1
|
Trehan A, Anand R, Kumari P, Singh H, Soni N, Madan R, Matta R, Maheshwari S, Verma MK. Enhanced Absorption and Safety of MuscleBlaze CreAMP™: A Comparative Analysis With Regular Micronized Creatine Monohydrate in Healthy Male Adults. Cureus 2025; 17:e81555. [PMID: 40182172 PMCID: PMC11966180 DOI: 10.7759/cureus.81555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Background Creatine monohydrate is a widely utilized dietary supplement in sports nutrition, valued for its role in enhancing muscle energy availability, power output, and performance during high-intensity, short-duration activities. Creatine monohydrate is effective but limited by absorption inefficiencies and side effects. Enhanced forms can improve uptake, reduce gastrointestinal discomfort, and optimize muscle energy utilization, meeting athletes' evolving performance needs. Methods This study involved 32 healthy male volunteers aged 18-50 years, with a BMI of 18.5-25.0 kg/m² and body weight of ≥50 kg. This study evaluated the bioavailability and safety of MuscleBlaze Creatine Monohydrate (CreAMP™) (Bright Lifecare Pvt Ltd, Gurugram, India), containing 3.0 g creatine monohydrate and 0.1 g Creabsorb™ (Indian Patent: IN202311057466), against a standard 3.0 g micronized creatine dose. In a double-blind, randomized crossover trial (CTRI/2024/08/073021), 32 healthy males (18-50 years) received both formulations under fasting conditions. The study compared two oral creatine monohydrate formulations: CreAMP™ Micronized Creatine Monohydrate (test) and Regular Micronized Creatine Monohydrate (reference) (Bright Lifecare Pvt Ltd, Gurugram, India). Blood samples were collected pre-dose and up to six hours post-dose over two periods, separated by a washout period of one week. Pharmacokinetic parameters were analyzed using Phoenix® WinNonlin® 8.5 (Certara, Radnor, PA). Results CreAMP™ has significantly higher bioavailability, absorption, and plasma retention compared to the reference formulation. With a 38.97% increase in bioavailability, an 18.10% higher Cmax, a 21.37% longer half-life, 34.67% lower clearance, and a 10.13% higher mean residence time, CreAMP™ demonstrates superior pharmacokinetic properties. These findings suggest that CreAMP™ offers improved creatine uptake, sustained plasma levels, and the potential for reduced dosing frequency, making it a more effective formulation for creatine supplementation. Conclusion The study findings establish CreAMP™ as a superior creatine formulation, offering enhanced bioavailability, faster absorption, and prolonged plasma retention. These pharmacokinetic advantages indicate that CreAMP™ offers more efficient creatine uptake, improved energy availability, and optimized performance support for athletes.
Collapse
Affiliation(s)
- Anupam Trehan
- Strategy and Design, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Rachna Anand
- Scientific Research, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Puja Kumari
- Biotechnology Research, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Harinder Singh
- Clinical Research, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Neha Soni
- Nutrition, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Ravij Madan
- Ingredient Research, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Raman Matta
- Analytical Research, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Sameer Maheshwari
- Marketing Research and Management, Bright Lifecare Pvt Ltd, Gurugram, IND
| | - Manoj K Verma
- Scientific Research, Bright Lifecare Pvt Ltd, Gurugram, IND
| |
Collapse
|
2
|
Desai I, Pandit A, Smith-Ryan AE, Simar D, Candow DG, Kaakoush NO, Hagstrom AD. The Effect of Creatine Supplementation on Lean Body Mass with and Without Resistance Training. Nutrients 2025; 17:1081. [PMID: 40292479 PMCID: PMC11944689 DOI: 10.3390/nu17061081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Creatine monohydrate (CrM) is considered to be one of the most effective supplements for enhancing lean body mass during resistance training. However, CrM may influence body water content, potentially confounding lean body mass measurements. Therefore, this randomised controlled trial assessed the effect of CrM alone on lean body mass following a supplement wash-in, and when combined with a resistance training program. Methods: Sixty-three (34 females, 29 males, 31 ± 8 years) participants were randomised to supplement with CrM (5 g/day for 13 weeks: wash-in + 12-week resistance training) or serve as a control (received no creatine or placebo). Lean body mass was measured using dual X-ray absorptiometry at baseline, post 7-day wash-in, and post 12 weeks of resistance training. Both groups began the same training program post CrM wash-in. Results: After the 7-day wash-in, the supplement group gained 0.51 ± 1.79 kg more lean body mass than the control group (p = 0.03). Following the wash-in, both groups gained 2 kg after resistance training (p < 0.0001), with no between-group difference in lean body mass growth (p = 0.71). Sex-disaggregated analysis showed that the supplement group, only in females, gained 0.59 ± 1.61 kg more lean body mass than the controls (p = 0.04). There were no group differences in lean body mass growth following resistance training in females (p = 0.10) or males (p = 0.35). Conclusions: A 7-day CrM wash-in increased lean body mass, particularly in females. Thereafter, CrM did not enhance lean body mass growth when combined with resistance training, likely due to its short-term effects on lean body mass measurements. A maintenance dose of higher than 5 g/day may be necessary to augment lean body mass growth.
