1
|
Maxouri O, Bodalal Z, Daal M, Rostami S, Rodriguez I, Akkari L, Srinivas M, Bernards R, Beets-Tan R. How to 19F MRI: applications, technique, and getting started. BJR Open 2023; 5:20230019. [PMID: 37953866 PMCID: PMC10636348 DOI: 10.1259/bjro.20230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 11/14/2023] Open
Abstract
Magnetic resonance imaging (MRI) plays a significant role in the routine imaging workflow, providing both anatomical and functional information. 19F MRI is an evolving imaging modality where instead of 1H, 19F nuclei are excited. As the signal from endogenous 19F in the body is negligible, exogenous 19F signals obtained by 19F radiofrequency coils are exceptionally specific. Highly fluorinated agents targeting particular biological processes (i.e., the presence of immune cells) have been visualised using 19F MRI, highlighting its potential for non-invasive and longitudinal molecular imaging. This article aims to provide both a broad overview of the various applications of 19F MRI, with cancer imaging as a focus, as well as a practical guide to 19F imaging. We will discuss the essential elements of a 19F system and address common pitfalls during acquisition. Last but not least, we will highlight future perspectives that will enhance the role of this modality. While not an exhaustive exploration of all 19F literature, we endeavour to encapsulate the broad themes of the field and introduce the world of 19F molecular imaging to newcomers. 19F MRI bridges several domains, imaging, physics, chemistry, and biology, necessitating multidisciplinary teams to be able to harness this technology effectively. As further technical developments allow for greater sensitivity, we envision that 19F MRI can help unlock insight into biological processes non-invasively and longitudinally.
Collapse
Affiliation(s)
| | | | | | | | | | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
2
|
Voicu G, Mocanu CA, Safciuc F, Anghelache M, Deleanu M, Cecoltan S, Pinteala M, Uritu CM, Droc I, Simionescu M, Manduteanu I, Calin M. Nanocarriers of shRNA-Runx2 directed to collagen IV as a nanotherapeutic system to target calcific aortic valve disease. Mater Today Bio 2023; 20:100620. [PMID: 37063777 PMCID: PMC10102408 DOI: 10.1016/j.mtbio.2023.100620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Runx2 is a key transcription factor involved in valvular interstitial cells (VIC) osteodifferentiation, a process actively entwined with the calcific aortic valve disease (CAVD). We hypothesize that a strategy intended to silence Runx2 could be a valuable novel therapeutic option for CAVD. To this intent, we aimed at (i) developing targeted nanoparticles for efficient delivery of short hairpin (sh)RNA sequences specific for Runx2 to the aortic valve employing a relevant mouse model for CAVD and (ii) investigate their therapeutic potential in osteoblast-differentiated VIC (oVIC) cultivated into a 3D scaffold. Since collagen IV was used as a target, a peptide that binds specifically to collagen IV (Cp) was conjugated to the surface of lipopolyplexes encapsulating shRNA-Runx2 (Cp-LPP/shRunx2). The results showed that Cp-LPP/shRunx2 were (i) cytocompatible; (ii) efficiently taken up by 3D-cultured oVIC; (iii) diminished the osteodifferentiation of human VIC (cultured in a 3D hydrogel-derived from native aortic root) by reducing osteogenic molecules expression, alkaline phosphatase activity, and calcium concentration; and (iv) were recruited in aortic valve leaflets in a murine model of atherosclerosis. Taken together, these data recommend Cp-LPP/shRunx2 as a novel targeted nanotherapy to block the progression of CAVD, with a good perspective to be introduced in practical use.
Collapse
Affiliation(s)
- Geanina Voicu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Cristina Ana Mocanu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Maria Anghelache
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Sergiu Cecoltan
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Cristina Mariana Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115, Iasi, Romania
| | - Ionel Droc
- Central Military Hospital “Dr. Carol Davila”, Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
- Corresponding author. “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania.
| |
Collapse
|
3
|
Lewis CTA, Mascall KS, Wilson HM, Murray F, Kerr KM, Gibson G, Buchan K, Small GR, Nixon GF. An endogenous inhibitor of angiogenesis downregulated by hypoxia in human aortic valve stenosis promotes disease pathogenesis. J Mol Cell Cardiol 2023; 174:25-37. [PMID: 36336008 DOI: 10.1016/j.yjmcc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Aortic valve stenosis is the most common valve disease in the western world. Central to the pathogenesis of this disease is the growth of new blood vessels (angiogenesis) within the aortic valve allowing infiltration of immune cells and development of intra-valve inflammation. Identifying the cellular mediators involved in this angiogenesis is important as this may reveal new therapeutic targets which could ultimately prevent the progression of aortic valve stenosis. Aortic valves from patients undergoing surgery for aortic valve replacement or dilation of the aortic arch were examined both ex vivo and in vitro. We now demonstrate that the anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), a non-signalling soluble receptor for vascular endothelial growth factor, is constitutively expressed in non-diseased valves. sFlt-1 expression was, however, significantly reduced in aortic valve tissue from patients with aortic valve stenosis while protein markers of hypoxia were simultaneously increased. Exposure of primary-cultured valve interstitial cells to hypoxia resulted in a decrease in the expression of sFlt-1. We further reveal using a bioassay that siRNA knock-down of sFlt1 in valve interstitial cells directly results in a pro-angiogenic environment. Finally, incubation of aortic valves with sphingosine 1-phosphate, a bioactive lipid-mediator, increased sFlt-1 expression and inhibited angiogenesis within valve tissue. In conclusion, this study demonstrates that sFlt1 expression is directly correlated with angiogenesis in aortic valves and the observed decrease in sFlt-1 expression in aortic valve stenosis could increase valve inflammation, promoting disease progression. This could be a viable therapeutic target in treating this disease.
Collapse
Affiliation(s)
- Christopher T A Lewis
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Keith S Mascall
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Heather M Wilson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Fiona Murray
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Keith M Kerr
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen and Aberdeen Royal Infirmary, UK
| | - George Gibson
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, UK
| | - Keith Buchan
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, UK
| | - Gary R Small
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Graeme F Nixon
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK.
| |
Collapse
|
4
|
Meng B, Grage SL, Babii O, Takamiya M, MacKinnon N, Schober T, Hutskalov I, Nassar O, Afonin S, Koniev S, Komarov IV, Korvink JG, Strähle U, Ulrich AS. Highly Fluorinated Peptide Probes with Enhanced In Vivo Stability for 19 F-MRI. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107308. [PMID: 36074982 DOI: 10.1002/smll.202107308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A labeling strategy for in vivo 19 F-MRI (magnetic resonance imaging) based on highly fluorinated, short hydrophilic peptide probes, is developed. As dual-purpose probes, they are functionalized further by a fluorophore and an alkyne moiety for bioconjugation. High fluorination is achieved by three perfluoro-tert-butyl groups, introduced into asparagine analogues by chemically stable amide bond linkages. d-amino acids and β-alanine in the sequences endow the peptide probes with low cytotoxicity and high serum stability. This design also yielded unstructured peptides, rendering all 27 19 F substitutions chemically equivalent, giving rise to a single 19 F-NMR resonance with <10 Hz linewidth. The resulting performance in 19 F-MRI is demonstrated for six different peptide probes. Using fluorescence microscopy, these probes are found to exhibit high stability and long circulation times in living zebrafish embryos. Furthermore, the probes can be conjugated to bovine serum albumin with only amoderate increase in 19 F-NMR linewidth to ≈30 Hz. Overall, these peptide probes are hence suitable for in vivo 19 F-MRI applications.
