1
|
Wang Y, Zhang X, Chen G, Shao M. Clinical research progress of telomerase targeted cancer immunotherapy: a literature review. Transl Cancer Res 2024; 13:3904-3921. [PMID: 39145070 PMCID: PMC11319969 DOI: 10.21037/tcr-24-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background and Objective Telomerase is activated or overexpressed in 85-90% of tumors, which maintains the length of telomere and has become an important anti-cancer target. Increasing clinical and preclinical data suggest that telomerase-targeted cancer immunotherapy could achieve effective killing of tumor cells in vivo. This article reviews the research progress of telomerase targeted cancer immunotherapy in clinical and pre-clinical trials, aiming to provide a reference for further clinical research and treatment of cancers. Methods We investigated the research progress of telomerase immunotherapy in the last 20 years from four electronic databases. Key Content and Findings Telomerase-targeted immunotherapies have been developed with the arising of a new era in immuno-oncology, including peptide vaccines, DNA vaccines, dendritic cells (DCs), adoptive cell transfer (ACT) therapies, antibodies, etc. Some of them have been approved for undergoing clinical trials by the Food and Drug Administration (FDA) for the treatment of various cancers, such as pancreatic cancer, non-small cell lung cancer, melanoma, leukaemia. Of all the treatment modalities, vaccines are the primary treatment methods, some of which have been even entered into phase III clinical trials. The main clinical application direction of telomerase vaccine is the combination with other drugs and treatment modalities, including combination with other vaccines targeting human telomerase reverse transcriptase (hTERT), traditional chemotherapy drugs and immunosuppressors. We also summarized the recent findings of immunotherapy targeting hTERT, focusing on various vaccines and the current status of associated clinical trials. We further discussed the advantages, disadvantages and potential developmental directions of various telomerase-targeted immunotherapies. Conclusions Telomerase-targeted cancer immunotherapy has promising prospects in improving patient survival expectancy. This review may provide data support and design ideas for all researchers and pharmaceutical enterprises in this field.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xiaoying Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Guangming Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Mingzhe Shao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
2
|
Zareian N, Eremin O, Pandha H, Baird R, Kwatra V, Funingana G, Verma C, Choy D, Hargreaves S, Moghimi P, Shepherd A, Lobo DN, Eremin J, Farzaneh F, Kordasti S, Spicer J. A phase 1 trial of human telomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-suppressor mechanisms. Exp Biol Med (Maywood) 2024; 249:10021. [PMID: 38463391 PMCID: PMC10911124 DOI: 10.3389/ebm.2024.10021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024] Open
Abstract
The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.
Collapse
Affiliation(s)
- Nahid Zareian
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Oleg Eremin
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Hardev Pandha
- Department of Microbiology and Cellular Sciences, University of Surrey, Guildford, United Kingdom
| | - Richard Baird
- Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Vineet Kwatra
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - Chandan Verma
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Desmond Choy
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Steven Hargreaves
- Research Department of Pathology, UCL Cancer Institute, Faculty of Medical Sciences, University College London (UCL), London, United Kingdom
| | - Pejvak Moghimi
- The Institute of Structural and Molecular Biology (ISMB), Birkbeck, University of London, London, United Kingdom
| | - Adrian Shepherd
- The Institute of Structural and Molecular Biology (ISMB), Birkbeck, University of London, London, United Kingdom
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jennifer Eremin
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Farzin Farzaneh
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 2021; 1:670-686. [PMID: 22934259 PMCID: PMC3429571 DOI: 10.4161/onci.20426] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the basis of a successful clinical response after treatment with therapeutic cancer vaccines is essential for the development of more efficacious therapy. After vaccination with the single telomerase (hTERT) 16-mer peptide, GV1001, some patients experienced clinical responses and long-term survival. This study reports in-depth immunological analysis of the T-cell response against telomerase (hTERT) in clinically responding patients compared with clinical non-responders following vaccination with the single hTERT 16-mer peptide, GV1001. Extensive characterization of CD4+ T-cell clones specific for GV1001 generated from a lung cancer patient in complete remission after vaccination demonstrated a very broad immune response to this single peptide vaccine with differences in fine specificity, HLA restriction, affinity and function. Some CD4+ T-cell clones were cytotoxic against peptide-loaded target cells and also recognized processed recombinant hTERT protein. Furthermore, T-cell responses against several unrelated hTERT epitopes, some of which are novel, were detected, indicating extensive epitope spreading which was confirmed in other clinical responders. In contrast, patients responding immunologically, but not clinically, after vaccination did not display this intramolecular epitope spreading. Multifunctional CD4+ T-cell clones specific for novel hTERT epitopes were generated and shown to recognize a melanoma cell line. Pentamer analysis of T cells in peripheral blood also demonstrated the presence of an important CD8+ T-cell response recognizing an HLA-B7 epitope embedded in GV1001 not previously described. These results indicate that the highly diverse hTERT-specific T-cell response, integrating both T helper and CTL responses, is essential for tumor regression and the generation of long-term T-cell memory.
