1
|
Ito K, Shinozaki M, Hashimoto S, Saijo Y, Suematsu Y, Tanaka T, Nishi K, Yagi H, Shibata S, Kitagawa Y, Nakamura M, Okano H, Kohyama J, Nagoshi N. Histological effects of combined therapy involving scar resection, decellularized scaffolds, and human iPSC-NS/PCs transplantation in chronic complete spinal cord injury. Sci Rep 2024; 14:31500. [PMID: 39733145 PMCID: PMC11682313 DOI: 10.1038/s41598-024-82959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation. To mitigate risks such as prion disease associated with spinal cord-derived dECM, we used kidney-derived dECM hydrogel. This material was chosen for its biocompatibility and angiogenic potential. In vitro studies with dorsal root ganglia (DRG) confirmed its ability to support axonal growth. In a chronic SCI rat model, scar resection enhanced the local microenvironment by increasing neuroprotective microglia and macrophages, while reducing inhibitory factors that prevent axonal regeneration. The combination of scar resection and dECM hydrogel further promoted vascular endothelial cell migration. These changes improved the survival of transplanted hNS/PCs and facilitated host axon regeneration. Overall, the integrated approach of scar resection, dECM hydrogel scaffolding, and hNS/PC transplantation has been proven to be a more effective treatment strategy for chronic SCI. However, despite histological improvements, no functional recovery occurred and further research is needed to enhance functional outcomes.
Collapse
Affiliation(s)
- Keitaro Ito
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Keio University Regenerative Medicine Research Center, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tomoharu Tanaka
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Laboratory of Small Animal Internal Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Niigata, 951-8510, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Baek I, Song Y. Investigation of neuro-regenerative therapeutic potential of nerve composite matrix hydrogels embedded with adipose-derived stem cells. Matrix Biol Plus 2024; 24:100165. [PMID: 39633894 PMCID: PMC11616072 DOI: 10.1016/j.mbplus.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. There is various research conducted to provide effective therapy, however, SCI is still considered incurable due to the complex nature of the injury site. Recently, our lab developed a combinatorial therapeutic for SCI repair comprising human adipose-derived stem cell (hASC)-embedded nerve composite hydrogels using different ratios of decellularized sciatic nerve (dSN) and spinal cord (dSC) matrices. This study investigated angiogenic and neurotrophic effects of the combinatorial therapeutic in vitro. Compression testing was performed to analyze mechanical properties of the composite hydrogels and showed no significant difference between all hydrogel groups. Next, pro-angiogenic factors and neurotrophins secreted from hASCs within different ratios of the composite hydrogels were analyzed and we found culture durations and extracellular matrix (ECM) composition affect secretory behavior. Interestingly, ECM compositional difference between hydrogel groups had little influence on human brain microvascular endothelial cells (HBVECs) infiltration and dorsal root ganglia (DRG) neurite outgrowth. Finally, we conducted proteomic analysis to identify the ECM components potentially contributing to these observed effects. Taken together, dSN:dSC = 1:2 hydrogel showed slightly better therapeutic potentials, warranting validation using in vivo studies.
Collapse
Affiliation(s)
- Inha Baek
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Younghye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Chiu PE, Fu Z, Tsai YC, Tsai CY, Hsu WJ, Chou LW, Lai DW. Fu's subcutaneous needling promotes axonal regeneration and remyelination by inhibiting inflammation and endoplasmic reticulum stress. Transl Res 2024; 273:46-57. [PMID: 38950695 DOI: 10.1016/j.trsl.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Fu's subcutaneous needling (FSN) is a traditional Chinese acupuncture procedure used to treat pain-related neurological disorders. Moreover, the regulation of inflammatory cytokines may provide a favorable environment for peripheral nerve regeneration. In light of this, FSN may be an important novel therapeutic strategy to alleviate pain associated with peripheral neuropathy; however, the underlying molecular mechanisms remain unclear. This study revealed that patients who had osteoarthritis with peripheral neuropathic pain significantly recovered after 1 to 2 weeks of FSN treatment according to the visual analog scale, Western Ontario and McMaster Universities Osteoarthritis Index, Lequesne index, walking speed, and passive range of motion. Similarly, we demonstrated that FSN treatment in an animal model of chronic constriction injury (CCI) significantly improved sciatic nerve pain using paw withdrawal thresholds, sciatic functional index scores, and compound muscle action potential amplitude tests. In addition, transmission electron microscopy images of sciatic nerve tissue showed that FSN effectively reduced axonal swelling, abnormal myelin sheaths, and the number of organelle vacuoles in CCI-induced animals. Mechanistically, RNA sequencing and gene set enrichment analysis revealed significantly reduced inflammatory pathways, neurotransmitters, and endoplasmic reticulum stress pathways and increased nerve regeneration factors in the FSN+CCI group, compared with that in the CCI group. Finally, immunohistochemistry, immunoblotting and enzyme-linked immunosorbent assay showed similar results in the dorsal root ganglia and sciatic nerve. Our findings suggest that FSN can effectively ameliorate peripheral neuropathic pain by regulate inflammation and endoplasmic reticulum stress, thereby determine its beneficial application in patients with peripheral nerve injuries.
Collapse
Affiliation(s)
- Po-En Chiu
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Zhonghua Fu
- Institute of Fu's Subcutaneous Needling, Beijing University of Chinese Medicine, Beijing, China; Clinical Medical College of Acupuncture & Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ching Tsai
- Department of Immune Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chia-Yun Tsai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wei-Jen Hsu
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Li-Wei Chou
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Physical Medicine and Rehabilitation, Asia University Hospital, Asia University, Taichung, Taiwan.
| | - De-Wei Lai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Seo M, Hwang S, Lee TH, Nam K. Comparison of Neural Recovery Effects of Botulinum Toxin Based on Administration Timing in Sciatic Nerve-Injured Rats. Toxins (Basel) 2024; 16:387. [PMID: 39330845 PMCID: PMC11435736 DOI: 10.3390/toxins16090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the effects of the timing of administering botulinum neurotoxin A (BoNT/A) on nerve regeneration in rats. Sixty 6-week-old rats with a sciatic nerve injury were randomly divided into four groups: the immediately treated (IT) group (BoNT/A injection administered immediately post-injury), the delay-treated (DT) group (BoNT/A injection administered one week post-injury), the control group (saline administered one week post-injury), and the sham group (only skin and muscle incisions made). Nerve regeneration was assessed 3, 6, and 9 weeks post-injury using various techniques. The levels of glial fibrillary acid protein (GFAP), astroglial calcium-binding protein S100β (S100β), growth-associated protein 43 (GAP43), neurofilament 200 (NF200), and brain-derived neurotrophic factor (BDNF) in the IT and DT groups were higher. ELISA revealed the highest levels of these proteins in the IT group, followed by the DT and control groups. Toluidine blue staining revealed that the average area and myelin thickness were higher in the IT group. Electrophysiological studies revealed that the CMAP in the IT group was significantly higher than that in the control group, with the DT group exhibiting significant differences starting from week 8. The findings of the sciatic functional index analysis mirrored these results. Thus, administering BoNT/A injections immediately after a nerve injury is most effective for neural recovery. However, injections administered one week post-injury also significantly enhanced recovery. BoNT/A should be administered promptly after nerve damage; however, its administration during the non-acute phase is also beneficial.
Collapse
Affiliation(s)
| | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Republic of Korea; (M.S.); (S.H.); (T.H.L.)
| |
Collapse
|
5
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
6
|
Hwang S, Seo M, Lee TH, Lee HJ, Park JW, Kwon BS, Nam K. Comparison of the Effects of Botulinum Toxin Doses on Nerve Regeneration in Rats with Experimentally Induced Sciatic Nerve Injury. Toxins (Basel) 2023; 15:691. [PMID: 38133195 PMCID: PMC10747296 DOI: 10.3390/toxins15120691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
This study was designed to compare the effects of various doses of botulinum neurotoxin A (BoNT/A) on nerve regeneration. Sixty-five six-week-old rats with sciatic nerve injury were randomly allocated to three experimental groups, a control group, and a sham group. The experimental groups received a single session of intraneural BoNT/A (3.5, 7.0, or 14 U/kg) injection immediately after nerve-crushing injury. The control group received normal intraneural saline injections after sciatic nerve injury. At three, six, and nine weeks after nerve damage, immunofluorescence staining, an ELISA, and toluidine blue staining was used to evaluate the regenerated nerves. Serial sciatic functional index analyses and electrophysiological tests were performed every week for nine weeks. A higher expression of GFAP, S100β, GAP43, NF200, BDNF, and NGF was seen in the 3.5 U/kg and 7.0 U/kg BoNT/A groups. The average area and myelin thickness were significantly greater in the 3.5 U/kg and 7.0 U/kg BoNT/A groups. The sciatic functional index and compound muscle action potential amplitudes exhibited similar trends. These findings indicate that the 3.5 U/kg and 7.0 U/kg BoNT/A groups exhibited better nerve regeneration than the 14 U/kg BoNT/A and control group. As the 3.5 U/kg and the 7.0 U/kg BoNT/A groups exhibited no statistical difference, we recommend using 3.5 U/kg BoNT/A for its cost-effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Republic of Korea; (S.H.); (M.S.); (T.H.L.); (H.J.L.); (J.-w.P.); (B.S.K.)