Collapse
Affiliation(s)
- Beibei Meng
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems (IBCS) - Biological Information Processing, KIT, Karlsruhe, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology (IMT), KIT, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNFMi), KIT, Karlsruhe, Germany
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Enamine, Kyiv, Ukraine
| | - Illia Hutskalov
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Omar Nassar
- Institute of Microstructure Technology (IMT), KIT, Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| | - Serhii Koniev
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
- Lumobiotics, Karlsruhe, Germany
- Enamine, Kyiv, Ukraine
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), KIT, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS) - Biological Information Processing, KIT, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
5
|
Lin H, Tang X, Li A, Gao J. Activatable 19 F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005657. [PMID: 33834558 DOI: 10.1002/adma.202005657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Visualization of biological targets such as crucial cells and biomolecules in living subjects is critical for the studies of important biological processes. Though 1 H magnetic resonance imaging (MRI) has demonstrated its power in offering detailed anatomical and pathological information, its capacity for in vivo tracking of biological targets is limited by the high biological background of 1 H. 19 F distinguishes itself from its competitors as an exceptional complement to 1 H in MRI through its high sensitivity, low biological background, and broad chemical shift range. The specificity and sensitivity of 19 F MRI can be further boosted with activatable nanoprobes. The advantages of 19 F MRI with activatable nanoprobes enable in vivo detection and imaging at the cellular or even molecular level in deep tissues, rendering this technique appealing as a potential solution for visualization of biological targets in living subjects. Here, recent progress over the past decades on activatable 19 F MRI nanoprobes made from three major 19 F-containing compounds, as well as present challenges and potential opportunities, are summarized to provide a panoramic prospective for the people who are interested in this emerging and exciting field.
Collapse
Affiliation(s)
- Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Katsi V, Magkas N, Antonopoulos A, Trantalis G, Toutouzas K, Tousoulis D. Aortic valve: anatomy and structure and the role of vasculature in the degenerative process. Acta Cardiol 2021; 76:335-348. [PMID: 32602774 DOI: 10.1080/00015385.2020.1746053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aortic valve stenosis is a degenerative disease affecting increasing number of individuals and characterised by thickening, calcification and fibrosis of the valve resulting in restricted valve motion. Degeneration of the aortic valve is no longer considered a passive deposition of calcium, but an active process that involves certain mechanisms, that is endothelial dysfunction, inflammation, increased oxidative stress, calcification, bone formation, lipid deposition, extracellular matrix (ECM) remodelling and neoangiogenesis. Accumulating evidence indicates an important role for neoangiogenesis (i.e. formation of new vessels) in the pathogenesis of aortic valve stenosis. The normal aortic valve is generally an avascular tissue supplied with oxygen and nutrients via diffusion from the circulating blood. In contrast, presence of intrinsic micro-vasculature has been demonstrated in stenotic and calcified valves. Importantly, presence and density of neovessels have been associated with inflammation, calcification and bone formation. It remains unclear whether neoangiogenesis is a compensatory mechanism aiming to counteract hypoxia and increased metabolic demands of the thickened tissue or represents an active contributor to disease progression. Data extracted mainly from animal studies are supportive of a direct detrimental effect of neoangiogenesis, however, robust evidence from human studies is lacking. Thus, there is inadequate knowledge to assess whether neoangiogenesis could serve as a future therapeutic target for a disease that no effective medical therapy exists. In this review, we present basic aspects of anatomy and structure of the normal and stenotic aortic valve and we focus on the role of valve vasculature in the natural course of valve calcification and stenosis.
Collapse
Affiliation(s)
- Vasiliki Katsi
- First Department of Cardiology, ‘Hippokration’ Hospital, Medical School, University of Athens, Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, ‘Hippokration’ Hospital, Medical School, University of Athens, Athens, Greece
| | - Alexios Antonopoulos
- First Department of Cardiology, ‘Hippokration’ Hospital, Medical School, University of Athens, Athens, Greece
| | - Georgios Trantalis
- First Department of Cardiology, ‘Hippokration’ Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, ‘Hippokration’ Hospital, Medical School, University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, ‘Hippokration’ Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
7
|
Modo M. 19F Magnetic Resonance Imaging and Spectroscopy in Neuroscience. Neuroscience 2021; 474:37-50. [PMID: 33766776 DOI: 10.1016/j.neuroscience.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. The lack of a 19F background signal in the brain affords an unequivocal detection suitable for quantification. Fluorine-based contrast material can be engineered as nanoemulsions, nanocapsules, or nanoparticles to label cells in vitro or in vivo. Fluorinated blood substitutes, typically nanoemulsions, can also carry oxygen and serve as a theranostic in poorly perfused brain regions. Brain tissue concentrations of fluorinated pharmaceuticals, including inhalation anesthetics (e.g. isoflurane) and anti-depressants (e.g. fluoxetine), can also be measured using MRS. However, the low signal from these compounds provides a challenge for imaging. Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Qadri Z, Righi V, Li S, Tzika AA. Tracking of Labelled Stem Cells Using Molecular MR Imaging in a Mouse Burn Model in Vivo as an Approach to Regenerative Medicine. ACTA ACUST UNITED AC 2021; 11:1-15. [PMID: 33996249 PMCID: PMC8118598 DOI: 10.4236/ami.2021.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapies based on stem cell transplants offer significant potential in the field of regenerative medicine. Monitoring the fate of the transplanted stem cells in a timely manner is considered one of the main limitations for long-standing success of stem cell transplants. Imaging methods that visualize and track stem cells in vivo non-invasively in real time are helpful towards the development of successful cell transplantation techniques. Novel molecular imaging methods which are non-invasive particularly such as MRI have been of great recent interest. Hence, mouse models which are of clinical relevance have been studied by injecting contrast agents used for labelling cells such as super-paramagnetic iron-oxide (SPIO) nanoparticles for cellular imaging. The MR techniques which can be used to generate positive contrast images have been of much relevance recently for tracking of the labelled cells. Particularly when the off-resonance region in the vicinity of the labeled cells is selectively excited while suppressing the signals from the non-labeled regions by the method of spectral dephasing. Thus, tracking of magnetically labelled cells employing positive contrast in vivo MR imaging methods in a burn mouse model in a non-invasive way has been the scope of this study. The consequences have direct implications for monitoring labeled stem cells at some stage in wound healing. We suggest that our approach can be used in clinical trials in molecular and regenerative medicine.
Collapse
Affiliation(s)
- Zeba Qadri
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| | - Valeria Righi
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| | - Shasha Li
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| | - A Aria Tzika
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| |
Collapse
|
9
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
10
|
Bassanini I, Galli C, Ferrandi EE, Vallone F, Andolfo A, Romeo S. Perfluorinated Probes for Noncovalent Protein Recognition and Isolation. Bioconjug Chem 2020; 31:513-519. [PMID: 31927891 PMCID: PMC7993633 DOI: 10.1021/acs.bioconjchem.9b00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perfluorinated organic compounds (PFCs) are nontoxic, biocompatible, bioavailable, and bioorthogonal species which possess the unique ability to segregate away from both polar and nonpolar solvents producing a compact fluorophilic phase. Traditional techniques of fluorous chemical proteomics are generally applied to enrich biological samples in target protein(s) exploiting this property of PFCs to build fluorinated probes able to covalently bind to protein ensembles and being selectively extracted by fluorophilic solvents. Aiming at building a strategy able to avoid irreversible modification of the analyzed biosystem, a novel fully noncovalent probe is presented as an enabling tool for the recognition and isolation of biological protein(s). In our strategy, both the fluorophilic extraction and the biorecognition of a selected protein successfully occur via the establishment of reversible but selective interactions.