Collapse
Affiliation(s)
- Else-Marit Inderberg-Suso
- Unit for Immunotherapy; Section for Immunology; Institute for Cancer Research; Oslo University Hospital; Norwegian Radium Hospital; Oslo, Norway
| | | | | | | | | |
Collapse
|
4
|
Relitti N, Saraswati AP, Federico S, Khan T, Brindisi M, Zisterer D, Brogi S, Gemma S, Butini S, Campiani G. Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Curr Top Med Chem 2020; 20:433-457. [PMID: 31894749 DOI: 10.2174/1568026620666200102104930] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Telomeres are protective chromosomal ends that shield the chromosomes from DNA damage, exonucleolytic degradation, recombination, and end-to-end fusion. Telomerase is a ribonucleoprotein that adds TTAGGG tandem repeats to the telomeric ends. It has been observed that 85 to 90% of human tumors express high levels of telomerase, playing a crucial role in the development of cancers. Interestingly, the telomerase activity is generally absent in normal somatic cells. This selective telomerase expression has driven scientists to develop novel anti-cancer therapeutics with high specificity and potency. Several advancements have been made in this area, which is reflected by the enormous success of the anticancer agent Imetelstat. Since the discovery of Imetelstat, several research groups have contributed to enrich the therapeutic arsenal against cancer. Such contributions include the application of new classes of small molecules, peptides, and hTERT-based immunotherapeutic agents (p540, GV1001, GRNVAC1 or combinations of these such as Vx-001). Many of these therapeutic tools are under different stages of clinical trials and have shown promising outcomes. In this review, we highlight the current status of telomerase-based cancer therapeutics and the outcome of these investigations.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Akella P Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| |
Collapse
|
5
|
von Witzleben A, Wang C, Laban S, Savelyeva N, Ottensmeier CH. HNSCC: Tumour Antigens and Their Targeting by Immunotherapy. Cells 2020; 9:E2103. [PMID: 32942747 PMCID: PMC7564543 DOI: 10.3390/cells9092103] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of malignant tumours typically caused by alcohol and tobacco consumption, although an increasing number of HNSCC arise due to persistent infection with high-risk human papilloma virus (HPV). The treatment of HNSCC remains challenging, and the first-line setting is focused on surgery and chemoradiotherapy. A substantial proportion of HNSCC patients die from their disease, especially those with recurrent and metastatic disease. Among factors linked with good outcome, immune cell infiltration appears to have a major role. HPV-driven HNSCC are often T-cell rich, reflecting the presence of HPV antigens that are immunogenic. Tumour-associated antigens that are shared between patients or that are unique to an individual person may also induce varying degrees of immune response; studying these is important for the understanding of the interaction between the host immune system and the cancer. The resulting knowledge is critical for the design of better immunotherapies. Key questions are: Which antigens lead to an adaptive immune response in the tumour? Which of these are exploitable for immunotherapy? Here, we review the current thinking regarding tumour antigens in HNSCC and what has been learned from early phase clinical trials.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, 89081 Ulm, Germany;
| | - Chuan Wang
- Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Simon Laban
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, 89081 Ulm, Germany;
| | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
| | - Christian H. Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
- Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| |
Collapse
|
6
|
Anti-cancer Immunotherapies Targeting Telomerase. Cancers (Basel) 2020; 12:cancers12082260. [PMID: 32806719 PMCID: PMC7465444 DOI: 10.3390/cancers12082260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase that maintains telomeres length, compensating for the attrition of chromosomal ends that occurs during each replication cycle. Telomerase is expressed in germ cells and stem cells, whereas it is virtually undetectable in adult somatic cells. On the other hand, telomerase is broadly expressed in the majority of human tumors playing a crucial role in the replicative behavior and immortality of cancer cells. Several studies have demonstrated that telomerase-derived peptides are able to bind to HLA (human leukocyte antigen) class I and class II molecules and effectively activate both CD8+ and CD4+ T cells subsets. Due to its broad and selective expression in cancer cells and its significant immunogenicity, telomerase is considered an ideal universal tumor-associated antigen, and consequently, a very attractive target for anti-cancer immunotherapy. To date, different telomerase targeting immunotherapies have been studied in pre-clinical and clinical settings, these approaches include peptide vaccination and cell-based vaccination. The objective of this review paper is to discuss the role of human telomerase in cancer immunotherapy analyzing recent developments and future perspectives in this field.