Collapse
Affiliation(s)
- Imtiaz Desai
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Anurag Pandit
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Abbie E. Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Simar
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Amanda D. Hagstrom
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Escalante G, Gonzalez AM, St Mart D, Torres M, Echols J, Islas M, Schoenfeld BJ. Analysis of the efficacy, safety, and cost of alternative forms of creatine available for purchase on Amazon.com: are label claims supported by science? Heliyon 2022; 8:e12113. [PMID: 36544833 PMCID: PMC9761713 DOI: 10.1016/j.heliyon.2022.e12113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Creatine monohydrate (CM) is an established and effective dietary supplement, but it is not the only form of creatine. We analyzed forms of creatine for sale on Amazon.com" title = "http://Amazon.com">Amazon.com and evaluated if the advertised claims are supported by the available scientific evidence. We also analyzed the cost per gram of the forms of creatine. A total of 175 creatine supplements were included and we reported the total creatine content per serving, form(s) of creatine in products, product claims, and prevalence of products third party certified. The identified products contained 16 forms of creatine other than CM. The prevalence of products containing functional ingredients with CM or forms of creatine was 29.7%, and the prevalence of products containing blends of different forms of creatine was 21.7%. Only 8% of products were third party certified. The products using only CM (n = 91) had a mean price per gram of $0.12 ± 0.08, whereas products using only other forms of creatine (n = 32) had a mean price per gram of $0.26 ± 0.17. Approximately 88% of alternative creatine products in this study are classified as having limited to no evidence to support bioavailability, efficacy, and safety.
Collapse
|
4
|
Fazio C, Elder CL, Harris MM. Efficacy of Alternative Forms of Creatine Supplementation on Improving Performance and Body Composition in Healthy Subjects: A Systematic Review. J Strength Cond Res 2022; 36:2663-2670. [DOI: 10.1519/jsc.0000000000003873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Creatine Monohydrate Supplementation, but not Creatyl-L-Leucine, Increased Muscle Creatine Content in Healthy Young Adults: A Double-Blind Randomized Controlled Trial. Int J Sport Nutr Exerc Metab 2022; 32:446-452. [PMID: 36007881 DOI: 10.1123/ijsnem.2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Creatine (Cr) supplementation is a well-established strategy to enhance gains in strength, lean body mass, and power from a period of resistance training. However, the effectiveness of creatyl-L-leucine (CLL), a purported Cr amide, is unknown. Therefore, the purpose of this study was to assess the effects of CLL on muscle Cr content. Twenty-nine healthy men (n = 17) and women (n = 12) consumed 5 g/day of either Cr monohydrate (n = 8; 28.5 ± 7.3 years, 172.1 ± 11.0 cm, 76.6 ± 10.7 kg), CLL (n = 11; 29.2 ± 9.3 years, 170.3 ± 10.5 cm, 71.9 ± 14.5 kg), or placebo (n = 10; 30.3 ± 6.9 years, 167.8 ± 9.9 cm, 69.9 ± 11.1 kg) for 14 days in a randomized, double-blind design. Participants completed three bouts of supervised resistance exercise per week. Muscle biopsies were collected before and after the intervention for quantification of muscle Cr. Cr monohydrate supplementation which significantly increased muscle Cr content with 14 days of supplementation. No changes in muscle Cr were observed for the placebo or CLL groups. Cr monohydrate supplementation is an effective strategy to augment muscle Cr content while CLL is not.