Collapse
Affiliation(s)
- Ivan Bassanini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy
| | - Corinna Galli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy
| | - Erica E Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare - Consiglio Nazionale delle Ricerche, 20131 Milano, Italy
| | - Fabiana Vallone
- ProMiFa, Protein Microsequencing Facility, Ospedale San Raffaele, 20132 Milano, Italy
| | - Annapaola Andolfo
- ProMiFa, Protein Microsequencing Facility, Ospedale San Raffaele, 20132 Milano, Italy
| | - Sergio Romeo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
11
|
Wilson AJ, Zhou Q, Vargas I, Palekar R, Grabau R, Pan H, Wickline SA. Formulation and Characterization of Antithrombin Perfluorocarbon Nanoparticles. Methods Mol Biol 2020; 2118:111-120. [PMID: 32152974 DOI: 10.1007/978-1-0716-0319-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin, a major protein involved in the clotting cascade by the conversion of inactive fibrinogen to fibrin, plays a crucial role in the development of thrombosis. Antithrombin nanoparticles enable site-specific anticoagulation without increasing bleeding risk. Here we outline the process of making and the characterization of bivalirudin and D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone (PPACK) nanoparticles. Additionally, the characterization of these nanoparticles, including particle size, zeta potential, and quantification of PPACK/bivalirudin loading, is also described.
Collapse
Affiliation(s)
- Alexander J Wilson
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Qingyu Zhou
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Ian Vargas
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Rohun Palekar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan Grabau
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Hua Pan
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Samuel A Wickline
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
12
|
Cho MH, Shin SH, Park SH, Kadayakkara DK, Kim D, Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjug Chem 2019; 30:2502-2518. [DOI: 10.1021/acs.bioconjchem.9b00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mi Hyeon Cho
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Soo Hyun Shin
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang Hyun Park
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Deepak Kana Kadayakkara
- Department of Medicine, Bridgeport Hospital−Yale New Haven Health, Bridgeport, Connecticut 06610, United States
| | - Daehong Kim
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| |
Collapse
|
13
|
A Hyperfluorinated Hydrophilic Molecule for Aqueous 19F MRI Contrast Media. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1693513. [PMID: 30538612 PMCID: PMC6260405 DOI: 10.1155/2018/1693513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) has the potential for a wide range of in vivo applications but is limited by lack of flexibility in exogenous probe formulation. Most 19F MRI probes are composed of perfluorocarbons (PFCs) or perfluoropolyethers (PFPEs) with intrinsic properties which limit formulation options. Hydrophilic organofluorine molecules can provide more flexibility in formulation options. We report herein a hyperfluorinated hydrophilic organoflourine, ET1084, with ∼24 wt. % 19F content. It dissolves in water and aqueous buffers to give solutions with ≥8 M 19F. 19F MRI phantom studies at 9.4T employing a 10-minute multislice multiecho (MSME) scan sequence show a linear increase in signal-to-noise ratio (SNR) with increasing concentrations of the molecule and a detection limit of 5 mM. Preliminary cytotoxicity and genotoxicity assessments suggest it is safe at concentrations of up to 20 mM.
Collapse
|
14
|
Jung JJ, Jadbabaie F, Sadeghi MM. Molecular imaging of calcific aortic valve disease. J Nucl Cardiol 2018; 25:1148-1155. [PMID: 29359271 PMCID: PMC6054901 DOI: 10.1007/s12350-017-1158-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Calcific aortic valve disease (CAVD) can progress to symptomatic aortic stenosis in a subset of patients. The severity of aortic stenosis and the extent of valvular calcification can be evaluated readily by echocardiography, CT, and MRI using well-established imaging protocols. However, these techniques fail to address optimally other important aspects of CAVD, including the propensity for disease progression, risk of complications in asymptomatic patients, and the effect of therapeutic interventions on valvular biology. These gaps may be addressed by molecular imaging targeted at key biological processes such as inflammation, remodeling, and calcification that mediate the development and progression of CAVD. In this review, recent advances in valvular molecular imaging, including 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) PET, and matrix metalloproteinase-targeted SPECT imaging in the preclinical and clinical settings are presented and discussed.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA
- Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA
| | - Farid Jadbabaie
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA.
| |
Collapse
|
15
|
Crich SG, Terreno E, Aime S. Nano-sized and other improved reporters for magnetic resonance imaging of angiogenesis. Adv Drug Deliv Rev 2017; 119:61-72. [PMID: 28802567 DOI: 10.1016/j.addr.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Magnetic Resonance Imaging (MRI) enables to provide anatomical, functional and molecular information of pathological angiogenesis when used with properly tailored imaging probes. Functional studies have been the domain of Dynamic Contrast Enhancement (DCE) -MRI protocols from which it is possible to extract quantitative estimations on key parameters such as the volumes of vascular and extracellular compartments and the rates of the bidirectional exchange of the imaging reporters across the endothelial barrier. Whereas paramagnetic Gd-complexes able to reversibly bind to serum albumin act better than the clinically used small-sized, hydrophilic species, new findings suggest that an accurate assessment of the vascular volume is possible by analyzing images acquired upon the i.v. administration of Gd-labelled Red Blood Cells (RBCs). As far as it concerns molecular MRI, among the many available biomarkers, αvβ3 integrins are the most investigated ones. The low expression of these targets makes mandatory the use of nano-sized systems endowed with the proper signal enhancing capabilities. A number of targeted nano-particles have been investigated including micelles, liposomes, iron oxides and perfluorocarbon containing systems. Finally, a growing attention is devoted to the design and testing of "theranostic" agents based on the exploitation of MRI to monitor drug delivery processes and therapeutic outcome.
Collapse
Affiliation(s)
- Simonetta Geninatti Crich
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy
| | - Enzo Terreno
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy
| | - Silvio Aime
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy.
| |
Collapse
|
16
|
Deb S, Ghosh K, Shetty SD. Nanoimaging in cardiovascular diseases: Current state of the art. Indian J Med Res 2016; 141:285-98. [PMID: 25963489 PMCID: PMC4442326 DOI: 10.4103/0971-5916.156557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has been integrated into healthcare system in terms of diagnosis as well as therapy. The massive impact of imaging nanotechnology has a deeper intervention in cardiology i.e. as contrast agents, to target vulnerable plaques with site specificity and in a theranostic approach to treat these plaques, stem cell delivery in necrotic myocardium, etc. Thus cardiovascular nanoimaging is not limited to simple diagnosis but also can help real time tracking during therapy as well as surgery. The present review provides a comprehensive description of the molecular imaging techniques for cardiovascular diseases with the help of nanotechnology and the potential clinical implications of nanotechnology for future applications.