Collapse
|
7
|
Shi W, Tong Z, Qiu Q, Yue N, Guo W, Zou F, Zhou D, Li J, Huang W, Qian H. Novel HLA-A2 restricted antigenic peptide derivatives with high affinity for the treatment of breast cancer expressing NY-ESO-1. Bioorg Chem 2020; 103:104138. [PMID: 32745760 DOI: 10.1016/j.bioorg.2020.104138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Tumor immunotherapy based on specific tumor antigen has become the focus for breast cancer, and research into cancer/testes antigens (CTA) is progressing. As an important member in the CTA, NY-ESO-1 plays a crucial role in the treatment and prognosis of breast cancer. In this study, we aimed to improve the binding ability to MHC by designing and synthesizing stable NY-ESO-1-derived peptides, based on NetMHC 4.0 webserver (http://www.cbs.dtu.dk/services/NetMHC/) and HLP webserver (http://crdd.osdd.net/raghava/hlp/pep_both.htm). Moreover, after modification of the lead compound, affinity of the peptides to human leukocyte antigen-A2 (HLA-A2) was determined by a flow cytometry and an inverted fluorescence microscope in T2 cells that show high expression of HLA-A2. The results demonstrated that the affinity of peptides II-4 and II-10 to HLA-A2 was significantly better when compared to others (II-Lead, II-1 ~ II-3, II-5 ~ II-9, II-11 ~ II-15). Further studies indicated that II-4 and II-10, especially II-4, significantly promoted the maturation of HLA-A2-positive human peripheral blood-derived dendritic cells (DCs) from morphology and surface markers, the activation of CD8 + T lymphocytes, and the type-specific killing effect on HLA-A2+/NY-ESO-1+ MDA-MB-231 cells. Molecular docking studies suggested a strong interaction between peptide II-4 and HLA-A2, thereby indicating that the II-4 is a promising candidate with antigenic potential in the field of immunotherapy that needs more studies.