| |
Collapse
|
7
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
8
|
Yan M, Zhang Y, Niu W, Liu K, Xue L, Zhou K. Reactive oxygen species-mediated endoplasmic reticulum stress contributes to osteocyte death induced by orthodontic compressive force. Microsc Res Tech 2023; 86:1529-1541. [PMID: 37382312 DOI: 10.1002/jemt.24382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
During orthodontic tooth movement (OTM), osteocytes, the most mechanosensitive cells in alveolar bone, suffer the heavy orthodontic force and initiate alveolar bone resorption on the compression side. However, the inherent mechanisms of compressive force-induced osteocyte death are not fully understood. In this study, we established an OTM model on Sprague-Dawley rats by inserting coil springs to investigate osteocyte damage on the compression side of alveolar bone. We then applied compressive force on the MLO-Y4 osteocyte-like cell line in vitro to explore whether the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ERS) pathway is involved in compressive force-induced osteocyte death. We found that the orthodontic force caused apparent alveolar bone loss, osteocyte death, and elevated serum sclerostin and receptor activator of NF-κB ligand (RANKL) levels in rats. In vitro, compressive force inhibited cell viability but increased the LDH leakage and loss of mitochondrial membrane potential in MLO-Y4 cells. Simultaneously, it activated protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2 (eIF2α), and their downstream pro-apoptotic ERS signaling proteins and caused significant osteocyte apoptosis, which can be blocked by ERS inhibitor salubrinal. Moreover, the compressive force elevated intracellular ROS levels, while the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated ERS and apoptosis in loaded osteocytes. These results suggest that the orthodontic compressive force induced osteocyte apoptosis via the ROS-mediated ERS pathway. This study first proposes the ERS pathway as a new potential pathway for regulating the rate of OTM based on osteocyte death. RESEARCH HIGHLIGHTS: The orthodontic force increases osteocyte death in rat alveolar bone. The compressive force causes osteocyte apoptosis by the endoplasmic reticulum stress (ERS) pathway in vitro. The ROS scavenger NAC blocked compressive force-induced ERS and osteocyte apoptosis.
Collapse
Affiliation(s)
- Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Wanting Niu
- Department of STEM, Regis College, Weston, Massachusetts, USA
| | - Kezhou Liu
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Lingyun Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Kexin Zhou
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Hakimi P, Tabatabaei F, Rahmani V, Zakariya NA, Moslehian MS, Bedate AM, Tamadon A, Rahbarghazi R, Mahdipour M. Dysregulated miRNAs in recurrent miscarriage: A systematic review. Gene 2023; 884:147689. [PMID: 37543220 DOI: 10.1016/j.gene.2023.147689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Recurrent miscarriage (RM) is a complex reproductive medicine disease that affects many families. The cause of RM is unclear at this time; however, lifestyle and genetic variables may influence the process. The slight alteration in miRNA expression has enormous consequences for a variety of difficulties, one of which may be RM. The target of this systematic study was to provide a framework of the dysregulated miRNAs in RM. The Prisma guidelines were applied to perform current systematic review pertaining to articles in the seven databases. Thirty-nine papers out of 245 received fulfilled all inclusion requirements. From all the mentioned miRNAs, 40 were up-regulated (65.57 %), whereas 21 were down-regulated (34.43 %). These dysregulated miRNAs contributed to the pathophysiology of RM by influencing key pathways and processes such as apoptosis, angiogenesis, epithelial-mesenchymal transition, and the immune system. Understanding the dysregulation of miRNAs, as well as the pathways and processes that engage these miRNAs and impact disease pathogenesis, may aid in clarifying the unknown underlying mechanisms of RM and the development of novel molecular therapeutic targets and medical domains.
Collapse
Affiliation(s)
- Parvin Hakimi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Tabatabaei
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Division of Gynecologic Laparoscopic, Surgeries, Al-Zahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian Society of Minimally Invasive Gynecology, Iran University of Medical, Sciences, Tehran, Iran
| | - Vahideh Rahmani
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Afshar Zakariya
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Amin Tamadon
- PerciaVista R&D Co, Shiraz, Iran; Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Casanova MR, Mota P, Vala H, Nóbrega C, Morais ADS, Silva CS, Barros AA, Reis RL, Lima E, Martins A, Neves NM. Functional recovery of injured cavernous nerves achieved through endogenous nerve growth factor-containing bioactive fibrous membrane. Acta Biomater 2023; 168:416-428. [PMID: 37467838 DOI: 10.1016/j.actbio.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Radical prostatectomy is a highly successful treatment for prostate cancer, among the most prevalent manifestations of the illness. Damage of the cavernous nerve (CN) during prostatectomy is the main cause of postoperative erectile dysfunction (ED). In this study, the capability of a personalized bioactive fibrous membrane to regenerate injured CN was investigated. The fibrous membrane bioactivity is conferred by the selectively bound nerve growth factor (NGF) present in the rat urine. In a rat model of bilateral CN crush, the implanted bioactive fibrous membrane induces CN regeneration and restoration of erectile function, showing a significantly increased number of smooth muscle cells and content of endothelial and neuronal nitric oxide synthases (eNOS; nNOS). In addition, the bioactive fibrous membrane promotes nerve regeneration by increasing the number of myelinated axons and nNOS-positive cells, therefore reversing the CN fibrosis found in untreated rats or rats treated with a bare fibrous membrane. Therefore, this personalized regenerative strategy could overcome the recognized drawbacks of currently available treatments for CN injuries. It may constitute an effective treatment for prostate cancer patients suffering from ED after being subject to radical prostatectomy. STATEMENT OF SIGNIFICANCE: The present work introduces a unique strategy to address post-surgical ED resulting from CN injury during pelvic surgery (e.g., radical prostatectomy, radical cystoprostatectomy, abdominoperineal resection). It comprises a bioactive and cell-free fibrous implant, customized to enhance CN recovery. Pre-clinical results in a rat model of bilateral CN crush demonstrated that the bioactive fibrous implant can effectively heal injured CN, and restore penile structure and function. This implant selectively binds NGF from patient fluids (i.e. urine) due to its functionalized surface and high surface area. Moreover, its local implantation reduces adverse side effects. This tailored regenerative approach has the potential to revolutionize the treatment of ED in prostate cancer patients following radical prostatectomy, overcoming current treatment limitations.
Collapse
Affiliation(s)
- Marta R Casanova
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Paulo Mota
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; Department of Urology, Hospital of Braga, E.P.E, Braga, Portugal
| | - Helena Vala
- Agrarian Superior School of Viseu (ESAV), Polytechnic Institute of Viseu, Viseu 3500-606, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Portugal
| | - Carmen Nóbrega
- Agrarian Superior School of Viseu (ESAV), Polytechnic Institute of Viseu, Viseu 3500-606, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Portugal
| | - Alain da Silva Morais
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Catarina S Silva
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Alexandre A Barros
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Rui L Reis
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Estevão Lima
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; Department of Urology, Hospital of Braga, E.P.E, Braga, Portugal
| | - Albino Martins
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal.
