the therapeutic options that arise from the dissection of the pathway.
Collapse
|
44
|
Canepa P, Canale C, Cavalleri O, Marletta G, Messina GML, Messori M, Novelli R, Mattioli SL, Apparente L, Detta N, Romeo T, Allegretti M. Adsorption of the rhNGF Protein on Polypropylene with Different Grades of Copolymerization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2076. [PMID: 36903190 PMCID: PMC10004483 DOI: 10.3390/ma16052076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The surface properties of drug containers should reduce the adsorption of the drug and avoid packaging surface/drug interactions, especially in the case of biologically-derived products. Here, we developed a multi-technique approach that combined Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), Contact Angle (CA), Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoemission Spectroscopy (XPS) to investigate the interactions of rhNGF on different pharma grade polymeric materials. Polypropylene (PP)/polyethylene (PE) copolymers and PP homopolymers, both as spin-coated films and injected molded samples, were evaluated for their degree of crystallinity and adsorption of protein. Our analyses showed that copolymers are characterized by a lower degree of crystallinity and lower roughness compared to PP homopolymers. In line with this, PP/PE copolymers also show higher contact angle values, indicating a lower surface wettability for the rhNGF solution on copolymers than PP homopolymers. Thus, we demonstrated that the chemical composition of the polymeric material and, in turn, its surface roughness determine the interaction with the protein and identified that copolymers may offer an advantage in terms of protein interaction/adsorption. The combined QCM-D and XPS data indicated that protein adsorption is a self-limiting process that passivates the surface after the deposition of roughly one molecular layer, preventing any further protein adsorption in the long term.
Collapse
Affiliation(s)
- Paolo Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ornella Cavalleri
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Grazia M. L. Messina
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Messori
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rubina Novelli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via Santa Lucia 6, 20122 Milano, Italy
| | - Simone Luca Mattioli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Lucia Apparente
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Nicola Detta
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Tiziana Romeo
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| |
Collapse
|
45
|
Shen Q, Zhang M, Jin Y, Di X, Liu R, Wang Z. Safety, Tolerability, Pharmacokinetics, and Immunogenicity of a Novel Recombination Human Nerve Growth Factor in Healthy Chinese Subjects. CNS Drugs 2023; 37:231-242. [PMID: 36811740 DOI: 10.1007/s40263-023-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Nerve growth factor (NGF), the first-discovered member of the neurotrophin family, has long been regarded as a potential drug to combat acute and chronic neurodegenerative processes. However, the pharmacokinetic profile of NGF is poorly described. OBJECTIVES The aim of this study was to investigate the safety, tolerability, pharmacokinetics, and immunogenicity of a novel recombinant human NGF (rhNGF) in healthy Chinese subjects. METHOD The study randomized 48 and 36 subjects to receive (i) single-ascending dose (SAD group; 7.5, 15, 30, 45, 60, 75 μg or placebo) and (ii) multiple-ascending dose (MAD group; 15, 30, 45 μg, or placebo) rhNGF intramuscular injections, respectively. In the SAD group, all participants received rhNGF or placebo only once. In the MAD group, participants were randomly assigned to receive multiple doses of rhNGF or placebo once a day for 7 consecutive days. Adverse events (AEs) and anti-drug antibodies (ADAs) were monitored throughout the study. Recombinant human NGF serum concentrations were determined using a highly sensitive enzyme-linked immunosorbent assay. RESULTS All AEs were mild, except for some injection-site pain and fibromyalgia, which were experienced as moderate AEs. Only one moderate AE was observed in the 15 μg cohort throughout the study and resolved within 24 hours of stopping dosing. Many participants (10% in 30 μg, 50% in 45 μg, and 50% in 60 μg in the SAD group; 10% in 15 μg, 30% in 30 μg, and 30% in 45 μg in the MAD group) experienced moderate fibromyalgia. However, all moderate fibromyalgia were resolved by the end of the subject's participation in the study. No severe AEs or clinically significant abnormalities were reported. All subjects in the 75 μg cohort experienced positive ADA in the SAD group, and one subject in the 30 μg dose and four subjects in the 45 μg dose also experienced positive ADA in the MAD group. Recombinant human nerve growth factor was absorbed (median Tmax, 4.0-5.3 h) and eliminated biexponentially (mean t1/2, 4.53-6.09 h) with a moderate speed. The Cmax and AUC increased in an approximately dose-proportional manner over the dose range of 7.5-45 μg, and at doses higher than 45 μg these parameters increased more than dose proportionally. There was no obvious accumulation after 7 days of daily dosing of rhNGF. CONCLUSION The favorable safety and tolerability and predictable pharmacokinetic profile of rhNGF in healthy Chinese subjects support its continuing clinical development for the treatment of nerve injury and neurodegenerative diseases. The AEs and immunogenicity of rhNGF will continue to be monitored in future clinical trials. TRIAL REGISTRATION This study was registered with Chinadrugtrials.org.cn (ChiCTR2100042094) on January 13th, 2021.