Collapse
Affiliation(s)
- Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhenzhen Tong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qianqian Qiu
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng 224002, PR China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weiwei Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Daoguang Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jiuhui Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Fujiki F, Tsuboi A, Morimoto S, Hashimoto N, Inatome M, Nakajima H, Nakata J, Nishida S, Hasegawa K, Hosen N, Oka Y, Oji Y, Sogo S, Sugiyama H. Identification of two distinct populations of WT1-specific cytotoxic T lymphocytes in co-vaccination of WT1 killer and helper peptides. Cancer Immunol Immunother 2020; 70:253-263. [PMID: 32696072 DOI: 10.1007/s00262-020-02675-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/16/2020] [Indexed: 11/27/2022]
Abstract
Simultaneous induction of tumor antigen-specific cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) is required for an optimal anti-tumor immune response. WT1332, a 16-mer WT1-derived helper peptide, induce HTLs in an HLA class II-restricted manner and enhance the induction of WT1-specific CTLs in vitro. However, in vivo immune reaction to WT1332 vaccination in tumor-bearing patients remained unclear. Here, a striking difference in WT1-specific T cell responses was shown between WT1 CTL + WT1 helper peptide and WT1 CTL peptide vaccines in patients with recurrent glioma. WT1-specific CTLs were more strongly induced in the patients who were immunized with WT1 CTL + WT1 helper peptide vaccine, compared to those who were immunized with WT1 CTL vaccine alone. Importantly, a clear correlation was demonstrated between WT1-specific CTL and WT1332-specific HTL responses. Interestingly, two novel distinct populations of WT1-tetramerlow WT1-TCRlow CD5low and WT1-tetramerhigh WT1-TCRhigh CD5high CTLs were dominantly detected in WT1 CTL + WT1 helper peptide vaccine. Although natural WT1 peptide-reactive CTLs in the latter population were evidently less than those in the former population, the latter population showed natural WT1 peptide-specific proliferation capacity comparable to the former population, suggesting that the latter population highly expressing CD5, a marker of resistance to activation-induced cell death, should strongly expand and persist for a long time in patients. These results demonstrated the advantage of WT1 helper peptide vaccine for the enhancement of WT1-specific CTL induction by WT1 CTL peptide vaccine.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Miki Inatome
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Hasegawa
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Sogo
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Immunology Research Unit, Department of Medical Innovations, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
10
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
11
|
Telomerase-Targeted Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20081823. [PMID: 31013796 PMCID: PMC6515163 DOI: 10.3390/ijms20081823] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2023] Open
Abstract
Telomerase, an enzyme responsible for the synthesis of telomeres, is activated in many cancer cells and is involved in the maintenance of telomeres. The activity of telomerase allows cancer cells to replicate and proliferate in an uncontrolled manner, to infiltrate tissue, and to metastasize to distant organs. Studies to date have examined the mechanisms involved in the survival of cancer cells as targets for cancer therapeutics. These efforts led to the development of telomerase inhibitors as anticancer drugs, drugs targeting telomere DNA, viral vectors carrying a promoter for human telomerase reverse transcriptase (hTERT) genome, and immunotherapy targeting hTERT. Among these novel therapeutics, this review focuses on immunotherapy targeting hTERT and discusses the current evidence and future perspectives.
Collapse
|
12
|
Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine 2017; 35:5768-5775. [DOI: 10.1016/j.vaccine.2017.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
|
13
|
Shaw VE, Naisbitt DJ, Costello E, Greenhalf W, Park BK, Neoptolemos JP, Middleton GW. Current status of GV1001 and other telomerase vaccination strategies in the treatment of cancer. Expert Rev Vaccines 2014; 9:1007-16. [DOI: 10.1586/erv.10.92] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Abstract
Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach, autologous DC are generated from their precursors in bone marrow or peripheral blood mononuclear cells, loaded with tumor antigen(s) and then infused back to the tumor-bearing host in about 7 days. This DC-based vaccination can act as an antigen delivery vehicle as well as a potent adjuvant, resulting in measurable antitumor immunity in several cancer settings in preclinical and clinical studies. This chapter focuses on DC-based vaccination and how this approach can be more efficacious in cancer immunotherapy.Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach, autologous DC are generated from their precursors in bone marrow or peripheral blood mononuclear cells, loaded with tumor antigen(s) and then infused back to the tumor-bearing host in about 7 days. This DC-based vaccination can act as an antigen delivery vehicle as well as a potent adjuvant, resulting in measurable antitumor immunity in several cancer settings in preclinical and clinical studies. This chapter focuses on DC-based vaccination and how this approach can be more efficacious in cancer immunotherapy.