Collapse
Affiliation(s)
- Suryyani Deb
- Department of Hemostasis & Thrombosis, National Institute of Immunohaematology (ICMR), Mumbai, India
| | | | | |
Collapse
|
17
|
Davis PJ, Sudha T, Lin HY, Mousa SA. Thyroid Hormone, Hormone Analogs, and Angiogenesis. Compr Physiol 2015; 6:353-62. [PMID: 26756636 DOI: 10.1002/cphy.c150011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation by thyroid hormone and hormone analogs of angiogenesis in the heart after experimental infarction, and in other organs, has been appreciated for decades. Description of a plasma membrane receptor for thyroid hormone on the extracellular domain of integrin αvβ3 on endothelial cells has revealed the complexity of the nongenomic regulation of angiogenesis by the hormone. From αvβ3, the hormone directs transcription of specific vascular growth factor genes, regulates growth factor receptor/growth factor interactions and stimulates endothelial cell migration to a vitronectin cue; these actions are implicated experimentally in tumor-relevant angiogenesis and angioproliferative pulmonary hypertension. Derived from L-thyroxine (T4), tetraiodothyroacetic acid (tetrac) can be covalently bound to a polymer and as Nanotetrac acts exclusively at the hormone receptor on αvβ3 to block actions of T4 and 3,5,3'-triiodo-L-thyronine (T3) on angiogenesis. Other antiangiogenic actions of Nanotetrac include disruption of crosstalk between integrin αvβ3 and adjacent cell surface vascular growth factor receptors, resulting in disordered vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF; FGF2) actions at their respective plasma membrane receptors. From αvβ3, Nanotetrac also downregulates expression of VEGFA and epidermal growth factor receptor (EGFR) genes, upregulates transcription of the angiogenesis suppressor gene, thrombospondin 1 (THBS1; TSP1) and decreases cellular abundance of Ang-2 protein and matrix metalloproteinase-9. Existence of this receptor provides new insights into the multiple mechanisms by which thyroid hormone and hormone analogs may regulate angiogenesis at the molecular level. The receptor also offers pharmacological opportunities for interruption of pathological angiogenesis via integrin αvβ3.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA.,Institute of Cancer Biology and Drug Discovery, School of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
18
|
Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM. Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions. ENGINEERING (BEIJING, CHINA) 2015; 1:475-489. [PMID: 27110430 PMCID: PMC4841681 DOI: 10.15302/j-eng-2015103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.
Collapse
Affiliation(s)
- Anne H. Schmieder
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
| | - Shelton D. Caruthers
- Toshiba Medical Research Institute USA, Inc., Cleveland, OH 44143, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Jochen Keupp
- Philips Research Hamburg, Hamburg 22335, Germany
| | - Samuel A. Wickline
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
| | - Gregory M. Lanza
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
- Correspondence author.
| |
Collapse
|
19
|
Jung JJ, Razavian M, Challa AA, Nie L, Golestani R, Zhang J, Ye Y, Russell KS, Robinson SP, Heistad DD, Sadeghi MM. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease. J Nucl Med 2015; 56:933-8. [PMID: 25908827 DOI: 10.2967/jnumed.114.152355] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/06/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Matrix metalloproteinases (MMPs) are upregulated in CAVD and contribute to valvular remodeling and calcification. We investigated the feasibility and correlates of MMP-targeted molecular imaging for detection of valvular biology in CAVD. METHODS Apolipoprotein E-deficient (apoE(-/-)) mice were fed a Western diet (WD) for 3, 6, and 9 mo (n = 108) to induce CAVD. Wild-type mice served as the control group (n = 24). The development of CAVD was tracked with CT, echocardiography, MMP-targeted small-animal SPECT imaging using (99m)Tc-RP805, and histologic analysis. RESULTS Key features of CAVD—leaflet thickening and valvular calcification—were noted after 6 mo of WD and were more pronounced after 9 mo. These findings were associated with a significant reduction in aortic valve leaflet separation and a significant increase in transaortic valve flow velocity. On in vivo SPECT/CT images, MMP signal in the aortic valve area was significantly higher at 6 mo in WD mice than in control mice and decreased thereafter. The specificity of the signal was demonstrated by blocking, using an excess of nonlabeled precursor. Similar to MMP signal, MMP activity as determined by in situ zymography and valvular inflammation by CD68 staining were maximal at 6 mo. In vivo (99m)Tc-RP805 uptake correlated significantly with MMP activity (R(2) = 0.94, P < 0.05) and CD68 expression (R(2) = 0.98, P < 0.01) in CAVD. CONCLUSION MMP-targeted imaging detected valvular inflammation and remodeling in a murine model of CAVD. If this ability is confirmed in humans, the technique may provide a tool for tracking the effect of emerging medical therapeutic interventions and for predicting outcome in CAVD.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Azariyas A Challa
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Reza Golestani
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Yunpeng Ye
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Kerry S Russell
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Donald D Heistad
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
20
|
Lin PC. Nuclear Magnetic Resonance Spectroscopy in Nanomedicine. PROGRESS IN OPTICAL SCIENCE AND PHOTONICS 2015. [DOI: 10.1007/978-981-287-242-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Cell tracking using 19F magnetic resonance imaging: Technical aspects and challenges towards clinical applications. Eur Radiol 2014; 25:726-35. [DOI: 10.1007/s00330-014-3474-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 01/03/2023]
|
22
|
Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2014; 115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilaria Tirotta
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" and ‡Fondazione Centro Europeo Nanomedicina, Politecnico di Milano , Milan 20131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
de Vries A, Moonen R, Yildirim M, Langereis S, Lamerichs R, Pikkemaat JA, Baroni S, Terreno E, Nicolay K, Strijkers GJ, Grüll H. Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:83-91. [PMID: 24470297 DOI: 10.1002/cmmi.1541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/23/2013] [Accepted: 03/10/2013] [Indexed: 01/17/2023]
Abstract
Fluorine MRI ((19) F MRI) is receiving an increasing attention as a viable alternative to proton-based MRI ((1) H MRI) for dedicated application in molecular imaging. The (19) F nucleus has a high gyromagnetic ratio, a 100% natural abundance and is furthermore hardly present in human tissues allowing for hot spot MR imaging. The applicability of (19) F MRI as a molecular and cellular imaging technique has been exploited, ranging from cell tracking to detection and imaging of tumors in preclinical studies. In addition to applications, developing new contrast materials with improved relaxation properties has also been a core research topic in the field, since the inherently low longitudinal relaxation rates of perfluorocarbon compounds result in relatively low imaging efficiency. Borrowed from (1) H MRI, the incorporation of lanthanides, specifically Gd(III) complexes, as signal modulating ingredients in the nanoparticle formulation has emerged as a promising approach to improvement of the fluorine signal. Three different perfluorocarbon emulsions were investigated at five different magnetic field strengths. Perfluoro-15-crown-5-ether was used as the core material and Gd(III)DOTA-DSPE, Gd(III)DOTA-C6-DSPE and Gd(III)DTPA-BSA as the relaxation altering components. While Gd(III)DOTA-DSPE and Gd(III)DOTA-C6-DSPE were favorable constructs for (1) H NMR, Gd(III)DTPA-BSA showed the strongest increase in (19F) R(1). These results show the potential of the use of paramagnetic lipids to increase (19F) R(1) at clinical field strengths (1.5-3 T). At higher field strengths (6.3-14 T), gadolinium does not lead to an increase in (19F) R(1) compared with emulsions without gadolinium, but leads to an significant increase in (19F) R(2). Our data therefore suggest that the most favorable situation for fluorine measurements is at high magnetic fields without the inclusion of gadolinium constructs.