Collapse
Affiliation(s)
- Qi Shen
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Mengyu Zhang
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Ying Jin
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Xiangjie Di
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Runhan Liu
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Zhenlei Wang
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
46
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
47
|
Little A, Medford A, O'Brien A, Childs J, Pan S, Machado J, Chakraborty S, Glaser S. Recent Advances in Intrahepatic Biliary Epithelial Heterogeneity. Semin Liver Dis 2023; 43:1-12. [PMID: 36522162 DOI: 10.1055/s-0042-1758833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biliary epithelium (i.e., cholangiocytes) is a heterogeneous population of epithelial cells in the liver, which line small and large bile ducts and have individual responses and functions dependent on size and location in the biliary tract. We discuss the recent findings showing that the intrahepatic biliary tree is heterogeneous regarding (1) morphology and function, (2) hormone expression and signaling (3), response to injury, and (4) roles in liver regeneration. This review overviews the significant characteristics and differences of the small and large cholangiocytes. Briefly, it outlines the in vitro and in vivo models used in the heterogeneity evaluation. In conclusion, future studies addressing biliary heterogeneity's role in the pathogenesis of liver diseases characterized by ductular reaction may reveal novel therapeutic approaches.
Collapse
Affiliation(s)
- Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sharon Pan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jolaine Machado
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
48
|
Riikonen R. Biochemical mechanisms in pathogenesis of infantile epileptic spasm syndrome. Seizure 2023; 105:1-9. [PMID: 36634586 DOI: 10.1016/j.seizure.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms leading to infantile epileptic spasm syndrome (IESS) remain obscure. The only common factor seems to be that the spasms are restricted to a limited period of infancy, during a certain maturational state. Here the current literature regarding the biochemical mechanisms of brain maturation in IESS is reviewed, and various hypotheses of the pathophysiology are put together. They include: (1) imbalance of inhibitory (NGF, IGF-1, ACTH, GABA) and excitatory factors (glutamate, nitrites) which distinguishes the different etiological subgroups, (2) abnormality of the hypothalamic pituitary adrenal (HPA) axis linking insults and early life stress, (3) inflammation (4) yet poorly known genetic and epigenetic factors, and (5) glucocorticoid and vigabatrin action on brain development, pinpointing at molecular targets of the pathophysiology from another angle. An altered maturational process may explain why so many, seemingly independent etiological factors lead to the same clinical syndrome and frequently to developmental delay. Understanding these factors can provide ideas for novel therapies.
Collapse
Affiliation(s)
- Raili Riikonen
- Children's Hospital, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
49
|
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. J Alzheimers Dis 2023; 91:507-530. [PMID: 36502321 DOI: 10.3233/jad-220666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
Collapse
Affiliation(s)
- Kesevan Rajah Kumaran
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Enoch Perimal
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
50
|
Wu CY, Chen HJ, Wu YC, Tsai SW, Liu YH, Bhattacharya U, Lin D, Tai HC, Kong KV. Highly Efficient Singlet Oxygen Generation by BODIPY-Ruthenium(II) Complexes for Promoting Neurite Outgrowth and Suppressing Tau Protein Aggregation. Inorg Chem 2023; 62:1102-1112. [PMID: 36622931 DOI: 10.1021/acs.inorgchem.2c03017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Singlet oxygen (1O2) has been recently identified as a key molecule against toxic Aβ aggregation, which is associated with the currently incurable Alzheimer's disease (AD). However, limited research has studied its efficiency against tau protein aggregation, the other major hallmark of AD. Herein, we designed and synthesized boron-dipyrromethene (BODIPY)-ruthenium conjugates and isolated three isomers. Under visible-light irradiation, the ε isomer can be photoactivated and efficiently generate singlet oxygen. Particularly, the complex demonstrated successful results in attenuating tauopathy─an appreciable decrease to 43 ± 2% at 100 nM. The photosensitizer was further found to remarkably promote neurite outgrowth and significantly increased the length and number of neurites in nerve cells. As a result of effective photoinduced singlet oxygen generation and proactive neurite outgrowth, the hybrid design has great potential for therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Cheng-Yun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Jou Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chin Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Wei Tsai
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Hwan-Ching Tai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|