Collapse
Affiliation(s)
- Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Aranda F, Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621. [PMID: 24498550 PMCID: PMC3902120 DOI: 10.4161/onci.26621] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023] Open
Abstract
Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jerome Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U970; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
16
|
Zhong R, Han B, Zhong H. A prospective study of the efficacy of a combination of autologous dendritic cells, cytokine-induced killer cells, and chemotherapy in advanced non-small cell lung cancer patients. Tumour Biol 2013; 35:987-94. [PMID: 24006222 DOI: 10.1007/s13277-013-1132-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) play a crucial role in the induction of an effective antitumor immune response. Cytokine-induced killer (CIK) cells, a subset of T lymphocytes, have the capacity to eliminate cancer cells. This study was to evaluate the correlation between the frequency of DC/CIK immunotherapies following regular chemotherapy, the time-to-progression (TTP), and overall survival (OS) of advanced non-small lung cancer patients. Sixty patients with IIIB-IV non-small-cell lung carcinoma (NSCLC) were enrolled from August 2007 to December 2009 and were randomized into two groups. All 60 patients received four courses of navelbine-platinum (NP) chemotherapy. In one group, 30 patients were treated with adoptive autologous DC/CIK cell transfusion twice every 30 days. In the other group, the patients received immunotherapies more than twice every 30 days. The adverse effects, TTP, and OS were evaluated between the two groups. Median survival time of all 60 patients was 13.80 months. The 1-, 2-, and 3-year overall survival rates were 60.0, 21.7, and 15.0 %, respectively. The 1-, 2-, and 3-year overall survival rates of patients receiving more than two immunotherapies were 63.3, 30.0, and 23.3 %, and the rates of those receiving two immunotherapies were 56.7, 13.3, and 6.7 %, respectively. The difference between the two groups was statistically significant (P = 0.037). Compared with patients in the fewer immunotherapies group, TTP in the group receiving more immunotherapies significantly prolonged, with the median improving from 6.2 months (95 % CI, 5.35-9.24) to 7.3 months (95 % CI, 5.45-6.95; P = 0.034). The adverse effects of chemoimmunotherapy were tolerable. Advanced NSCLC patients can benefit from the combination of DC/CIK immunotherapies following conventional chemotherapy. More than two immunotherapies improved TTP and OS of those patients in this study.
Collapse
Affiliation(s)
- Runbo Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241, Huaihai Road (W), Shanghai, People's Republic of China
| | | | | |
Collapse
|
17
|
Lu J, Jiang S, Ye S, Deng Y, Ma S, Li CP. CpG oligodeoxynucleotide ligand potentiates the activity of the pVAX1-Sj26GST. Biomed Rep 2013; 1:609-613. [PMID: 24648995 DOI: 10.3892/br.2013.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 12/24/2022] Open
Abstract
Schistosomiasis is considered one of the most important neglected tropical diseases and remains a major public health problem in endemic countries. Toll-like receptor (TLR) ligands have been investigated as potential vaccine adjuvants for tumor and virus immunotherapy. However, few TLR ligands affecting schistosoma vaccines have been characterized. In this study, we evaluated a TLR9 ligand (CpG oligodeoxynucleotide 1826, CpG) as an adjuvant for a partially protective DNA vaccine encoding a 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST). Vaccination with pVAX1-Sj26GST in combination with CpG inhibited Treg immunosuppressive function, upregulated the production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-10, IL-2 and IL-6, and decreased CD4+CD8+Foxp3+ expression in vitro, which may contribute to the escape from Treg-mediated suppression during vaccination, allowing expansion of antigen-specific T cells against pathogens. In conclusion, our data demonstrated that selective TLR ligand combination may increase protective efficacy against schistosomiasis, which may synergistically antagonize Treg-mediated suppression.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Anhui University of Science and Technology, P.R. China
| | - Shan Jiang
- Department of Mining Engineering, Huainan Vocational and Technical College, Huainan, Anhui 232001, P.R. China
| | - Song Ye
- Department of Pathogen Biology and Immunology, School of Medicine, Anhui University of Science and Technology, P.R. China
| | - Yun Deng
- Department of Pathogen Biology and Immunology, School of Medicine, Anhui University of Science and Technology, P.R. China
| | - Shuai Ma
- Department of Pathogen Biology and Immunology, School of Medicine, Anhui University of Science and Technology, P.R. China
| | - Chao-Pin Li
- Department of Pathogen Biology, Bengbu Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
18
|