| |
Collapse
|
11
|
Zeng CW. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. BIOLOGY 2023; 12:biology12050653. [PMID: 37237467 DOI: 10.3390/biology12050653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Spinal cord injury (SCI) represents a significant medical challenge, often resulting in permanent disability and severely impacting the quality of life for affected individuals. Traditional treatment options remain limited, underscoring the need for novel therapeutic approaches. In recent years, multipotent mesenchymal stem cells (MSCs) have emerged as a promising candidate for SCI treatment due to their multifaceted regenerative capabilities. This comprehensive review synthesizes the current understanding of the molecular mechanisms underlying MSC-mediated tissue repair in SCI. Key mechanisms discussed include neuroprotection through the secretion of growth factors and cytokines, promotion of neuronal regeneration via MSC differentiation into neural cell types, angiogenesis through the release of pro-angiogenic factors, immunomodulation by modulating immune cell activity, axonal regeneration driven by neurotrophic factors, and glial scar reduction via modulation of extracellular matrix components. Additionally, the review examines the various clinical applications of MSCs in SCI treatment, such as direct cell transplantation into the injured spinal cord, tissue engineering using biomaterial scaffolds that support MSC survival and integration, and innovative cell-based therapies like MSC-derived exosomes, which possess regenerative and neuroprotective properties. As the field progresses, it is crucial to address the challenges associated with MSC-based therapies, including determining optimal sources, intervention timing, and delivery methods, as well as developing standardized protocols for MSC isolation, expansion, and characterization. Overcoming these challenges will facilitate the translation of preclinical findings into clinical practice, providing new hope and improved treatment options for individuals living with the devastating consequences of SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Georgelou K, Saridaki EA, Karali K, Papagiannaki A, Charalampopoulos I, Gravanis A, Tzeranis DS. Microneurotrophin BNN27 Reduces Astrogliosis and Increases Density of Neurons and Implanted Neural Stem Cell-Derived Cells after Spinal Cord Injury. Biomedicines 2023; 11:biomedicines11041170. [PMID: 37189788 DOI: 10.3390/biomedicines11041170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Microneurotrophins, small-molecule mimetics of endogenous neurotrophins, have demonstrated significant therapeutic effects on various animal models of neurological diseases. Nevertheless, their effects on central nervous system injuries remain unknown. Herein, we evaluate the effects of microneurotrophin BNN27, an NGF analog, in the mouse dorsal column crush spinal cord injury (SCI) model. BNN27 was delivered systemically either by itself or combined with neural stem cell (NSC)-seeded collagen-based scaffold grafts, demonstrated recently to improve locomotion performance in the same SCI model. Data validate the ability of NSC-seeded grafts to enhance locomotion recovery, neuronal cell integration with surrounding tissues, axonal elongation and angiogenesis. Our findings also show that systemic administration of BNN27 significantly reduced astrogliosis and increased neuron density in mice SCI lesion sites at 12 weeks post injury. Furthermore, when BNN27 administration was combined with NSC-seeded PCS grafts, BNN27 increased the density of survived implanted NSC-derived cells, possibly addressing a major challenge of NSC-based SCI treatments. In conclusion, this study provides evidence that small-molecule mimetics of endogenous neurotrophins can contribute to effective combinatorial treatments for SCI, by simultaneously regulating key events of SCI and supporting grafted cell therapies in the lesion site.
Collapse
Affiliation(s)
- Konstantina Georgelou
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | | | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Argyri Papagiannaki
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Dimitrios S Tzeranis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
13
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
14
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang S, Qian W, Chen S, Xian S, Jin M, Liu Y, Zhang H, Qin H, Zhang X, Zhu J, Yue X, Shi C, Yan P, Huang R, Huang Z. Bibliometric analysis of research on gene expression in spinal cord injury. Front Mol Neurosci 2022; 15:1023692. [PMID: 36385766 PMCID: PMC9661966 DOI: 10.3389/fnmol.2022.1023692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a severe disease with motor and sensory function being destroyed, which leads to a poor prognosis and a serious financial burden. It is urgent to figure out the molecular and pathological mechanisms of SCI to develop feasible therapeutic strategies. This article aims to review documents focused on gene expression in SCI and summarize research hotspots and the development process in this field. Methods Publications of SCI-related studies from 2000 to 2022 were retrieved from the Web of Science Core Collection database. Biblioshiny was used to evaluate the research performance, core authors, journals and contributed countries, together with trend topics, hotspots in the field, and keyword co-occurrence analysis. Visualized images were obtained to help comprehension. Results Among 351 documents, it was found that the number of annual publications increased in general. The most productive country was China, followed by the United States with the highest influence and the most international cooperation. Plos One was the journal of the maximum publications, while Journal of Neuroscience was the most influential one. According to keyword co-occurrence and trend topics analysis, these articles mainly focused on molecular and pathological mechanisms as well as novel therapies for SCI. Neuropathic pain, axonal regeneration and messenger RNA are significant and promising research areas. Conclusion As the first bibliometric study focused on gene expression in SCI, we demonstrated the evolution of the field and provided future research directions like mechanisms and treatments of SCI with great innovativeness and clinical value. Further studies are recommended to develop more viable therapeutic methods for SCI.
Collapse
Affiliation(s)
- Siqiao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Weijin Qian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaofeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University Shanghai, Shanghai, China
| | - Hengwei Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinkun Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Jiwen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Yue
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaofeng Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zongqiang Huang, ; Runzhi Huang, ; Penghui Yan,
| | - Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Zongqiang Huang, ; Runzhi Huang, ; Penghui Yan,
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zongqiang Huang, ; Runzhi Huang, ; Penghui Yan,
| |
Collapse
|
16
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
17
|
Behroozi Z, Ramezani F, Nasirinezhad F. Human umbilical cord blood-derived platelet -rich plasma: a new window for motor function recovery and axonal regeneration after spinal cord injury. Physiol Behav 2022; 252:113840. [PMID: 35525286 DOI: 10.1016/j.physbeh.2022.113840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There are complex mechanisms for reducing intrinsic repairability and neuronal regeneration following spinal cord injury (SCI). Platelet-rich plasma (PRP) is a rich source of growth factors and has been used to motivate the regeneration of peripheral nerves in neurodegenerative disorders. However, only a few studies have shown the effects of PRP on the SCI models. METHODS We investigated whether PRP derived from human umbilical cord blood (HUCB-PRP) could recover motor function in animals with spinal cord injury. Sixty adult male Wistar rats were randomly divided into 6 groups (n=60) as control, sham (laminectomy without induction of spinal cord injury), SCI, vehicle (SCI+ Platelet-Poor Plasma), PRP2day (SCI+PRP injection 2 days after SCI), and PRP14day (SCI+PRP injection 14 days after SCI). SCI was performed at the T12-T13 level. BBB test was carried out weekly after injury for six weeks. Caspase3 expression was determined using the Immunohistochemistry technique. The expression of GSK3β, CSF-tau, and MAG was determined using the Western blot technique. Data were analyzed by PRISM & SPSS software. RESULTS HUCB-PRP treated animals showed a higher locomotor function recovery than those in the SCI group (p<0.0001). The level of caspase3, GSK3β and CSF- Tau reduced and the MAG level in the spinal cord increased by the injection of HUCB-PRP in SCI animals. CONCLUSION Injection of HUCB-PRP enhanced hind limb locomotor performance by modulation of caspase3, GSK3β, CSF-tau, and MAG expression. Using HUCB-PRP could be a new therapeutic option for recovering motor function and axonal regeneration after SCI.
Collapse
Affiliation(s)
- Zahra Behroozi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran.
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Farinaz Nasirinezhad
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Department of Physiology, Iran University of Medical Sciences; Center for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wang L, Gu S, Gan J, Tian Y, Zhang F, Zhao H, Lei D. Neural Stem Cells Overexpressing Nerve Growth Factor Improve Functional Recovery in Rats Following Spinal Cord Injury via Modulating Microenvironment and Enhancing Endogenous Neurogenesis. Front Cell Neurosci 2021; 15:773375. [PMID: 34924958 PMCID: PMC8675903 DOI: 10.3389/fncel.2021.773375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event characterized by severe motor, sensory, and autonomic dysfunction. Currently, there is no effective treatment. Previous studies showed neural growth factor (NGF) administration was a potential treatment for SCI. However, its targeted delivery is still challenging. In this study, neural stem cells (NSCs) were genetically modified to overexpress NGF, and we evaluated its therapeutic value following SCI. Four weeks after transplantation, we observed that NGF-NSCs significantly enhanced the motor function of hindlimbs after SCI and alleviated histopathological damage at the lesion epicenter. Notably, the survival NGF-NSCs at lesion core maintained high levels of NGF. Further immunochemical assays demonstrated the graft of NGF-NSCs modulated the microenvironment around lesion core via reduction of oligodendrocyte loss, attenuation of astrocytosis and demyelination, preservation of neurons, and increasing expression of multiple growth factors. More importantly, NGF-NSCs seemed to crosstalk with and activate resident NSCs, and high levels of NGF activated TrkA, upregulated cAMP-response element binding protein (CREB) and microRNA-132 around the lesion center. Taken together, the transplantation of NGF-NSCs in the subacute stage of traumatic SCI can facilitate functional recovery by modulating the microenvironment and enhancing endogenous neurogenesis in rats. And its neuroprotective effect may be mediated by activating TrkA, up-regulation of CREB, and microRNA-132.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sujie Gu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Gan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Tian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Sakti YM, Malueka RG, Dwianingsih EK, Kusumaatmaja A, Mafaza A, Emiri DM. Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Spinal cord injury (SCI) has been bringing detrimental impacts on the affected individuals. However, not only that, it also brings a tremendous effect on the socioeconomic and health-care system. Treatment regimen and strategy for SCI patient have been under further research.
