1
|
Villarreal-Leal RA, Healey GD, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Adv Drug Deliv Rev 2021; 179:113913. [PMID: 34371087 DOI: 10.1016/j.addr.2021.113913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Inflammation plays a central role in wound healing following injury or disease and is mediated by a precise cascade of cellular and molecular events. Unresolved inflammatory processes lead to chronic inflammation and fibrosis, which can result in prolonged wound healing lasting months or years that hampers tissue function. Therapeutic interventions mediated by immunomodulatory drugs, cells, or biomaterials, are therefore most effective during the inflammatory phase of wound healing when a pro-regenerative environment is essential. In this review, we discuss the advantages of exploiting knowledge of the native tissue microenvironment to develop therapeutics capable of modulating the immune response and promoting functional tissue repair. In particular, we provide examples of the most recent biomimetic platforms proposed to accomplish this goal, with an emphasis on those able to induce macrophage polarization towards a pro-regenerative phenotype.
Collapse
|
2
|
Rapier CE, Shea KJ, Lee AP. Investigating PLGA microparticle swelling behavior reveals an interplay of expansive intermolecular forces. Sci Rep 2021; 11:14512. [PMID: 34267274 PMCID: PMC8282844 DOI: 10.1038/s41598-021-93785-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/11/2021] [Indexed: 11/09/2022] Open
Abstract
This study analyzes the swelling behavior of native, unmodified, spherically uniform, monodisperse poly(lactic-co-glycolic acid) (PLGA) microparticles in a robust high-throughput manner. This work contributes to the complex narrative of PLGA microparticle behavior and release mechanisms by complementing and extending previously reported studies on intraparticle microenvironment, degradation, and drug release. Microfluidically produced microparticles are incubated under physiological conditions and observed for 50 days to generate a profile of swelling behavior. Microparticles substantially increase in size after 15 days, continue increasing for 30 days achieving size dependent swelling indices between 49 and 83%. Swelling capacity is found to correlate with pH. Our study addresses questions such as onset, duration, swelling index, size dependency, reproducibility, and causal mechanistic forces surrounding swelling. Importantly, this study can serve as the basis for predictive modeling of microparticle behavior and swelling capacity, in addition to providing clues as to the microenvironmental conditions that encapsulated material may experience.
Collapse
Affiliation(s)
- Crystal E Rapier
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA.
| | - Kenneth J Shea
- Department of Chemistry, University of California-Irvine, Irvine, CA, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
4
|
In Vitro and In Vivo Biosafety Analysis of Resorbable Polyglycolic Acid-Polylactic Acid Block Copolymer Composites for Spinal Fixation. Polymers (Basel) 2020; 13:polym13010029. [PMID: 33374878 PMCID: PMC7794712 DOI: 10.3390/polym13010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.
Collapse
|
5
|
Naderi R, Saadati Mollaei H, Elofsson A, Hosseini Ashtiani S. Using Micro- and Macro-Level Network Metrics Unveils Top Communicative Gene Modules in Psoriasis. Genes (Basel) 2020; 11:genes11080914. [PMID: 32785106 PMCID: PMC7464240 DOI: 10.3390/genes11080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Psoriasis is a multifactorial chronic inflammatory disorder of the skin, with significant morbidity, characterized by hyperproliferation of the epidermis. Even though psoriasis’ etiology is not fully understood, it is believed to be multifactorial, with numerous key components. (2) Methods: In order to cast light on the complex molecular interactions in psoriasis vulgaris at both protein–protein interactions and transcriptomics levels, we studied a set of microarray gene expression analyses consisting of 170 paired lesional and non-lesional samples. Afterwards, a network analysis was conducted on the protein–protein interaction network of differentially expressed genes based on micro- and macro-level network metrics at a systemic level standpoint. (3) Results: We found 17 top communicative genes, all of which were experimentally proven to be pivotal in psoriasis, which were identified in two modules, namely the cell cycle and immune system. Intra- and inter-gene interaction subnetworks from the top communicative genes might provide further insight into the corresponding characteristic interactions. (4) Conclusions: Potential gene combinations for therapeutic/diagnostics purposes were identified. Moreover, our proposed workflow could be of interest to a broader range of future biological network analysis studies.