Wang X, Dong L, Ni H, Zhou S, Xu Z, Hoellwarth JS, Chen X, Zhang R, Chen Q, Liu F, Wang J, Su C. Combined TLR7/8 and TLR9 ligands potentiate the activity of a Schistosoma japonicum DNA vaccine. PLoS Negl Trop Dis 2013; 7:e2164. [PMID: 23593527 PMCID: PMC3617091 DOI: 10.1371/journal.pntd.0002164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Background Toll-like receptor (TLR) ligands have been explored as vaccine adjuvants for tumor and virus immunotherapy, but few TLR ligands affecting schistosoma vaccines have been characterized. Previously, we developed a partially protective DNA vaccine encoding the 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST). Methodology/Principal Findings In this study, we evaluated a TLR7/8 ligand (R848) and a TLR9 ligand (CpG oligodeoxynucleotides, or CpG) as adjuvants for pVAX1-Sj26GST and assessed their effects on the immune system and protection against S. japonicum. We show that combining CpG and R848 with pVAX1-Sj26GST immunization significantly increases splenocyte proliferation and IgG and IgG2a levels, decreases CD4+CD25+Foxp3+ regulatory T cells (Treg) frequency in vivo, and enhances protection against S. japonicum. CpG and R848 inhibited Treg-mediated immunosuppression, upregulated the production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-10, IL-2, and IL-6, and decreased Foxp3 expression in vitro, which may contribute to prevent Treg suppression and conversion during vaccination and allow expansion of antigen-specific T cells against pathogens. Conclusions Our data shows that selective TLR ligands can increase the protective efficacy of DNA vaccines against schistosomiasis, potentially through combined antagonism of Treg-mediated immunosuppression and conversion. There is evidence that TLR activation can block Treg cell responses and thereby break tolerance to self-antigens. It is expected that the use of TLR ligands as vaccine adjuvants will induce potent anti-pathogen immune responses and simultaneously overcome immune inhibition mediated by Tregs. However, the impact of TLR ligands on schistosomiasis vaccines is unclear. Here, we demonstrate that the use of a TLR7/8 ligand (R848) and a TLR9 ligand (CpG) as adjuvants in combination with the S. japonicum vaccine pVAX1-Sj26GST improves disease protection. The combination of CpG and R848 administered after vaccination causes an immune response marked by an upregulation of splenocyte proliferation and IgG and IgG2a levels that also coincides with a decreased proportion of CD4+CD25+ Tregs in mice. We also show that combined adjuvant use of CpG and R848 may impair Treg development and function by promoting the secretion of proinflammatory cytokines and reducing Foxp3 expression. Our findings suggest that in combination with the vaccine, TLR ligands may protect the effector response from Treg-mediated suppression, thereby eliciting the appropriate immune response to improve vaccine efficacy. Immunization combined with the TLR ligands CpG and R848 thus represents a promising new approach for the design of schistosoma vaccines.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang X, Liu F, Zhou S, Xu Z, Hoellwarth J, Chen X, He L, Zhang R, Liu F, Wang J, Su C. Partial regulatory T cell depletion prior to schistosomiasis vaccination does not enhance the protection. PLoS One 2012; 7:e40359. [PMID: 22802961 PMCID: PMC3389001 DOI: 10.1371/journal.pone.0040359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/07/2012] [Indexed: 11/21/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs) do
not only influence self-antigen specific immune responses, but also dampen
the protective effect induced by a number of vaccines. The impact of CD4+CD25+
Tregs on vaccines against schistosomiasis, a neglected tropical disease that
is a major public health concern, however, has not been examined. In this
study, a DNA vaccine encoding a 26 kDa glutathione S-transferase of Schistosoma
japonicum (pVAX1-Sj26GST) was constructed and its potential effects
were evaluated by depleting CD25+ cells prior to pVAX1-Sj26GST
immunization. This work shows that removal of CD25+ cells
prior to immunization with the pVAX1-Sj26GST schistosomiasis DNA vaccine significantly
increases the proliferation of splenocytes and IgG levels. However, CD25+
cell-depleted mice immunized with pVAX1-Sj26GST show no improved protection
against S. japonicum. Furthermore, depletion of CD25+
cells causes an increase in both pro-inflammatory cytokines (e.g. IFN-γ,
GM-CSF and IL-4) and an anti-inflammatory cytokine (e.g. IL-10), with CD4+CD25-
T cells being one of the major sources of both IFN-γ and IL-10. These
findings indicate that partial CD25+ cell depletion fails
to enhance the effectiveness of the schistosome vaccine, possibly due to IL-10
production by CD4+CD25- T cells, or other cell
types, after CD25+ cell depletion during vaccination.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Pathogen Biology and Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
MHC class II tetramers have emerged as an important tool for characterization of the specificity and phenotype of CD4 T cell immune responses, useful in a large variety of disease and vaccine studies. Issues of specific T cell frequency, biodistribution, and avidity, coupled with the large genetic diversity of potential class II restriction elements, require targeted experimental design. Translational opportunities for immune disease monitoring are driving the rapid development of HLA class II tetramer use in clinical applications, together with innovations in tetramer production and epitope discovery.