Collapse
Affiliation(s)
- Anke de Vries
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Winter P. Molecular Imaging at Nanoscale with Magnetic Resonance Imaging. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Winter PM. Perfluorocarbon nanoparticles: evolution of a multimodality and multifunctional imaging agent. SCIENTIFICA 2014; 2014:746574. [PMID: 25024867 PMCID: PMC4082945 DOI: 10.1155/2014/746574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Perfluorocarbon nanoparticles offer a biologically inert, highly stable, and nontoxic platform that can be specifically designed to accomplish a range of molecular imaging and drug delivery functions in vivo. The particle surface can be decorated with targeting ligands to direct the agent to a variety of biomarkers that are associated with diseases such as cancer, cardiovascular disease, obesity, and thrombosis. The surface can also carry a high payload of imaging agents, ranging from paramagnetic metals for MRI, radionuclides for nuclear imaging, iodine for CT, and florescent tags for histology, allowing high sensitivity mapping of cellular receptors that may be expressed at very low levels in the body. In addition to these diagnostic imaging applications, the particles can be engineered to carry highly potent drugs and specifically deposit them into cell populations that display biosignatures of a variety of diseases. The highly flexible and robust nature of this combined molecular imaging and drug delivery vehicle has been exploited in a variety of animal models to demonstrate its potential impact on the care and treatment of patients suffering from some of the most debilitating diseases.
Collapse
Affiliation(s)
- Patrick M. Winter
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
26
|
Jenkins WSA, Chin C, Rudd JHF, Newby DE, Dweck MR. What can we learn about valvular heart disease from PET/CT? Future Cardiol 2013; 9:657-67. [DOI: 10.2217/fca.13.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Valvular heart disease is a major cause of morbidity and mortality, and with an aging population, its prevalence is increasing. Here, we review the evolving use of positron emission tomography/computed tomography in valvular heart disease, with particular focus on calcific aortic stenosis and infective endocarditis. In principle, the activity of any pathological process can be studied, as long as an appropriate radiotracer can be developed. We will review some of the early data using established tracers in the above and other conditions, providing discussion as to the future research and clinical roles of these techniques. Furthermore, we will discuss the potential impact of novel tracers that are currently under development or testing in preclinical models. It is hoped that such advanced imaging might improve the diagnosis, treatment and outlook for patients with valvular heart disease.
Collapse
Affiliation(s)
- William SA Jenkins
- Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK
| | - Calvin Chin
- Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK
- National Heart Center Singapore, SingHealth, Singapore
| | - James HF Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK
| |
Collapse
|
27
|
Clinical Perspectives of Hybrid Proton-Fluorine Magnetic Resonance Imaging and Spectroscopy. Invest Radiol 2013; 48:341-50. [DOI: 10.1097/rli.0b013e318277528c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
den Adel B, Daemen MJ, Poelmann RE, van der Weerd L. Molecular Magnetic Resonance Imaging for the Detection of Vulnerable Plaques: Is It Possible?: Retracted. Arterioscler Thromb Vasc Biol 2013:ATVBAHA.112.300108. [PMID: 23413424 DOI: 10.1161/atvbaha.112.300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/13/2013] [Indexed: 11/16/2022]
Abstract
Recent advances in molecular resonance imaging of atherosclerosis enable to visualize atherosclerotic plaques in vivo using molecular targeted contrast agents. This offers opportunities to study atherosclerosis development and plaque vulnerability noninvasively. In this review, we discuss MRI contrast agents targeted toward atherosclerotic plaques and illustrate how these new imaging platforms could assist in our understanding of atherogenesis and atheroprogression. In particular, we highlight the challenges and limitations of the different contrast agents and hurdles for clinical application. We describe the most promising existing compounds to detect atherosclerosis and plaque vulnerability. Of particular interest are the fibrin-targeted compounds that detect thrombi and, furthermore, the contrast agents targeted to integrins that allow to visualize plaque neovascularization. Moreover, vascular cell adhesion molecule 1-targeted iron oxides seem promising for early detection of atherosclerosis. These targeted MRI contrast agents, however promising and well characterized in (pre)clinical models, lack specificity for plaque vulnerability.
Collapse
Affiliation(s)
- Brigit den Adel
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (B.d.A., R.E.P., L.v.d.W.)
| | | | | | | |
Collapse
|
29
|
den Adel B, van der Graaf LM, Que I, Strijkers GJ, Löwik CW, Poelmann RE, van der Weerd L. Contrast enhancement by lipid-based MRI contrast agents in mouse atherosclerotic plaques; a longitudinal study. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:63-71. [PMID: 23109394 DOI: 10.1002/cmmi.1496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of two differently sized gadolinium-based contrast agents to enhance atherosclerotic plaques in ApoE(-/-) mice was evaluated with MRI. We obtained a kinetic profile for contrast enhancement, as the literature data on optimal imaging time points is scarce, and assessed the longer-term kinetics. Signal enhancement in the wall of the aortic arch, following intravenous injection of paramagnetic micelles and liposomes, was followed for 1 week. In vivo T(1)-weighted MRI plaque enhancement characteristics were complemented by fluorescence microscopy of NIR(664) incorporated in the contrast agents and quantification of tissue and blood Gd-DTPA. Both micelles and liposomes enhanced contrast in T(1)-weighted MR images of plaques in the aortic arch. The average contrast-to-noise ratio increased after liposome or micelle injection to 260 or 280% respectively, at 24 h after injection, compared with a pre-scan. A second wave of maximum contrast enhancement was observed around 60-72 h after injection, which only slowly decreased towards the 1 week end-point. Confocal fluorescence microscopy and whole body fluorescence imaging confirmed MRI-findings of accumulation of micelles and liposomes. Plaque permeation of contrast agents was not strongly dependent on the contrast agent size in this mouse model. Our results show that intraplaque accumulation over time of both contrast agents leads to good plaque visualization for a long period. This inherent intraplaque accumulation might make it difficult to discriminate passive from targeted accumulation. This implies that, in the development of targeted contrast agents on a lipid-based backbone, extensive timing studies are required.
Collapse
Affiliation(s)
- Brigit den Adel
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M. Labeling cells for in vivo tracking using 19F MRI. Biomaterials 2012; 33:8830-40. [DOI: 10.1016/j.biomaterials.2012.08.048] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/11/2022]
|
32
|
19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles. Angiogenesis 2012; 16:171-9. [PMID: 23053783 DOI: 10.1007/s10456-012-9310-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/26/2012] [Indexed: 12/20/2022]
Abstract
Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of (19)F MRI was investigated to detect angiogenesis with α(ν)β(3)-targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and (19)F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α(ν)β(3) integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of (19)F MRI to detect α(ν)β(3)-integrin endothelial expression in brain tumors in vivo.