DISCUSSION: The main obstacles of regeneration on neuronal structure are the neuroinflammatory process and poor debris clearance, causing a longer healing process and an extensive inflammation process due to this particular inflammatory process. To resolve all of the mentioned significant issues in SCIs neuronal regeneration, a comprehensive model is necessary to analyze each step of progressive condition in SCI. In this review, we would like to redefine a comprehensive concept of the “Diamond Concept” from previously used in fracture management to SCI management, which consists of cellular platform, cellular inductivity, cellular conductivity, and material integrity. The scaffolding treatment strategy for SCI has been widely proposed due to its flexibility. It enables the physician to combine another treatment method such as neuroprotective or neuroregenerative or both in one intervention.
CONCLUSION: Diamond concept perspective in the implementation of scaffolding could be advantageous to increase the outcome of SCI treatment.
Collapse
|
20
|
Zhang H, Wu F, Kong X, Yang J, Chen H, Deng L, Cheng Y, Ye L, Zhu S, Zhang X, Wang Z, Shi H, Fu X, Li X, Xu H, Lin L, Xiao J. Correction to: Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury. J Transl Med 2021; 19:445. [PMID: 34696770 PMCID: PMC8543896 DOI: 10.1186/s12967-021-02901-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fenzan Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Pharmacy, Cixi People's Hospital, Cixi, 315300, Zhejiang, China
| | - Xiaoxia Kong
- Institute of Hypoxia Research, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jie Yang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huijun Chen
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liancheng Deng
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Cheng
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Libing Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xie Zhang
- Medicine Research Center, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, 330200, Zhejiang, China
| | - Zhouguang Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hongxue Shi
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaobing Fu
- Institute of Basic Medical Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
21
|
Begenisic T, Pavese C, Aiachini B, Nardone A, Rossi D. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair. Restor Neurol Neurosci 2021; 39:339-366. [PMID: 34657853 DOI: 10.3233/rnn-211169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.
Collapse
Affiliation(s)
- Tatjana Begenisic
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Beatrice Aiachini
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
22
|
Xia N, Gao Z, Hu H, Li D, Zhang C, Mei X, Wu C. Nerve growth factor loaded macrophage-derived nanovesicles for inhibiting neuronal apoptosis after spinal cord injury. J Biomater Appl 2021; 36:276-288. [PMID: 34167336 DOI: 10.1177/08853282211025912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is an extremely destructive central nervous system lesion. Studies have shown that NGF can promote nerve regeneration after SCI. However, it cannot produce the desired effect due to its stability in the body and is difficulty in passing through the blood-brain barrier. In this study, we prepared nanovesicles derived from macrophage membrane encapsulating NGF (NGF-NVs) as a drug carrier for the treatment of SCI. Cell experiments showed that NGF-NVs were effectively taken up by PC12 cells and inhibited neuronal apoptosis. In vivo imaging experiments, a large quantity of NGF was delivered to the injured site with the aid of the good targeting of NVs. In animal experiments, NGF-NVs improved the survival of neurons by significantly activating the PI3K/AKT signaling pathway and had good behavioral and histological recovery effects after SCI. Therefore, NVs are a potential drug delivery vector for SCI therapy.
Collapse
Affiliation(s)
- Nan Xia
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Hengshuo Hu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chuanjie Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
23
|
Hossain MM, Richardson JR. Nerve Growth Factor Protects Against Pyrethroid-Induced Endoplasmic Reticulum (ER) Stress in Primary Hippocampal Neurons. Toxicol Sci 2021; 174:147-158. [PMID: 31841155 DOI: 10.1093/toxsci/kfz239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurotrophins are a family of growth factors crucial for growth and survival of neurons in the developing and adult brain. Reduction in neurotrophin levels is associated with reduced neurogenesis and cognitive deficits in rodents. Recently, we demonstrated that long-term exposure to low levels of the pyrethroid pesticide deltamethrin causes hippocampal endoplasmic reticulum (ER) stress and learning deficits in mice. Here, we found that nerve growth factor (NGF) mRNA and protein were selectively reduced in the hippocampus of deltamethrin-treated mice. To explore potential mechanisms responsible for this observation, we employed mouse primary hippocampal neurons. Exposure of neurons to deltamethrin (1-5 μM) caused ER stress as indicated by increased levels of C/EBP-homologous protein (CHOP) and glucose-regulated protein 78 (GRP78). These changes were accompanied by increased levels of caspase-12, activated caspase-3, and decreased levels of NGF. Inhibition of ER stress with the eukaryotic initiation factor 2 alpha (eIF2α) inhibitor salubrinal abolished deltamethrin-induced activation of caspase-12 and caspase-3, and restored NGF levels. Furthermore, deltamethrin decreased Akt (protein kinase B) phosphorylation, which was significantly prevented by co-treatment with NGF or SC-79 in cells. Collectively, these results demonstrate that the loss of NGF following ER stress may contribute to deltamethrin-induced apoptosis in the hippocampus through the Akt signaling pathway, and that this may provide a plausible mechanism for impaired learning and memory observed following exposure of mice to deltamethrin.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.,Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, Florida
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.,Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, Florida
| |
Collapse
|
24
|
Atiq Hassan, Nasir N, Muzammil K. Treatment Strategies to Promote Regeneration in Experimental Spinal Cord Injury Models. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Feng S, Wang S, Sun S, Su H, Zhang L. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats. Mol Med Rep 2021; 23:294. [PMID: 33649786 PMCID: PMC7930933 DOI: 10.3892/mmr.2021.11934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
Spinal cord injury (SCI) remains a global challenge due to limited treatment strategies. Transcranial magnetic stimulation (TMS), bone marrow mesenchymal stem cell (BMSC) transplantation and downregulation of Raf/MEK/ERK signaling effectively improve SCI. The combination of BMSCs and TMS displays synergistic effects on vascular dementia. However, whether TMS displays a synergistic effect when combined with BMSC transplantation or Raf inhibitor (RafI) therapy for the treatment of SCI is not completely understood. The present study aimed to compare the therapeutic effect of monotherapy and combination therapy on SCI. In the present study, 8‑week‑old female Sprague Dawley rats were used to establish a model of SCI using the weight‑drop method followed by treatment with monotherapy (TMS, BMSCs or RafI) or combination therapy (TMS+BMSCs or TMS+RafI). The effect of monotherapy and combination therapy on locomotor function, pathological alterations, neuronal apoptosis and expression of axonal regeneration‑associated factors and Raf/MEK/ERK signaling‑associated proteins in the spinal cord was analyzed by Basso, Beattie and Bresnahan (BBB) scoring, hematoxylin and eosin staining, TUNEL‑neuronal nuclei (NeuN) staining and immunofluorescence or western blotting, respectively. The results demonstrated that compared with untreated SCI model rats, monotherapy significantly enhanced locomotor functional recovery, as evidenced by higher BBB scores, and slightly alleviated histopathological lesions of the spinal cord in SCI model rats. Furthermore, monotherapy markedly suppressed neuronal apoptosis and promoted axonal regeneration, as well as inhibiting astroglial activation in SCI model rats. The aforementioned results were demonstrated by significantly decreased numbers of apoptotic neurons, markedly decreased expression levels of glial fibrillary acidic protein (GFAP), significantly increased numbers of NeuN+ cells, markedly increased expression levels of growth‑associated protein 43 (GAP‑43) and significantly upregulated nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) expression levels in monotherapy groups (excluding the RafI monotherapy group) compared with untreated SCI model rats. In addition, monotherapy markedly suppressed activation of the Raf/MEK/ERK signaling pathway, as evidenced by significantly reduced p‑Raf/Raf, p‑MEK/MEK and p‑ERK/ERK protein expression levels in monotherapy groups (excluding the BMSC monotherapy group) compared with untreated SCI model rats. Notably, combination therapy further alleviated SCI‑induced spinal cord lesions and neuronal apoptosis, increased GAP‑43, NGF and BDNF expression levels, downregulated GFAP expression levels and inhibited activation of the Raf/MEK/ERK signaling pathway in SCI model rats compared with the corresponding monotherapy groups. Therefore, it was hypothesized that compared with monotherapy, combination therapy displayed an improved therapeutic effect on SCI by further suppressing Raf/MEK/ERK signaling. The results of the present study provided an important basis for the clinical application of combination therapy.