Collapse
Affiliation(s)
- Reyhaneh Naderi
- Department of Artificial Intelligence and Robotics, Faculty of Computer Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran;
| | - Homa Saadati Mollaei
- Department of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran 1916893813, Iran;
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden;
| | - Saman Hosseini Ashtiani
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-762623644
| |
Collapse
|
6
|
Maslov M, Foianini S, Lovich M. Response to the letter to the editor: delivery of drugs, growth factors, genes and stem cells via intrapericardial, epicardial and intramyocardial routes for sustained local targeted therapy of myocardial disease. Expert Opin Drug Deliv 2018; 14:911. [PMID: 28673165 DOI: 10.1080/17425247.2017.1342409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M Maslov
- a Department of Anesthesiology, Pain Medicine and Critical Care , Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston , MA , USA
| | - S Foianini
- a Department of Anesthesiology, Pain Medicine and Critical Care , Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston , MA , USA
| | - M Lovich
- a Department of Anesthesiology, Pain Medicine and Critical Care , Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
7
|
Katz MG, Fargnoli AS, Hajjar RJ, Bridges CR. Delivery of drugs, growth factors, genes and stem cells via intrapericardial, epicardial and intramyocardial routes for sustained local targeted therapy of myocardial disease. Expert Opin Drug Deliv 2017. [PMID: 28627940 DOI: 10.1080/17425247.2017.1342405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M G Katz
- a Cardiovascular Research Center , Mount Sinai School of Medicine , New York , NY , USA
| | - A S Fargnoli
- a Cardiovascular Research Center , Mount Sinai School of Medicine , New York , NY , USA
| | - R J Hajjar
- a Cardiovascular Research Center , Mount Sinai School of Medicine , New York , NY , USA
| | - C R Bridges
- a Cardiovascular Research Center , Mount Sinai School of Medicine , New York , NY , USA
| |
Collapse
|
8
|
Yang Q, Wang S, Wang Y, Qu Y, Xue J, Mi Y, Wang Y, Luo X, Deng Z, Wang G. Decorin-loaded poly lactic-co-glycolic acid nanoparticles modified by anti-alpha fetoprotein antibody: preparation, proliferation inhibition and induced apoptosis effects on HepG2 cells in vitro. ACTA ACUST UNITED AC 2017; 69:633-641. [PMID: 28266029 DOI: 10.1111/jphp.12695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/11/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Decorin (DCN) is a negative regulatory factor for the growth of cancer cells and can inhibit the proliferation, metastasis of cancer cells and angiogenesis in cancer tissues. The aims of this study were to prepare the nanoparticles consisting of DCN and poly lactic-co-glycolic acid (PLGA) modified by anti-alpha fetoprotein (AFP) monoclonal antibody (mAb) and to examine the conventional physical properties, the in-vitro release of DCN and the targeting effect of these nanoparticles on HepG2 cells. KEY FINDINGS The encapsulated plasmid was slowly and steadily released from the nanoparticles. The targeted PLGA nanoparticles were initiatively taken in HepG2 cells high-efficiently. According to the results of RT-PCR, DCN gene in AFPmAb-PLGA-rhDCN nanoparticles can be expressed in HepG2 cells successfully. These nanoparticles significantly inhibited the proliferation of HepG2 cells and induced apoptosis. The mRNA expression of Bcl-2 gene in the AFPmAb-PLGA-rhDCN-treated groups appeared significantly to decrease and the caspase-3 gene had the opposite trend as compared with that of control group (P < 0.01). CONCLUSION These studies revealed that these nanoparticles were capable of specifically targeting the HepG2 cells and inhibiting the proliferation and they induce apoptosis of HepG2 cells in vitro, which was in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Qiaoli Yang
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Shuyue Wang
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Yuan Wang
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Yane Qu
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Jun Xue
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Yang Mi
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Xuguang Luo
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| | - Zhihua Deng
- Second Clinical College of Shanxi Medical University, Taiyuan, China
| | - Guiqin Wang
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Salvatore A, Montis C, Berti D, Baglioni P. Multifunctional Magnetoliposomes for Sequential Controlled Release. ACS NANO 2016; 10:7749-60. [PMID: 27504891 DOI: 10.1021/acsnano.6b03194] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The simultaneous or sequential delivery of multiple therapeutic active principles to a specific target is one of the main challenges of nanomedicine. This goal requires the construction of complex devices often extremely time and cost consuming. Supramolecular self-assemblies, with building blocks of different nature, each providing a specific function to the final construct, can combine a facile synthetic route with a high tunability and structural control. In this study we provide the proof-of-principle of a drug delivery system, DDS, constituted of (i) liposomes, providing a fully biocompatible lipid scaffold suitable to host both hydrophobic and hydrophilic drugs; (ii) a double-stranded DNA conjugated with a cholesteryl unit that spontaneously inserts into the lipid membrane; and (iii) hydrophobic and hydrophilic superparamagnetic iron oxide nanoparticles (SPIONs) embedded inside the lipid membrane of liposomes or connected to the DNA, respectively. Upon application of an alternating magnetic field, the SPIONs can trigger, through thermal activation, the release of a DNA strand or of the liposomal payload, depending on the frequency and the application time of the field, as proved by both steady-state and time-resolved fluorescence studies. This feature is due to the different localization of the two kinds of SPIONS within the construct and demonstrates the feasibility of a multifunctional DDS, built up from self-assembly of biocompatible building blocks.