Collapse
|
33
|
Diou O, Tsapis N, Giraudeau C, Valette J, Gueutin C, Bourasset F, Zanna S, Vauthier C, Fattal E. Long-circulating perfluorooctyl bromide nanocapsules for tumor imaging by 19FMRI. Biomaterials 2012; 33:5593-602. [PMID: 22575831 DOI: 10.1016/j.biomaterials.2012.04.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/13/2012] [Indexed: 02/04/2023]
Abstract
PLGA-PEG nanocapsules containing a liquid core of perfluorooctyl bromide were synthesized by an emulsion-evaporation process and designed as contrast agents for (19)F MRI. Physico-chemical properties of plain and PEGylated nanocapsules were compared. The encapsulation efficiency of PFOB, estimated by (19)F NMR spectroscopy, is enhanced when using PLGA-PEG instead of PLGA. PLGA-PEG nanocapsule diameter, measured by Dynamic Light Scattering is around 120 nm, in agreement with Transmission Electron microscopy (TEM) observations. TEM and Scanning Electron Microscopy (SEM) reveal that spherical core-shell morphology is preserved. PEGylation is further confirmed by Zeta potential measurements and X-ray Photoelectron Spectroscopy. In vitro, stealthiness of the PEGylated nanocapsules is evidenced by weak complement activation. Accumulation kinetics in the liver and the spleen was performed by (19)F MRI in mice, during the first 90 min after intravenous injection. In the liver, plain nanocapsules accumulate faster than their PEGylated counterparts. We observe PEGylated nanocapsule accumulation in CT26 xenograft tumor 7 h after administration to mice, whereas plain nanocapsules remain undetectable, using (19)F MRI. Our results validate the use of diblock copolymers for PEGylation to increase the residence time of nanocapsules in the blood stream and to reach tumors by the Enhanced Permeation and Retention (EPR) effect.
Collapse
Affiliation(s)
- Odile Diou
- Univ Paris-Sud, UMR CNRS 8612, LabEx LERMIT, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roosens B, Bala G, Droogmans S, Van Camp G, Breyne J, Cosyns B. Animal models of organic heart valve disease. Int J Cardiol 2012; 165:398-409. [PMID: 22475840 DOI: 10.1016/j.ijcard.2012.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/18/2012] [Accepted: 03/03/2012] [Indexed: 01/23/2023]
Abstract
Heart valve disease is a frequently encountered pathology, related to high morbidity and mortality rates in industrialized and developing countries. Animal models are interesting to investigate the causality, but also underlying mechanisms and potential treatments of human valvular diseases. Recently, animal models of heart valve disease have been developed, which allow to investigate the pathophysiology, and to follow the progression and the potential regression of disease with therapeutics over time. The present review provides an overview of animal models of primary, organic heart valve disease: myxoid age-related, infectious, drug-induced, degenerative calcified, and mechanically induced valvular heart disease.
Collapse
Affiliation(s)
- Bram Roosens
- Centrum Voor Hart- en Vaatziekten (CHVZ), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Alexopoulos A, Kaoukis A, Papadaki H, Pyrgakis V. Pathophysiologic mechanisms of calcific aortic stenosis. Ther Adv Cardiovasc Dis 2012; 6:71-80. [DOI: 10.1177/1753944712439337] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Calcific aortic stenosis (CAS) comprises the leading indication for valve replacement in the Western world. Until recently, progressive calcification was considered to be a passive process. Emerging evidence, however, suggests that degenerative aortic stenosis constitutes an active process involving stimulation of several pathophysiologic pathways such as inflammation and osteogenesis. In addition, CAS and atherosclerosis share common features regarding histopathology of lesions. These novel data raise a new perspective on the prevention and treatment of disease. The current article reviews the most important pathophysiologic mechanisms of senile aortic stenosis.
Collapse
Affiliation(s)
- Alexandros Alexopoulos
- Department of Cardiology, Athens General Hospital, Mesogeion Avenue, 154, 15669 Athens, Greece
| | - Andreas Kaoukis
- Department of Cardiology, General Hospital of Athens ‘G. Gennimatas’, Greece, Athens, Greece
| | - Helen Papadaki
- Department of Anatomy, School of Medicine, University of Patras, Greece, Rio, Patras, Greece
| | - Vlassios Pyrgakis
- Department of Cardiology, General Hospital of Athens ‘G. Gennimatas’, Greece, Athens, Greece
| |
Collapse
|
36
|
Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 2011; 6:e26385. [PMID: 22028868 PMCID: PMC3196552 DOI: 10.1371/journal.pone.0026385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022] Open
Abstract
Rationale Acute atherothrombotic occlusion in heart attack and stroke implies disruption of the vascular endothelial barrier that exposes a highly procoagulant intimal milieu. However, the evolution, severity, and pathophysiological consequences of vascular barrier damage in atherosclerotic plaque remain unknown, in part because quantifiable methods and experimental models are lacking for its in vivo assessment. Objective To develop quantitative nondestructive methodologies and models for detecting vascular barrier disruption in advanced plaques. Methods and Results Sustained hypercholesterolemia in New Zealand White (NZW) rabbits for >7–14 months engendered endothelial barrier disruption that was evident from massive and rapid passive penetration and intimal trapping of perfluorocarbon-core nanoparticles (PFC-NP: ∼250 nm diameter) after in vivo circulation for as little as 1 hour. Only older plaques (>7 mo), but not younger plaques (<3 mo) demonstrated the marked enhancement of endothelial permeability to these particles. Electron microscopy revealed a complex of subintimal spongiform channels associated with endothelial apoptosis, superficial erosions, and surface-penetrating cholesterol crystals. Fluorine (19F) magnetic resonance imaging and spectroscopy (MRI/MRS) enabled absolute quantification (in nanoMolar) of the passive permeation of PFC-NP into the disrupted vascular lesions by sensing the unique spectral signatures from the fluorine core of plaque-bound PFC-NP. Conclusions The application of semipermeant nanoparticles reveals the presence of profound barrier disruption in later stage plaques and focuses attention on the disrupted endothelium as a potential contributor to plaque vulnerability. The response to sustained high cholesterol levels yields a progressive deterioration of the vascular barrier that can be quantified with fluorine MRI/MRS of passively permeable nanostructures. The possibility of plaque classification based on the metric of endothelial permeability to nanoparticles is suggested.
Collapse
|
37
|
Goergen CJ, Sosnovik DE. From molecules to myofibers: multiscale imaging of the myocardium. J Cardiovasc Transl Res 2011; 4:493-503. [PMID: 21643889 DOI: 10.1007/s12265-011-9284-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/26/2011] [Indexed: 01/14/2023]
Abstract
Pathology in the heart can be examined at several scales, ranging from the molecular to the macroscopic. Traditionally, fluorescence-based techniques such as flow cytometry have been used to study the myocardium at the molecular, cellular, and microscopic levels. Recent advances in magnetic resonance imaging (MRI), however, have made it possible to image certain cellular and molecular events in the myocardium noninvasively in vivo. In addition, diffusion MRI has been used to image myocardial fiber architecture and microstructure in the intact heart. Diffusion MRI tractography, in particular, is providing novel insights into myocardial microsctructure in both health and disease. Recent developments have also been made in fluorescence imaging, making it possible to image fluorescent probes in the heart of small animals noninvasively in vivo. Moreover, techniques have been developed to perform in vivo fluorescence tomography of the mouse heart. These advances in MRI and fluorescence imaging allow events in the myocardium to be imaged at several scales linking molecular changes to alterations in microstructure and microstructural changes to gross function. A complete and integrated picture of pathophysiology in the myocardium is thus obtained. This multiscale approach has the potential to be of significant value not only in preclinical research but, ultimately, in the clinical arena as well.