Collapse
Affiliation(s)
- Sining Feng
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuai Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hao Su
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
26
|
Zhu S, Ying Y, Ye J, Chen M, Wu Q, Dou H, Ni W, Xu H, Xu J. AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death Dis 2021; 12:274. [PMID: 33723238 PMCID: PMC7960741 DOI: 10.1038/s41419-021-03546-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso-Beattie-Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
27
|
Sambyal K, Singh RV. A comprehensive review on Morchella importuna: cultivation aspects, phytochemistry, and other significant applications. Folia Microbiol (Praha) 2021; 66:147-157. [PMID: 33464471 DOI: 10.1007/s12223-020-00849-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022]
Abstract
Morchella importuna is one of the most highly priced edible mushrooms and a rich source of bioactive substances with numerous beneficial medicinal properties. It has been artificially cultivated in the last few years but due to the unclear mechanism of its fruiting body formation, the stable production has not been achieved yet. This review aims to provide the detailed information about the current research status of the indoor and outdoor cultivation and significant applications of M. importuna worldwide with a vision to know more about its potential therapeutic index and edible values. It will provide the basis of better understanding about the need to develop biotechnological processes for morel farming under controlled conditions.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India.
| |
Collapse
|
28
|
Muheremu A, Shu L, Liang J, Aili A, Jiang K. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci 2021; 12:494-511. [PMID: 34900347 PMCID: PMC8633588 DOI: 10.1515/tnsci-2020-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) is a devastating condition that results in tremendous physical and psychological harm and a series of socioeconomic problems. Although neurons in the spinal cord need neurotrophic factors for their survival and development to reestablish their connections with their original targets, endogenous neurotrophic factors are scarce and the sustainable delivery of exogeneous neurotrophic factors is challenging. The widely studied neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, ciliary neurotrophic factor, basic fibroblast growth factor, and glial cell-derived neurotrophic factor have a relatively short cycle that is not sufficient enough for functionally significant neural regeneration after SCI. In the past decades, scholars have tried a variety of cellular and viral vehicles as well as tissue engineering scaffolds to safely and sustainably deliver those necessary neurotrophic factors to the injury site, and achieved satisfactory neural repair and functional recovery on many occasions. Here, we review the neurotrophic factors that have been used in trials to treat SCI, and vehicles that were commonly used for their sustained delivery.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Li Shu
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Jing Liang
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, 39, Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Abudunaibi Aili
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Kan Jiang
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| |
Collapse
|
29
|
Sahib S, Sharma A, Menon PK, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Bryukhovetskiy I, Tian ZR, Patnaik R, Buzoianu AD, Wiklund L, Sharma HS. Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury. PROGRESS IN BRAIN RESEARCH 2020; 258:397-438. [PMID: 33223040 DOI: 10.1016/bs.pbr.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Preeti K Menon
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Krupa P, Stepankova K, Kwok JCF, Fawcett JW, Cimermanova V, Jendelova P, Machova Urdzikova L. New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats. Biomedicines 2020; 8:biomedicines8110477. [PMID: 33167447 PMCID: PMC7694490 DOI: 10.3390/biomedicines8110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023] Open
Abstract
Despite the variety of experimental models of spinal cord injury (SCI) currently used, the model of the ventral compression cord injury, which is commonly seen in humans, is very limited. Ventral balloon compression injury reflects the common anatomical mechanism of a human lesion and has the advantage of grading the injury severity by controlling the inflated volume of the balloon. In this study, ventral compression of the SCI was performed by the anterior epidural placement of the balloon of a 2F Fogarty's catheter, via laminectomy, at the level of T10. The balloon was rapidly inflated with 10 or 15 μL of saline and rested in situ for 5 min. The severity of the lesion was assessed by behavioral and immunohistochemical tests. Compression with the volume of 15 μL resulted in severe motor and sensory deficits represented by the complete inability to move across a horizontal ladder, a final Basso, Beattie and Bresnahan (BBB) score of 7.4 and a decreased withdrawal time in the plantar test (11.6 s). Histology and immunohistochemistry revealed a significant loss of white and gray matter with a loss of motoneuron, and an increased size of astrogliosis. An inflation volume of 10 μL resulted in a mild transient deficit. There are no other balloon compression models of ventral spinal cord injury. This study provided and validated a novel, easily replicable model of the ventral compression SCI, introduced by an inflated balloon of Fogarty´s catheter. For a severe incomplete deficit, an inflated volume should be maintained at 15 μL.
Collapse
Affiliation(s)
- Petr Krupa
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neurosurgery, Charles University, Medical Faculty and University Hospital Hradec Králové, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
| | - Jessica CF. Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James W. Fawcett
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Veronika Cimermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
- Correspondence: (P.J.); (L.M.U.); Tel.: (+420-2)-4106-2828 (P.J.); (+420-2)-4106-2619 (L.M.U.); Fax: (+420-2)-4106-2706 (P.J. & L.M.U.)
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083 Prague, Czech Republic; (P.K.); (K.S.); (J.C.K.); (J.W.F.); (V.C.)
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
- Correspondence: (P.J.); (L.M.U.); Tel.: (+420-2)-4106-2828 (P.J.); (+420-2)-4106-2619 (L.M.U.); Fax: (+420-2)-4106-2706 (P.J. & L.M.U.)
| |
Collapse
|
31
|
Krupa P, Siddiqui AM, Grahn PJ, Islam R, Chen BK, Madigan NN, Windebank AJ, Lavrov IA. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2020; 28:163-179. [PMID: 33089762 DOI: 10.1177/1073858420966276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence from preclinical and clinical research suggest that neuromodulation technologies can facilitate the sublesional spinal networks, isolated from supraspinal commands after spinal cord injury (SCI), by reestablishing the levels of excitability and enabling descending motor signals via residual connections. Herein, we evaluate available evidence that sublesional and supralesional spinal circuits could form a translesional spinal network after SCI. We further discuss evidence of translesional network reorganization after SCI in the presence of sensory inputs during motor training. In this review, we evaluate potential mechanisms that underlie translesional circuitry reorganization during neuromodulation and rehabilitation in order to enable motor functions after SCI. We discuss the potential of neuromodulation technologies to engage various components that comprise the translesional network, their functional recovery after SCI, and the implications of the concept of translesional network in development of future neuromodulation, rehabilitation, and neuroprosthetics technologies.
Collapse
Affiliation(s)
- Petr Krupa
- Department of Neurosurgery, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Kazan Federal University, Kazan, Russia
| |
Collapse
|
32
|
Guo S, Redenski I, Landau S, Szklanny A, Merdler U, Levenberg S. Prevascularized Scaffolds Bearing Human Dental Pulp Stem Cells for Treating Complete Spinal Cord Injury. Adv Healthc Mater 2020; 9:e2000974. [PMID: 32902147 DOI: 10.1002/adhm.202000974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/08/2020] [Indexed: 02/05/2023]
Abstract
The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.
Collapse
Affiliation(s)
- Shaowei Guo
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Idan Redenski
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shira Landau
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Szklanny
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Uri Merdler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
33
|
Alizadeh A, Moradi L, Katebi M, Ai J, Azami M, Moradveisi B, Ostad SN. Delivery of injectable thermo-sensitive hydrogel releasing nerve growth factor for spinal cord regeneration in rat animal model. J Tissue Viability 2020; 29:359-366. [PMID: 32839065 DOI: 10.1016/j.jtv.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
The main goal of this study was to explore the beneficial effect of nerve growth factor (NGF)-overexpressing of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated in injectable chitosan/β-glycerophosphate/hydroxyethylcellulose (CS/β-GP/HEC) hydrogel for spinal cord regeneration. The CS/β-GP/HEC hydrogel and genetically transduced hADSCs using pseudo-lentiviruses-NGF were prepared. The mechanical properties, morphology and cytotoxicity of the hydrogel were investigated by rheometry, scanning electron microscope (SEM), and MTT assay, respectively. Rats animals were undergone spinal cord injury (SCI), then one-week post-injury, CS/β-GP/HEC hydrogel, transduced hADSCs and transduced hADSCs/CS/β-GP/HEC hydrogel injected into the site of the lesion. Animals with SCI and animals with laminectomy without SCI were considered as negative control and sham groups, respectively. Positive control group received no surgical intervention. At eight weeks post-injection, histological studies indicated a significant increase in cell proliferation, a smaller cavity in size at the SCI site as well as better locomotor functions for transduced hADSCs/CS/β-GP/HEC hydrogel group (P ≤ 0.05) compared to other experimental groups. Our results showed that CS/β-GP/HEC hydrogel in combination with transduced-hADSCs is able to successfully regenerate SCI. These results may be applicable in the selection of the best therapeutic strategy based on gene therapy and tissue engineering for SCI treatment.