Collapse
Affiliation(s)
- Annalisa Salvatore
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| | - Debora Berti
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| |
Collapse
|
10
|
Evans CW, Iyer KS, Hool LC. The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart. Nanomedicine (Lond) 2016; 11:817-32. [PMID: 26980180 DOI: 10.2217/nnm.16.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treatment of acute cardiac ischemia remains an area in which there are opportunities for therapeutic improvement. Despite significant advances, many patients still progress to cardiac hypertrophy and heart failure. Timely reperfusion is critical in rescuing vulnerable ischemic tissue and is directly related to patient outcome, but reperfusion of the ischemic myocardium also contributes to damage. Overproduction of reactive oxygen species, initiation of an inflammatory response and deregulation of calcium homeostasis all contribute to injury, and difficulties in delivering a sufficient quantity of drug to the affected tissue in a controlled manner is a limitation of current therapies. Nanotechnology may offer significant improvements in this respect. Here, we review recent examples of how nanoparticles can be used to improve delivery to the ischemic myocardium, and suggest some approaches that may lead to improved therapies for acute cardiac ischemia.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - K Swaminathan Iyer
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.,Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
11
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
12
|
Tang Q, Lu M, Chen D, Liu P. Combination of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles and pHsp 70-HSV-TK/GCV with magnet-induced heating for treatment of hepatoma. Int J Nanomedicine 2015; 10:7129-43. [PMID: 26604760 PMCID: PMC4655962 DOI: 10.2147/ijn.s92179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background To explore a new combination of thermal treatment and gene therapy for hepatoma, a heat-inducible herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy system was developed in which thermal energy generated by Mn0.5Zn0.5Fe2O4 nanoparticles (MZF-NPs) under an alternating magnetic field was used to activate gene expression. Methods First, a recombinant eukaryotic plasmid, pHsp 70-HSV-TK, was constructed as a target gene for therapy. This recombinant plasmid was used to transfect SMMC-7721 hepatoma cells and the gene expression was evaluated. Magnet-induced heating was then applied to cells to assess the antihepatoma effects of the polyethylenimine (PEI)-MZF-NPs/pHsp 70-HSV-TK/GCV complex, in vitro and in vivo. Results The results showed that cells were successfully transfected with pHsp 70-HSV-TK and that expression levels of HSV-TK remained stable. Both in vitro and in vivo results indicated that the combination of gene therapy and heat treatment resulted in better therapeutic effects than heating-alone group. The rates of apoptosis and necrosis in the combined treatment group were 49.0% and 7.21%, respectively. The rate of inhibition of cell proliferation in the combined treatment group was significantly higher (87.5%) than that in the heating-alone group (65.8%; P<0.01). The tumor volume and mass inhibition rates of the combined treatment group were 91.3% and 87.91%, respectively, and were significantly higher than the corresponding rates of the heating-alone group (70.41% and 57.14%; P<0.01). The expression levels of Stat3 and Bcl-xL messenger RNA and p-Stat3 and Bcl-xL protein in the combined treatment group were significantly lower than those in the other groups (P<0.01). The expression levels of Bax messenger RNA and protein in the recombinant plasmid group were significantly higher than those in the other groups (P<0.01). Conclusion It can therefore be concluded that the combined application of heat treatment and gene therapy has a synergistic and complementary effect and that PEI-MZF-NPs can simultaneously act both as a nonviral gene vector and a magnet-induced source of heat, thereby representing a viable approach for the treatment of cancer.
Collapse
Affiliation(s)
- Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Mudan Lu
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Daozhen Chen
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|