Collapse
Affiliation(s)
- Craig J Goergen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
38
|
Abstract
There has been a tremendous amount of interest in developing new MR contrast agents for cellular and molecular imaging applications such as the visualization of tumors, highlighting areas of angiogenesis, highlighting of contrast agent-labeled therapeutic stem cells, and highlighting of contrast agent-labeled drug delivery vehicles. The contrast properties of paramagnetic and super-paramagnetic relaxation-based agents have allowed MR imaging to be used as a tool for all of the above applications. However, a new class of MR contrast agents, chemical exchange saturation transfer (CEST) agents, provides additional features such as (1) the ability to highlight multiple biological events at once within an image through the distinguishability of the different CEST contrast agents, (2) the ability to toggle the contrast "off-to-on" by applying a saturation pulse, and (3) potentially providing more information about the environment surrounding the contrast agent such as the pH or concentration of metabolites. In this chapter, we will focus on the methods which can be used in terms of acquisition schemes and hardware to screen these agents through MR imaging.
Collapse
Affiliation(s)
- Xiaolei Song
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
39
|
Lanza GM, Caruthers SD, Winter PM, Hughes MS, Schmieder AH, Hu G, Wickline SA. Angiogenesis imaging with vascular-constrained particles: the why and how. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 1:S114-26. [PMID: 20617434 DOI: 10.1007/s00259-010-1502-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In cancer, first-generation antiangiogenic therapeutic approaches have demonstrated survival benefit in subsets of patients, but their high cost and notable adverse side effect risk have fueled alternative development efforts to personalize patient selection and reduce off-target effects. In parallel, rapid advances in cost-effective genomic profiling and sensitive early detection of high-risk biomarkers for cancer, atherosclerosis, and other angiogenesis-related pathologies will challenge the medical imaging community to identify, characterize, and risk stratify patients early in the natural history of these disease processes. Conventional diagnostic imaging techniques were not intended for such sensitive and specific detection, which has led to the emergence of novel noninvasive biomedical imaging approaches. The overall intent of molecular imaging is to achieve greater quantitative characterization of pathologies based on microanatomical, biochemical, or functional assessments; in many approaches, the capacity to deliver effective therapy, e.g., antiangiogenic therapy, can be combined. Agents with both diagnostic and therapy attributes have acquired the moniker "theranostics." This review will explore biomedical imaging options being pursued to better segment and treat patients with angiogenesis-influenced disease using vascular-constrained contrast platform technologies.
Collapse
Affiliation(s)
- Gregory M Lanza
- Washington University Medical School, St. Louis, MO 63146, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mookadam F, Jalal U, Wilansky S. Aortic valve disease: preventable or inevitable? Future Cardiol 2010; 6:777-83. [PMID: 21142634 DOI: 10.2217/fca.10.94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcific aortic valve stenosis is the most frequent valve disease and the most common cause of aortic valve replacement in the western world, concomitant with aging of the general population and habitual consumption of a high-calorie diet. For years it was considered to be a passive wear and tear process but now it is recognized as an active process similar to atherosclerosis with involvement of several mediators, such as adhesion molecules, TGFs, cathepsin enzymes and bone regulatory proteins. As conviction grew that aortic stenosis has a genesis similar to atherosclerosis, the hypothesis that statins might be able to alter the progression of the disease also grew. Various retrospective studies confirmed the benefits of statin use at an earlier stage of the disease, but some disappointing results were demonstrated by randomized clinical trials.
Collapse
Affiliation(s)
- Farouk Mookadam
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA.
| | | | | |
Collapse
|
41
|
Winter PM, Caruthers SD, Lanza GM, Wickline SA. Quantitative cardiovascular magnetic resonance for molecular imaging. J Cardiovasc Magn Reson 2010; 12:62. [PMID: 21047411 PMCID: PMC2987770 DOI: 10.1186/1532-429x-12-62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/03/2010] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, mapping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy. The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, including early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in reducing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effective therapy with reduced side effects.
Collapse
Affiliation(s)
- Patrick M Winter
- Cincinnati Children's Hospital, Department of Radiology, 3333 Burnet Ave., ML 5033, Cincinnati, OH, 45229, USA
| | - Shelton D Caruthers
- Washington University, C-TRAIN Labs, 660 S. Euclid Ave., Campus Box 8215, St. Louis, MO, 63110, USA
| | - Gregory M Lanza
- Washington University, C-TRAIN Labs, 660 S. Euclid Ave., Campus Box 8215, St. Louis, MO, 63110, USA
| | - Samuel A Wickline
- Washington University, C-TRAIN Labs, 660 S. Euclid Ave., Campus Box 8215, St. Louis, MO, 63110, USA
| |
Collapse
|
42
|
Chen J, Lanza GM, Wickline SA. Quantitative magnetic resonance fluorine imaging: today and tomorrow. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:431-40. [PMID: 20564465 DOI: 10.1002/wnan.87] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fluorine (19F) is a promising moiety for quantitative magnetic resonance imaging (MRI). It possesses comparable magnetic resonance (MR) sensitivity to proton (1H) but exhibits no tissue background signal, allowing specific and selective assessment of the administrated 19F-containing compounds in vivo. Additionally, the MR spectra of 19F-containing compounds exhibited a wide range of chemical shifts (>200 ppm). Therefore, both MR parameters (e.g., spin-lattice relaxation rate R1) and the absolute quantity of molecule can be determined with 19F MRI for unbiased assessment of tissue physiology and pathology. This article reviews quantitative 19F MRI applications for mapping tumor oxygenation, assessing molecular expression in vascular diseases, and tracking labeled stem cells.
Collapse
Affiliation(s)
- Junjie Chen
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, St Louis, MO 63108, USA.
| | | | | |
Collapse
|
43
|
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev 2010; 110:3019-42. [PMID: 20415475 DOI: 10.1021/cr100025t] [Citation(s) in RCA: 583] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Enzo Terreno
- Department of Chemistry IFM and Molecular Imaging Center, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
44
|
Syväranta S, Helske S, Laine M, Lappalainen J, Kupari M, Mäyränpää MI, Lindstedt KA, Kovanen PT. Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler Thromb Vasc Biol 2010; 30:1220-7. [PMID: 20299690 DOI: 10.1161/atvbaha.109.198267] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine the proangiogenic potential of myofibroblasts and mast cells, 2 types of cells present in human aortic valves. METHODS AND RESULTS Aortic valve stenosis is an active atheroinflammatory disease, characterized by the accumulation of inflammatory cells and the neovascularization of the valves. A total of 85 stenotic valves and 20 control valves were obtained during valve replacement surgery. The results of immunohistochemistry analysis revealed stenotic aortic valves that contained 3 types of neovessels: small microvessels, medium microvessels, and organized arterioles. The distribution density of the neovessels was significantly higher in stenotic valves than in control valves (P<0.001) and correlated positively with valvular calcification gradus (r=0.26, P=0.02) and mast cell density (r=0.38, P<0.001). In the neovascularized areas of stenotic aortic valves, mast cells contained vascular endothelial growth factor and were degranulated, indicating their activation. The stimulation of cultured myofibroblasts derived from aortic valves with a mast cell-preconditioned medium, hypoxic culture conditions, or tobacco smoke all induced vascular endothelial growth factor secretion in the myofibroblasts. Finally, mast cell tryptase was able to degrade the antiangiogenic molecule endostatin in vitro. CONCLUSIONS Mast cells and myofibroblasts may accelerate the progression of aortic valve stenosis by altering the balance between angiogenic and antiangiogenic factors in the valves, thus promoting valvular neovascularization.