Collapse
|
6
|
Kreider RB, Jäger R, Purpura M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients 2022; 14:nu14051035. [PMID: 35268011 PMCID: PMC8912867 DOI: 10.3390/nu14051035] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
In 2011, we published a paper providing an overview about the bioavailability, efficacy, and regulatory status of creatine monohydrate (CrM), as well as other “novel forms” of creatine that were being marketed at the time. This paper concluded that no other purported form of creatine had been shown to be a more effective source of creatine than CrM, and that CrM was recognized by international regulatory authorities as safe for use in dietary supplements. Moreover, that most purported “forms” of creatine that were being marketed at the time were either less bioavailable, less effective, more expensive, and/or not sufficiently studied in terms of safety and/or efficacy. We also provided examples of several “forms” of creatine that were being marketed that were not bioavailable sources of creatine or less effective than CrM in comparative effectiveness trials. We had hoped that this paper would encourage supplement manufacturers to use CrM in dietary supplements given the overwhelming efficacy and safety profile. Alternatively, encourage them to conduct research to show their purported “form” of creatine was a bioavailable, effective, and safe source of creatine before making unsubstantiated claims of greater efficacy and/or safety than CrM. Unfortunately, unsupported misrepresentations about the effectiveness and safety of various “forms” of creatine have continued. The purpose of this critical review is to: (1) provide an overview of the physiochemical properties, bioavailability, and safety of CrM; (2) describe the data needed to substantiate claims that a “novel form” of creatine is a bioavailable, effective, and safe source of creatine; (3) examine whether other marketed sources of creatine are more effective sources of creatine than CrM; (4) provide an update about the regulatory status of CrM and other purported sources of creatine sold as dietary supplements; and (5) provide guidance regarding the type of research needed to validate that a purported “new form” of creatine is a bioavailable, effective and safe source of creatine for dietary supplements. Based on this analysis, we categorized forms of creatine that are being sold as dietary supplements as either having strong, some, or no evidence of bioavailability and safety. As will be seen, CrM continues to be the only source of creatine that has substantial evidence to support bioavailability, efficacy, and safety. Additionally, CrM is the source of creatine recommended explicitly by professional societies and organizations and approved for use in global markets as a dietary ingredient or food additive.
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-972-458-1498
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI 53202, USA; (R.J.); (M.P.)
| | | |
Collapse
|
7
|
Jiaming Y, Rahimi MH. Creatine supplementation effect on recovery following exercise-induced muscle damage: A systematic review and meta-analysis of randomized controlled trials. J Food Biochem 2021; 45:e13916. [PMID: 34472118 DOI: 10.1111/jfbc.13916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Exercise-induced muscle damage (EIMD) causes increased soreness, impaired function of muscles, and reductions in muscle force. Accumulating evidence suggests the beneficial effects of creatine on EIMD. Nevertheless, outcomes differ substantially across various articles. The main aim of this meta-analysis was to evaluate the effect of creatine on recovery following EIMD. Medline, Embase, Cochrane Library, Scopus, and Google Scholar were systematically searched up to March 2021. The Cochrane Collaboration tool for examining the risk of bias was applied for assessing the quality of studies. Weighted mean difference (WMD), 95% confidence interval (CI), and random-effects model, were applied for estimating the overall effect. Between studies, heterogeneity was examined using the chi-squared and I2 statistics. Nine studies met the inclusion criteria. Pooled data showed that creatine significantly reduced creatine kinase (CK) concentration overall (WMD = -30.94; 95% CI: -53.19, -8.69; p = .006) and at three follow-up times (48, 72, and 96 hr) in comparison with placebo. In contrast, effects were not significant in lactate dehydrogenase (LDH) concentration overall (WMD = -5.99; 95% CI: -14.49, 2.50; p = .167), but creatine supplementation leaded to a significant reduction in LDH concentrations in trials with 48 hr measurement of LDH. The current data indicate that creatine consumption is better than rest after diverse forms of damaging and exhaustive exercise or passive recovery. The benefits relate to a decrease in muscle damage indices and improved muscle function because of muscle power loss after exercise. PRACTICAL APPLICATIONS: Creatine supplementation would be effective in reducing the immediate muscle damage that happens <24, 24, 48, 72, and 96 hr post-exercise. In the current meta-analysis, the positive effects of creatine could cause a decrease in CK concentration overall. But, due to high heterogeneity and the medium risk of bias for articles, we suggest that these results are taken into account and the facts are interpreted with caution by the readers.