Collapse
|
21
|
Anti-inflammatory, antioxidant and hepatoprotective effects of Thunbergia laurifolia Linn. on experimental opisthorchiasis. Parasitol Res 2012; 111:353-9. [PMID: 22327320 DOI: 10.1007/s00436-012-2846-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 01/23/2023]
Abstract
Thunbergia laurifolia Linn (Rang Chuet) possesses antioxidant and anti-inflammatory properties as well as anticancer activities. The aim of the present study was to evaluate the efficacy of T. laurifolia in reducing inflammation from pathological changes in Syrian hamsters infected with the human liver fluke Opisthorchis viverrini. Hamster groups were also administered N-nitrosodimethylamine (NDMA) and treated with T. laurifolia. Light microscopic observation of histopathological changes, liver function tests for alanine transaminase (ALT) and alkaline phosphatase (ALP) and kidney function tests for blood urea nitrogen (BUN) and creatinine were performed. Antioxidant effects of both fresh and dried Rang Chuet solutions were observed. Analysis of the histopathological changes showed anti-inflammatory properties, both in the case of O. viverrini infection or with NDMA administration, by reducing the aggregation of inflammatory cells surrounding the hepatic bile ducts as indicated by normal serum ALT, ALP, BUN and creatinine levels in treated Syrian hamsters. The present study found that fresh and dried Rang Chuet solutions clearly reduced the inflammatory cells in both O. viverrini-infected and NDMA-administered groups and was correlated with the total antioxidant capacity. These findings suggest that T. laurifolia possesses antioxidant and anti-inflammatory properties and that its application may be useful for prevention of the inflammatory process, one of the risk factors of O. viverrini-associated cholangiocarcinoma (CCA).
Collapse
|
22
|
Nishimoto KP, Tseng SY, Lebkowski JS, Reddy A. Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency. Regen Med 2011; 6:303-18. [PMID: 21548736 DOI: 10.2217/rme.11.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Dendritic cell (DC)-based vaccines are designed to exploit the intrinsic capacity of these highly effective antigen presenting cells to prime and boost antigen-specific T-cell immune responses. Successful development of DC-based vaccines will be dependent on the ability to utilize and harness the full potential of these potent immune stimulatory cells. Recent advances to generate DCs derived from human embryonic stem cells (hESCs) that are suitable for clinical use represent an alternative strategy from conventional approaches of using patient-specific DCs. Although the differentiation of hESC-derived DCs in serum-free defined conditions has been established, the stimulatory potential of these hESC-derived DCs have not been fully evaluated. METHODS hESC-derived DCs were differentiated in serum-free defined culture conditions. The delivery of antigen into hESC-derived DCs was investigated using mRNA transfection and replication-deficient adenoviral vector transduction. hESC-derived DCs modified with antigen were evaluated for their capacity to stimulate antigen-specific T-cell responses with known HLA matching. Since IL-12 is a key cytokine that drives T-cell function, further enhancement of DC potency was evaluated by transfecting mRNA encoding the IL-12p70 protein into hESC-derived DCs. RESULTS The transfection of mRNA into hESC-derived DCs was effective for heterologous protein expression. The efficiency of adenoviral vector transduction into hESC-derived DCs was poor. These mRNA-transfected DCs were capable of stimulating human telomerase reverse transcriptase antigen-specific T cells composed of varying degrees of HLA matching. In addition, we observed the transfection of mRNA encoding IL-12p70 enhanced the T-cell stimulation potency of hESC-derived DCs. CONCLUSION These data provide support for the development and modification of hESC-derived DCs with mRNA as a potential strategy for the induction of T-cell-mediated immunity.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Geron Corporation, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
23
|
Dodson LF, Hawkins WG, Goedegebuure P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 2011; 3:517-37. [PMID: 21463193 DOI: 10.2217/imt.11.10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic adenocarcinoma is the fourth leading cause of cancer death with an overall 5-year survival of less than 5%. As there is ample evidence that pancreatic adenocarcinomas elicit antitumor immune responses, identification of pancreatic cancer-associated antigens has spurred the development of vaccination-based strategies for treatment. While promising results have been observed in animal tumor models, most clinical studies have found only limited success. As most trials were performed in patients with advanced pancreatic cancer, the contribution of immune suppressor mechanisms should be taken into account. In this article, we detail recent work in tumor antigen vaccination and the recently identified mechanisms of immune suppression in pancreatic cancer. We offer our perspective on how to increase the clinical efficacy of vaccines for pancreatic cancer.