Collapse
Affiliation(s)
- Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Lida Moradi
- Department of Dermatology, School of Medicine, New York University, USA
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borhan Moradveisi
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Poisoning and Toxicology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Hu X, Li R, Wu Y, Li Y, Zhong X, Zhang G, Kang Y, Liu S, Xie L, Ye J, Xiao J. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. J Cell Mol Med 2020; 24:8166-8178. [PMID: 32515141 PMCID: PMC7348165 DOI: 10.1111/jcmm.15478] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
The application of growth factors (GFs) for treating chronic spinal cord injury (SCI) has been shown to promote axonal regeneration and functional recovery. However, direct administration of GFs is limited by their rapid degradation and dilution at the injured sites. Moreover, SCI recovery is a multifactorial process that requires multiple GFs to participate in tissue regeneration. Based on these facts, controlled delivery of multiple growth factors (GFs) to lesion areas is becoming an attractive strategy for repairing SCI. Presently, we developed a GFs‐based delivery system (called GFs‐HP) that consisted of basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and heparin‐poloxamer (HP) hydrogel through self‐assembly mode. This GFs‐HP was a kind of thermosensitive hydrogel that was suitable for orthotopic administration in vivo. Meanwhile, a 3D porous structure of this hydrogel is commonly used to load large amounts of GFs. After single injection of GFs‐HP into the lesioned spinal cord, the sustained release of NGF and bFGF from HP could significantly improve neuronal survival, axon regeneration, reactive astrogliosis suppression and locomotor recovery, when compared with the treatment of free GFs or HP. Moreover, we also revealed that these neuroprotective and neuroregenerative effects of GFs‐HP were likely through activating the phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt) and mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK) signalling pathways. Overall, our work will provide an effective therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rui Li
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Yi Li
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xingfeng Zhong
- Department of Anesthesia, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanyinsheng Zhang
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yanmin Kang
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Shuhua Liu
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junming Ye
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| |
Collapse
|
35
|
Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020; 46:326-340. [PMID: 31854489 DOI: 10.1002/biof.1598] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Bone is one of the most frequently transplanted tissues. The bone structure and its physiological function and stem cells biology were known to be closely related to each other for many years. Bone is considered a home to the well-known systems of postnatal mesenchymal stem cells (MSCs). These bone resident MSCs provide a range of growth factors (GF) and cytokines to support cell growth following injury. These GFs include a group of proteins and peptides produced by different cells which are regulators of important cell functions such as division, migration, and differentiation. GF signaling controls the formation and development of the MSCs condensation and plays a critical role in regulating osteogenesis, chondrogenesis, and bone/mineral homeostasis. Thus, a combination of both MSCs and GFs receives high expectations in regenerative medicine, particularly in bone repair applications. It is known that the delivery of exogenous GFs to the non-union bone fracture site remarkably improves healing results. Here we present updated information on bone tissue engineering with a specific focus on GF characteristics and their application in cellular functions and tissue healing. Moreover, the interrelation of GFs with the damaged bone microenvironment and their mechanistic functions are discussed.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- Food and Drug Administration, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
36
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
37
|
Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020; 10:1649-1677. [PMID: 32042328 PMCID: PMC6993217 DOI: 10.7150/thno.40919] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Autophagy in Schwann cells (SCs) is crucial for myelin debris degradation and clearance following peripheral nerve injury (PNI). Nerve growth factor (NGF) plays an important role in reconstructing peripheral nerve fibers and promoting axonal regeneration. However, it remains unclear if NGF effect in enhancing nerve regeneration is mediated through autophagic clearance of myelin debris in SCs. Methods: In vivo, free NGF solution plus with/without pharmacological inhibitors were administered to a rat sciatic nerve crush injury model. In vitro, the primary Schwann cells (SCs) and its cell line were cultured in normal medium containing NGF, their capable of swallowing or clearing degenerated myelin was evaluated through supplement of homogenized myelin fractions. Results: Administration of exogenous NGF could activate autophagy in dedifferentiated SCs, accelerate myelin debris clearance and phagocytosis, as well as promote axon and myelin regeneration at early stage of PNI. These NGF effects were effectively blocked by autophagy inhibitors. In addition, inhibition of the p75 kD neurotrophin receptor (p75NTR) signal or inactivation of the AMP-activated protein kinase (AMPK) also inhibited the NGF effect as well. Conclusions: NGF effect on promoting early nerve regeneration is closely associated with its accelerating autophagic clearance of myelin debris in SCs, which probably regulated by the p75NTR/AMPK/mTOR axis. Our studies thus provide strong support that NGF may serve as a powerful pharmacological therapy for peripheral nerve injuries.
Collapse
|
38
|
Díaz-Galindo MDC, Calderón-Vallejo D, Olvera-Sandoval C, Quintanar JL. Therapeutic approaches of trophic factors in animal models and in patients with spinal cord injury. Growth Factors 2020; 38:1-15. [PMID: 32299267 DOI: 10.1080/08977194.2020.1753724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Trophic factors are naturally produced by different tissues that participate in several functions such as the intercellular communication, in the development, stability, differentiation and regeneration at the cellular level. Specifically, in the case of spinal injuries, these factors can stimulate neuronal recovery. They are applied both in experimental models and in clinical trials in patients. The trophic factors analysed in this review include gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), growth hormone (GH), melatonin, oestrogens, the family of fibroblast growth factors (FGFs), the family of neurotrophins and the glial cell-derived neurotrophic factor (GDNF). There are some trophic (neurotrophic) factors that already been tested in patients with spinal cord injury (SCI), but only shown partial recovery effect. It is possible that, the administration of these trophic factors together with physical rehabilitation, act synergistically and, therefore, significantly improve the quality of life of patients with SCI.
Collapse
Affiliation(s)
- María Del Carmen Díaz-Galindo
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
- Department of Morphology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| | - Carlos Olvera-Sandoval
- Facultad de Medicina-Mexicali, Universidad Autónoma de Baja California, México. Dr. Humberto Torres Sanginés S/N. Centro Cívico, Mexicali, México
| | - J Luis Quintanar
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| |
Collapse
|
39
|
Zhou Y, Su P, Pan Z, Liu D, Niu Y, Zhu W, Yao P, Song Y, Sun Y. Combination Therapy With Hyperbaric Oxygen and Erythropoietin Inhibits Neuronal Apoptosis and Improves Recovery in Rats With Spinal Cord Injury. Phys Ther 2019; 99:1679-1689. [PMID: 31504911 DOI: 10.1093/ptj/pzz125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apoptosis plays an important role in various diseases, including spinal cord injury (SCI). Hyperbaric oxygen (HBO) and erythropoietin (EPO) promote the recovery from SCI, but the relationship between apoptosis and the combination therapeutic effect is not completely clear. OBJECTIVE The purpose of this study was to investigate the effects of HBO and EPO on SCI and the mechanisms that underlie their therapeutic benefits. DESIGN The study was designed to explore the effects of HBO and EPO on SCI through a randomized controlled trial. METHODS Sixty young developing female Sprague-Dawley rats were randomly divided into groups of 12 rats receiving sham, SCI, HBO, EPO, or HBO plus EPO. The SCI model was modified with the Allen method to better control consistency. HBO was performed for 1 hour per day for a total of 21 days, and EPO was given once per week for a total of 3 weeks. Both methods were performed 2 hours after SCI. Locomotor function was evaluated with the 21-point Basso-Beattie-Bresnahan Locomotor Rating Scale, an inclined-plane test, and a footprint analysis. All genes were detected by Western blotting and immunohistochemistry. The level of cell apoptosis was determined by Hoechst staining. RESULTS The results showed that HBO and EPO promoted the recovery of locomotor function in the hind limbs of rats by inhibiting the apoptosis of neurons. During this period, the expression of B-cell lymphoma/leukemia 2 protein (Bcl-2) increased significantly, whereas the expression of Bcl-2-associated X protein (Bax) and cleaved caspase 3 decreased significantly, indicating the inhibition of apoptosis. Meanwhile, the expression of G protein-coupled receptor 17 decreased, and that of myelin basic protein increased, suggesting that there may be a potential connection between demyelination and neuronal apoptosis. LIMITATIONS The limitations of the study include deviations in the preparation of SCI models; lack of reverse validation of molecular mechanisms; absence of in vitro cell experiments; and only one time point after SCI was studied. CONCLUSIONS HBO and EPO treatments are beneficial for SCI, especially when the 2 therapies are combined.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China; Department of Orthopedics and The Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Peng Su
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Zhenzhen Pan
- Department of Radiology, People's Hospital of Changshan, Quzhou, China
| | - Dong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yanping Niu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Weiqing Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Pengfei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yue Song
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| |
Collapse
|
40
|
Limoli PG, Vingolo EM, Limoli C, Nebbioso M. Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review. Biomedicines 2019; 7:biomedicines7040094. [PMID: 31801246 PMCID: PMC6966474 DOI: 10.3390/biomedicines7040094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
To evaluate whether grafting of autologous mesenchymal cells, adipose-derived stem cells, and platelet-rich plasma into the supracoroideal space by surgical treatment with the Limoli retinal restoration technique (LRRT) can exert a beneficial effect in retinitis pigmentosa (RP) patients. Twenty-one eyes underwent surgery and were divided based on retinal foveal thickness (FT) ≤ 190 or > 190 µm into group A-FT and group B-FT, respectively. The specific LRRT triad was grafted in a deep scleral pocket above the choroid of each eye. At 6-month follow-up, group B showed a non-significant improvement in residual close-up visus and sensitivity at microperimetry compared to group A. After an in-depth review of molecular biology studies concerning degenerative phenomena underlying the etiopathogenesis of retinitis pigmentosa (RP), it was concluded that further research is needed on tapeto-retinal degenerations, both from a clinical and molecular point of view, to obtain better functional results. In particular, it is necessary to increase the number of patients, extend observation timeframes, and treat subjects in the presence of still trophic retinal tissue to allow adequate biochemical and functional catering.