Collapse
Affiliation(s)
- Yue Jiaming
- China Football College, Beijing Sport University, Beijing, China
| | | |
Collapse
|
8
|
Wax B, Kerksick CM, Jagim AR, Mayo JJ, Lyons BC, Kreider RB. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021; 13:1915. [PMID: 34199588 PMCID: PMC8228369 DOI: 10.3390/nu13061915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine is one of the most studied and popular ergogenic aids for athletes and recreational weightlifters seeking to improve sport and exercise performance, augment exercise training adaptations, and mitigate recovery time. Studies consistently reveal that creatine supplementation exerts positive ergogenic effects on single and multiple bouts of short-duration, high-intensity exercise activities, in addition to potentiating exercise training adaptations. In this respect, supplementation consistently demonstrates the ability to enlarge the pool of intracellular creatine, leading to an amplification of the cell's ability to resynthesize adenosine triphosphate. This intracellular expansion is associated with several performance outcomes, including increases in maximal strength (low-speed strength), maximal work output, power production (high-speed strength), sprint performance, and fat-free mass. Additionally, creatine supplementation may speed up recovery time between bouts of intense exercise by mitigating muscle damage and promoting the faster recovery of lost force-production potential. Conversely, contradictory findings exist in the literature regarding the potential ergogenic benefits of creatine during intermittent and continuous endurance-type exercise, as well as in those athletic tasks where an increase in body mass may hinder enhanced performance. The purpose of this review was to summarize the existing literature surrounding the efficacy of creatine supplementation on exercise and sports performance, along with recovery factors in healthy populations.
Collapse
Affiliation(s)
- Benjamin Wax
- Applied Physiology Laboratory, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Chad M. Kerksick
- Exercise & Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Jerry J. Mayo
- Department of Nutrition and Family Sciences, University of Central Arkansas, Conway, AR 72035, USA;
| | - Brian C. Lyons
- Health, Kinesiology, and Sport Management Department, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
9
|
Creatine Supplementation in Children and Adolescents. Nutrients 2021; 13:nu13020664. [PMID: 33670822 PMCID: PMC7922146 DOI: 10.3390/nu13020664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
Creatine is a popular ergogenic aid among athletic populations with consistent evidence indicating that creatine supplementation also continues to be commonly used among adolescent populations. In addition, the evidence base supporting the therapeutic benefits of creatine supplementation for a plethora of clinical applications in both adults and children continues to grow. Among pediatric populations, a strong rationale exists for creatine to afford therapeutic benefits pertaining to multiple neuromuscular and metabolic disorders, with preliminary evidence for other subsets of clinical populations as well. Despite the strong evidence supporting the efficacy and safety of creatine supplementation among adult populations, less is known as to whether similar physiological benefits extend to children and adolescent populations, and in particular those adolescent populations who are regularly participating in high-intensity exercise training. While limited in scope, studies involving creatine supplementation and exercise performance in adolescent athletes generally report improvements in several ergogenic outcomes with limited evidence of ergolytic properties and consistent reports indicating no adverse events associated with supplementation. The purpose of this article is to summarize the rationale, prevalence of use, performance benefits, clinical applications, and safety of creatine use in children and adolescents.