Collapse
Affiliation(s)
- Lindzy F Dodson
- Washington University School of Medicine, Department of Surgery, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
24
|
Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushi M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Maio M, Malyguine A, Masucci G, Matsubara H, Mayrand-Chung S, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stroncek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca MB, Marincola FM. Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology. J Transl Med 2009; 7:45. [PMID: 19534815 PMCID: PMC2724494 DOI: 10.1186/1479-5876-7-45] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023] Open
Abstract
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that might be added to the list of known entities applicable in immunotherapy trials. The need for a systematic approach to biomarker discovery that takes advantage of powerful high-throughput technologies was recognized; it was clear from the current state of the science that immunotherapy is still in a discovery phase and only a few of the current biomarkers warrant extensive validation. It was, finally, clear that, while current technologies have almost limitless potential, inadequate study design, limited standardization and cross-validation among laboratories and suboptimal comparability of data remain major road blocks. The institution of an interactive consortium for high throughput molecular monitoring of clinical trials with voluntary participation might provide cost-effective solutions.
Collapse
Affiliation(s)
- Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington, 98195, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Robert W Franz Research Center, Providence Portland Medical Center, and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, 97213, USA
| | - Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, 94305, USA
| | - Samir N Khleif
- Cancer Vaccine Section, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Jon M Wigginton
- Discovery Medicine-Oncology, Bristol-Myers Squibb Inc., Princeton, New Jersey, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Oleg Eremin
- Section of Surgery, Biomedical Research Unit, Nottingham Digestive Disease Centre, University of Nottingham, NG7 2UH, UK
| | - Wolf Hervé Fridman
- Centre de la Reserche des Cordeliers, INSERM, Paris Descarte University, 75270 Paris, France
| | | | - Kohzoh Imai
- Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - James Jacobson
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Masahisa Jinushi
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Kanamoto
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazunori Kato
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - John M Kirkwood
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Thomas O Kleen
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Paul V Lehmann
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Lance Liotta
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Michael T Lotze
- Illman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University, Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, Aviano, 53100, Italy
| | - Anatoli Malyguine
- Laboratory of Cell Mediated Immunity, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland, 21702, USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shawmarie Mayrand-Chung
- The Biomarkers Consortium (BC), Public-Private Partnership Program, Office of the Director, NIH, Bethesda, Maryland, 20892, USA
| | - Kiminori Nakamura
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hiroyoshi Nishikawa
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Emanuel F Petricoin
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Zoltan Pos
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, 90095, USA
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, IRCCS Foundation, Istituto Nazionale Tumori, Milan, 20100, Italy
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shiku
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, DCTD, NCI, NIH, Rockville, Maryland, 20892, USA
| | - David F Stroncek
- Cell Therapy Section (CTS), Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, 20892, USA
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Toyota
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hisashi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xifeng Wu
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Julia Wulfkuhle
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Yingdong Zhao
- Biometric Research Branch, NCI, NIH, Bethesda, Maryland, 20892, USA
| | | | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|