Collapse
|
45
|
Lanza GM, Winter PM, Caruthers SD, Hughes MS, Hu G, Schmieder AH, Wickline SA. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis 2010; 13:189-202. [PMID: 20411320 DOI: 10.1007/s10456-010-9166-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomical descriptions to complicated phenotypic characterizations based upon the recognition of unique cell-surface biochemical signatures. Although originally the purview of nuclear medicine, "molecular imaging" is now studied in conjunction with all clinically relevant imaging modalities. Of the myriad of particles that have emerged as prospective candidates for clinical translation, perfluorocarbon nanoparticles offer great potential for combining targeted imaging with drug delivery, much like the "magic bullet" envisioned by Paul Ehrlich 100 years ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, have found new life for molecular imaging and drug delivery. The particles have been adapted for use with all clinically relevant modalities and for targeted drug delivery. In particular, their intravascular constraint due to particle size provides a distinct advantage for angiogenesis imaging and antiangiogenesis therapy. As perfluorocarbon nanoparticles have recently entered Phase I clinical study, this review provides a timely focus on the development of this platform technology and its application for angiogenesis-related pathologies.
Collapse
Affiliation(s)
- G M Lanza
- Division of Cardiology, Department of Medicine, Washington University Medical School, 4320 Forest Park Ave, Suite 101, St. Louis, MO 63108, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Giraudeau C, Flament J, Marty B, Boumezbeur F, Mériaux S, Robic C, Port M, Tsapis N, Fattal E, Giacomini E, Lethimonnier F, Le Bihan D, Valette J. A new paradigm for high-sensitivity19F magnetic resonance imaging of perfluorooctylbromide. Magn Reson Med 2010; 63:1119-24. [DOI: 10.1002/mrm.22269] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Pan D, Caruthers SD, Chen J, Winter PM, SenPan A, Schmieder AH, Wickline SA, Lanza GM. Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2010; 2:471-90. [PMID: 20485473 PMCID: PMC2871711 DOI: 10.4155/fmc.10.5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The science of 'theranostics' plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy.
Collapse
Affiliation(s)
- Dipanjan Pan
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Shelton D Caruthers
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Junjie Chen
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Patrick M Winter
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Angana SenPan
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Anne H Schmieder
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Samuel A Wickline
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Gregory M Lanza
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| |
Collapse
|
48
|
Slevin M, Badimon L, Grau-Olivares M, Ramis M, Sendra J, Morrison M, Krupinski J. Combining nanotechnology with current biomedical knowledge for the vascular imaging and treatment of atherosclerosis. MOLECULAR BIOSYSTEMS 2009; 6:444-50. [PMID: 20174673 DOI: 10.1039/b916175a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of vasa vasorum (the microvessels supplying the major arteries) at specific sites in the adventitia initiates their proliferation or 'angiogenesis' concomitant with development of atherosclerotic plaques. Haemorrhagic, leaky blood vessels from unstable plaques proliferate abnormally, are of relatively large calibre but are immature neovessels poorly invested with smooth muscle cells and possess structural weaknesses which may contribute to instability of the plaque by facilitation of inflammatory cell infiltration and haemorrhagic complications. Weak neovascular beds in plaque intima as well as activated adventitial blood vessels are potential targets for molecular imaging and targeted drug therapy, however, the majority of tested, currently available imaging and therapeutic agents have been unsuccessful because of their limited capacity to reach and remain stably within the target tissue or cells in vivo. Nanoparticle technology together with magnetic resonance imaging has allowed the possibility of imaging of neovessels in coronary or carotid plaques, and infusion of nanoparticle suspensions using infusion catheters or implant-based drug delivery represents a novel and potentially much more efficient option for treatment. This review will describe the importance of angiogenesis in mediation of plaque growth and development of plaque instability and go on to investigate the possibility of future design of superparamagnetic/perfluorocarbon-derived nanoparticles for imaging of the vasculature in this disease or which could be directed to the adventitial vasa vasorum or indeed intimal microvessels and which can release active payloads directed against primary key external mitogens and intracellular signalling molecules in endothelial cells responsible for their activation with a view to inhibition of angiogenesis.
Collapse
Affiliation(s)
- M Slevin
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Díaz-López R, Tsapis N, Fattal E. Liquid perfluorocarbons as contrast agents for ultrasonography and (19)F-MRI. Pharm Res 2009; 27:1-16. [PMID: 19902338 DOI: 10.1007/s11095-009-0001-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/22/2009] [Indexed: 12/22/2022]
Abstract
Perfluorocarbons (PFCs) are fluorinated compounds that have been used for many years in clinics mainly as gas/oxygen carriers and for liquid ventilation. Besides this main application, PFCs have also been tested as contrast agents for ultrasonography and magnetic resonance imaging since the end of the 1970s. However, most of the PFCs applied as contrast agents for imaging were gaseous. This class of PFCs has been recently substituted by liquid PFCs as ultrasound contrast agents. Additionally, liquid PFCs are being tested as contrast agents for (19)F magnetic resonance imaging (MRI), to yield dual contrast agents for both ultrasonography and (19)F MRI. This review focuses on the development and applications of the different contrast agents containing liquid perfluorocarbons for ultrasonography and/or MRI: large and small size emulsions (i.e. nanoemulsions) and nanocapsules.
Collapse
Affiliation(s)
- Raquel Díaz-López
- Univ Paris Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | | | | |
Collapse
|
50
|
Swanson JC, Davis LR, Arata K, Briones EP, Bothe W, Itoh A, Ingels NB, Miller DC. Characterization of mitral valve anterior leaflet perfusion patterns. THE JOURNAL OF HEART VALVE DISEASE 2009; 18:488-495. [PMID: 20099688 PMCID: PMC2863300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIM OF THE STUDY Although previous histologic studies have demonstrated the presence of blood vessels in the anterior mitral leaflet (AML) and second-order chordae (SC), little is known of the pattern of leaflet perfusion. Hence, the pattern and source of AML perfusion was investigated in an ovine model. METHODS Fluorescein angiograms were obtained in 17 ovine hearts immediately after heparinization and cardioplegic arrest, using non-selective left coronary artery (LCA) and selective left anterior descending (LAD), proximal, mid- and distal left circumflex (LCx) perfusion. Serial photographs using a flash/filter system to optimize fluorescence were obtained through a left atriotomy. RESULTS The proximal half of the AML was seen to be richly vascularized. A loop of vessels was consistently observed in the mitral annulus and AML; these vessels ran along the annulus, extended to the sites of SC insertion, and created anastomoses between these insertions. The SC contributed to the AML perfusion and the anastomotic loop. Selective perfusion of the LAD or proximal LCx artery (ligated before the first obtuse marginal artery) did not perfuse the AML (n = 6). Perfusion of the mid- and distal LCx (n = 7) consistently supplied the AML via SC insertion sites and annular branches. CONCLUSION The ovine AML is perfused by vessels that run through the SC and annulus simultaneously, and then create a communicating arcade in the leaflet. These vessels originate from the mid- and distal portions of the LCx. A loss of perfusion as a result of microvascular disease could have adverse implications. Derangements in the extensive vascular component of the mitral valve could be an important contributing factor to valve disease.
Collapse
Affiliation(s)
- Julia C. Swanson
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Lauren R. Davis
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Koji Arata
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Eleazar P. Briones
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Wolfgang Bothe
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Akinobu Itoh
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Neil B. Ingels
- Research Institute at the Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - D. Craig Miller
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|