Collapse
Affiliation(s)
- Paolo Giuseppe Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Celeste Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-06-49975422; Fax: +39-06-49975425
| |
Collapse
|
41
|
Jones PM, Mazzio E, Soliman K, George AM. In Silico Investigation of the Binding of MCoTI-II Plant Defense Knottin to the γ-NGF Serine Protease of the 7S Nerve Growth Factor Complex and Biological Activity of Its NGF Mimetic Properties. J Phys Chem B 2019; 123:9104-9110. [PMID: 31580077 DOI: 10.1021/acs.jpcb.9b07547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nerve growth factor (NGF) is an endogenously produced polypeptide that promotes the differentiation, survival, and repair of neurons in the central and peripheral nervous systems. While trophic proteins hold promise for the treatment of neuronal injury and disease, use of NGF is limited by its large molecular weight, lack of permeability through the blood-brain barrier, and peripheral side effects. Previously, we found that an extract of the Momordica cochinchinensis seed stimulated PC-12 neurite outgrowth. Bioactivity-guided fractioning of the seed extract suggested that the NGF mimetic agent was one of few defined proteins from this plant: one group being the defense Knottins and the other group of the lowest mass is the potent trypsin inhibitor MCoTI-II. Here, the NGF mimetic potential of this latter protein was investigated using two concurrent but different approaches. A biological study used recombinant purified MCoTI-II, which when tested in rat PC-12 cells grown on collagen, failed to initiate outgrowth relative to the positive control 7S NGF. In a separate computational study, the possibility was investigated such that MCoTI-II could exert an effect through binding to the serine protease γ-NGF subunit of the 7S NGF complex, analogous to its binding to its native receptor trypsin. Molecular dynamics simulations showed that MCoTI-II can bind stably to γ-NGF for >350 ns. Modeling indicated that this interaction could sterically inhibit 7S NGF complex formation, potentially altering the equilibrium between inactive complexed and free active NFG protein. In conclusion, the biological study now excludes the MCoTI-II protein as the NGF mimetic factor in the Momordica extract, an important and required step to identify the active component in this seed. On the other hand, the theoretical study has revealed a novel observation that may be of use in the development of strategies to affect NGF activity.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences , University of Technology Sydney , P.O. Box 123, Broadway , New South Wales 2007 , Australia
| | - Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences , Florida Agricultural and Mechanical University , 241 Fred Humphries Science Research Facility , Tallahassee , Florida 32307 , United States
| | - Karam Soliman
- College of Pharmacy and Pharmaceutical Sciences , Florida Agricultural and Mechanical University , 241 Fred Humphries Science Research Facility , Tallahassee , Florida 32307 , United States
| | - Anthony M George
- School of Life Sciences , University of Technology Sydney , P.O. Box 123, Broadway , New South Wales 2007 , Australia
| |
Collapse
|
42
|
Dong L, Li R, Li D, Wang B, Lu Y, Li P, Yu F, Jin Y, Ni X, Wu Y, Yang S, Lv G, Li X, Xiao J, Wang J. FGF10 Enhances Peripheral Nerve Regeneration via the Preactivation of the PI3K/Akt Signaling-Mediated Antioxidant Response. Front Pharmacol 2019; 10:1224. [PMID: 31680984 PMCID: PMC6805699 DOI: 10.3389/fphar.2019.01224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
The process of axonal regeneration after peripheral nerve injury (PNI) is slow and mostly incomplete. Previous studies have investigated the neuroprotective effects of fibroblast growth factor 10 (FGF10) against spinal cord injury and cerebral ischemia brain injury. However, the role of FGF10 in peripheral nerve regeneration remains unknown. In this study, we aimed to investigate the underlying therapeutic effects of FGF10 on nerve regeneration and functional recovery after PNI and to explore the associated mechanism. Our results showed that FGF10 administration promoted axonal regeneration and functional recovery after nerve damage. Moreover, exogenous FGF10 treatment also prevented SCs from excessive oxidative stress-induced apoptosis, which was probably related to the activation of phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling. The inhibition of the PI3K/Akt pathway by the specific inhibitor LY294002 partially reversed the therapeutic effects of FGF10 both in vivo and in vitro. Thus, from our perspective, FGF10 may be a promising therapeutic drug for repairing sciatic nerve damage through countering excessive oxidative stress-induced SC apoptosis.
Collapse
Affiliation(s)
- Lvpeng Dong
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Duohui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Beini Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingfeng Lu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peifeng Li
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangzheng Yu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonglong Jin
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Ni
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Shengnan Yang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Guanxi Lv
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
GSK-3 Inhibitor Promotes Neuronal Cell Regeneration and Functional Recovery in a Rat Model of Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9628065. [PMID: 31467921 PMCID: PMC6699364 DOI: 10.1155/2019/9628065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023]
Abstract
The reparative process following spinal cord injury (SCI) is extremely complicated. Cells in the microenvironment express multiple inhibitory factors that affect axonal regeneration over a prolonged period of time. The axon growth inhibitory factor glycogen synthase kinase-3 (GSK-3) is an important factor during these processes. TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) is the most effective and specific non-ATP-competitive inhibitor of GSK-3. Here, we show that administering TDZD-8 after SCI was associated with significantly inhibited neuronal apoptosis, upregulated GAP-43 expression, increased density of cortical spinal tract fibers around areas of injury, and increased Basso, Beattie, and Bresnahan (BBB) scores in the lower limbs. These findings support the notion that GSK-3 inhibitors promote neuronal cell regeneration and lower limb functional recovery.
Collapse
|
44
|
Guo Z, Li L, Gao Y, Zhang X, Cheng M. RETRACTED ARTICLE: Overexpression of lncRNA ANRIL aggravated hydrogen peroxide-disposed injury in PC-12 cells via inhibiting miR-499a/PDCD4 axis-mediated PI3K/Akt/mTOR/p70S6K pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2624-2633. [DOI: 10.1080/21691401.2019.1629953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhiliang Guo
- Department of Orthopedic, The 89 Hospital of Chinese PLA, Weifang, China
| | - Lanlan Li
- Clinic Medical College, Weifang Medical University, Weifang, China
| | - Yu Gao
- Clinic Medical College, Weifang Medical University, Weifang, China
| | - Xiaoyun Zhang
- Clinic Medical College, Weifang Medical University, Weifang, China
| | - Min Cheng
- Clinic Medical College, Weifang Medical University, Weifang, China
| |
Collapse
|
45
|
Zhu Y, Zhang L, Fu R, Gao L, Feng G, Du C, Wang Z, Yan X. The change tendency of endoplasmic reticulum stress associated proteins in rats with spinal cord injury. Am J Transl Res 2019; 11:1938-1947. [PMID: 31105809 PMCID: PMC6511803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
To investigate endoplasmic reticulum (ER) stress reactions in spinal cord injury rats by evaluating the expression of the glucose-regulated protein 78 (GRP78), C/EBP homologous transcription factor protein (CHOP), X-box binding protein 1 (XBP1), Eif-2α and Bad. SCI models were established using adult female mice. After SCI, the expression of endoplasmic reticulum stress-induced apoptosis proteins were examined in the mice at specific time points using immunohistochemistry and western blot. The results of immunohistochemistry showed that in spinal cord gray matter, Chop, Grp78, XBP1, Eif-2α and Bad were specifically detected in the cytoplasm of the cell. Compare with the SCI group, there was little expression in normal group and sham group. The expression of ER stress-induced apoptosis proteins were significantly increased after spinal cord injury, and the absolute expression was higher than normal group (P < 0.05). Western-Blot results showed that compare with the SCI group, there were little expression of ER stress-induced apoptosis proteins in normal group and sham group. The expression of ER stress-induced apoptosis proteins were significantly increased after spinal cord injury, and the absolute expression was higher than normal group (P < 0.05). These results suggest that some ER stress-induced apoptosis proteins, such as Chop, Grp78, XBP1, Eif-2α and Bad, were activated after spinal cord injury, but the precise regulatory mechanisms remain unclear. In the future, understanding of the precise mechanism of ER stress-mediated apoptosis in SCI may lead to the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yonglin Zhu
- Shandong University27 Shanda Nanlu, Jinan 250100, Shandong, China
- Department of Bone and Joint, Yantai Affiliated Hospital of Binzhou Medical UniversityYantai 264001, Shandong, China
| | - Luping Zhang
- Institute of Human Anatomy and Histology and Embryology, Otology and Neuroscience Center, Binzhou Medical University346 Guanhai Road, Yantai 264003, Shandong, China
| | - Rongzhan Fu
- Shandong Provincial Qianfoshan HospitalJinan 250014, Shandong, China
| | - Limin Gao
- Institute of Human Anatomy and Histology and Embryology, Otology and Neuroscience Center, Binzhou Medical University346 Guanhai Road, Yantai 264003, Shandong, China
| | - Guoying Feng
- Institute of Human Anatomy and Histology and Embryology, Otology and Neuroscience Center, Binzhou Medical University346 Guanhai Road, Yantai 264003, Shandong, China
| | - Chao Du
- Institute of Human Anatomy and Histology and Embryology, Otology and Neuroscience Center, Binzhou Medical University346 Guanhai Road, Yantai 264003, Shandong, China
| | - Zhaojie Wang
- Department of Bone and Joint, Yantai Affiliated Hospital of Binzhou Medical UniversityYantai 264001, Shandong, China
| | - Xinfeng Yan
- Shandong University27 Shanda Nanlu, Jinan 250100, Shandong, China
- Shandong Provincial Qianfoshan HospitalJinan 250014, Shandong, China
| |
Collapse
|
46
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
47
|
Zuo E, Zhang C, Mao J, Gao C, Hu S, Shi X, Piao F. 2,5-Hexanedione mediates neuronal apoptosis through suppression of NGF via PI3K/Akt signaling in the rat sciatic nerve. Biosci Rep 2019; 39:BSR20181122. [PMID: 30670632 PMCID: PMC6900430 DOI: 10.1042/bsr20181122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Because precise mechanism for 2,5-hexanedione (HD)-induced neuronal apoptosis largely remains unknown, we explored the potential mechanisms both in vivo and in vitro Rats were intraperitoneally exposed to HD at different doses for 5 weeks, following which the expression levels of nerve growth factor (NGF), phosphorylation of Akt and Bad, dimerization of Bad and Bcl-xL, as well as the release of cytochrome c and the caspase-3 activity were measured. Moreover, these variables were also examined in vitro in HD-exposed VSC4.1 cells with or without a PI3K-specific agonist (IGF-1), and in HD-exposed VSC4.1 cells with or without a PI3K-specific inhibitor (LY294002) in the presence or absence of NGF. The data indicate that, as the concentration of HD increased, rats exhibited progressive gait abnormalities, and enhanced neuronal apoptosis in the rat sciatic nerve, compared with the results observed in the control group. Furthermore, HD significantly down-regulated NGF expression in the rat sciatic nerve. Moreover, suppression of NGF expression inhibited the phosphorylation of Akt and Bad. Meanwhile, an increase in the dimerization of Bad and Bcl-xL in mitochondria resulted in cytochrome c release and caspase-3 activation. In contrast, HD-induced apoptosis was eliminated by IGF-1. Additionally, NGF supplementation reversed the decrease in phosphorylation of Akt and Bad, as well as reversing the neuronal apoptosis in HD-exposed VSC4.1 cells. However, LY294002 blocked these effects of NGF. Collectively, our results demonstrate that mitochondrial-dependent apoptosis is induced by HD through NGF suppression via the PI3K/Akt pathway both in vivo and in vitro.
Collapse
Affiliation(s)
- Enjun Zuo
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Chenxue Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Shuhai Hu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
48
|
Wang Q, Cai H, Hu Z, Wu Y, Guo X, Li J, Wang H, Liu Y, Liu Y, Xie L, Xu K, Xu H, He H, Zhang H, Xiao J. Loureirin B Promotes Axon Regeneration by Inhibiting Endoplasmic Reticulum Stress: Induced Mitochondrial Dysfunction and Regulating the Akt/GSK-3β Pathway after Spinal Cord Injury. J Neurotrauma 2019; 36:1949-1964. [PMID: 30543130 DOI: 10.1089/neu.2018.5966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Axon retraction greatly limits functional recovery after spinal cord injury (SCI) and neuron polarization, which affects processes including axon formation and development, is a promising target for promoting axon regeneration. Increasing microtubule stability has been demonstrated to improve intrinsic axon regeneration processes and is critically related to endoplasmic reticulum (ER)-mitochondria interactions. We used real-time polymerase chain reaction, Western blotting, and immunofluorescence to screen a variety of natural compounds, and found that Loureirin B (LrB) effectively promoted neuron polarization and axon regeneration in vitro and in vivo. LrB significantly inhibited ER stress and thereby promoted mitochondrial functions by regulating mitochondrial fusion. Further, LrB reactivated the Akt/GSK-3β pathway, which plays critical roles in cell survival and microtubule stabilization. Taken together, our results suggest that the effects of LrB on neuron regeneration involve the inhibition of ER stress-induced mitochondrial dysfunction and activation of the Akt/GSK-3β pathway, which further promotes microtubule stabilization. LrB may therefore be a promising candidate for facilitating recovery following SCI.
Collapse
Affiliation(s)
- Qingqing Wang
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Hanxiao Cai
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- 3 The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xin Guo
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Haoli Wang
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yani Liu
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanlong Liu
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- 3 The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Huazi Xu
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huacheng He
- 4 College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hongyu Zhang
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
de Mello Rieder M, Oses JP, Kutchak FM, Sartor M, Cecchini A, Rodolphi MS, Wiener CD, Kopczynski A, Muller AP, Strogulski NR, Carteri RB, Hansel G, Bianchin MM, Portela LV. Serum Biomarkers and Clinical Outcomes in Traumatic Spinal Cord Injury: Prospective Cohort Study. World Neurosurg 2019; 122:e1028-e1036. [DOI: 10.1016/j.wneu.2018.10.206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
|
50
|
Neuroprotection by Paeoniflorin against Nuclear Factor Kappa B-Induced Neuroinflammation on Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9865403. [PMID: 30627586 PMCID: PMC6304651 DOI: 10.1155/2018/9865403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
Abstract
Background Acute spinal cord injury (SCI) is one of the most common and devastating causes of sensory or motor dysfunction. Nuclear factor-kappa B(NF-κB)-mediated neuroinflammatory responses, in addition to nitric oxide (NO), are key regulatory pathways in SCI. Paeoniflorin (PF), a major active component extracted from Paeonia roots, has been suggested to exert neuroprotective effects in the central nervous system. However, whether PF could improve the motor function after SCI in vivo is still unclear. Method Immunohistochemical analysis, western blot, real-time quantitative PCR, immunofluorescence staining, and histopathological and behavioral evaluation were used to explore the effects of paeoniflorin after SCI for 14 days. Results In this study, PF treatment significantly inhibited NF-κB activation and downregulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), and Nogo-A. Comparing behavioral and histological changes in SCI and PF treatment groups, we found that PF treatment improved motor function recovery, attenuated the histopathological damage, and increased neuronal survival in the SCI model. PF treatment also reduced expression levels of Bax and c-caspase-3 and increased the expression level of Bcl-2 and cell viabilities. Upregulation of TNF-α, IL-6, and IL-1β after injury was also prevented by PF. Conclusion These results suggest that the neuroprotective effects of PF are related to the inhibition of the NF-κB signaling pathway. And PF may be a therapeutic strategy in spinal cord injury.
Collapse
|