Collapse
|
10
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
11
|
Papukashvili D, Rcheulishvili N, Deng Y. Beneficial Impact of Semicarbazide-Sensitive Amine Oxidase Inhibition on the Potential Cytotoxicity of Creatine Supplementation in Type 2 Diabetes Mellitus. Molecules 2020; 25:molecules25092029. [PMID: 32349282 PMCID: PMC7248702 DOI: 10.3390/molecules25092029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Creatine supplementation of the population with type 2 diabetes mellitus (T2DM) combined with an exercise program is known to be a possible therapy adjuvant with hypoglycemic effects. However, excessive administration of creatine leads to the production of methylamine which is deaminated by the enzyme semicarbazide-sensitive amine oxidase (SSAO) and as a result, cytotoxic compounds are produced. SSAO activity and reaction products are increased in the serum of T2DM patients. Creatine supplementation by diabetics will further augment the activity of SSAO. The current review aims to find a feasible way to ameliorate T2DM for patients who exercise and desire to consume creatine. Several natural agents present in food which are involved in the regulation of SSAO activity directly or indirectly are reviewed. Particularly, zinc-α2-glycoprotein (ZAG), zinc (Zn), copper (Cu), histamine/histidine, caffeine, iron (Fe), and vitamin D are discussed. Inhibiting SSAO activity by natural agents might reduce the potential adverse effects of creatine metabolism in population of T2DM.
Collapse
Affiliation(s)
- Dimitri Papukashvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Nino Rcheulishvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing 100081, China
- Correspondence: ; Tel./Fax: +86-10-68914907
| |
Collapse
|
12
|
Effect of creatine ethyl ester supplementation and resistance training on hormonal changes, body composition and muscle strength in underweight non-athlete men. BIOMEDICAL HUMAN KINETICS 2019. [DOI: 10.2478/bhk-2019-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Study aim: The aim of this study to determine whether creatine ethyl ester (CEE) supplementation combined with resistance training (RT) is effective for improving hormonal changes, body composition and muscle strength in underweight non-athlete men.
Materials and methods: Sixteen underweight non-athlete men participated in this double-blind study and were randomly assigned to one of two groups: RT with placebo (RT + PL, n = 8) and RT with CEE supplementation (RT + CEE, n = 8). The participants performed 6 weeks of RT (60–80% 1RM) combined with CEE or PL. 48 hours before and after the training period, muscle strength (1RM for leg press and bench press), body composition (percentage of body fat, circumference measurements of the arm and thigh), serum levels of testosterone, cortisol, and growth hormone (GH) of the participant were measurements.
Results: Significant increases were observed for weight, muscle strength and muscle mass, serum levels of testosterone and GH between pre and post-test in the RT + CEE group (p < 0.05). In addition, cortisol level was significantly decreased in the post-test in the RT+CEE group. The decrease in fat percent was greater in the RT + PL group than in the RT + CEE group (%change = –6.78 vs. –0.76, respectively). Weight and leg strength changes in the RT + CEE group were significant compared to the RT + PL group (p < 0.001, p = 0.05, p = 0.001; respectively). However, in other variables, despite the increase of GH and testosterone levels and lower levels of cortisol in the RT + CEE group, no significant differences were observed between the two groups (p < 0.05).
Conclusion: It seems that the consumption of CEE combined with RT can have significant effects on body weight and leg strength in underweight non-athlete men. This supplement may provide a potential nutritional intervention to promote body weight in underweight men.
Collapse
|
13
|
Ostojic SM, Stajer V, Vranes M, Ostojic J. Searching for a better formulation to enhance muscle bioenergetics: A randomized controlled trial of creatine nitrate plus creatinine vs. creatine nitrate vs. creatine monohydrate in healthy men. Food Sci Nutr 2019; 7:3766-3773. [PMID: 31763026 PMCID: PMC6848817 DOI: 10.1002/fsn3.1237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 11/18/2022] Open
Abstract
A novel creatine blend (creatine nitrate mixed with creatinine, CN-CRN) has been anecdotally suggested to be superior to traditional creatine formulations for bioavailability and performance. However, does CN-CRN supremely affects creatine levels in the blood and skeletal muscle of healthy humans remain currently unknown. This randomized, controlled, double-blind, crossover trial evaluated the acute effects of single-dose CN-CRN on serum creatine levels, and 5-days intervention with CN-CRN on skeletal muscle creatine and safety biomarkers in healthy men. Ten healthy young men (23.6 ± 2.9 years) were allocated to receive either CN-CRN (3 grams of creatine nitrate mixed with 3 grams of creatinine), pure creatine nitrate (3 grams, CN), or regular creatine monohydrate (3 grams, CRM) by oral administration. We found that CN-CRN resulted in a more powerful rise in serum creatine levels comparing to either CN or CRM after a single-dose intervention, as evaluated with the area under the concentration-time curve calculation (701.1 ± 62.1 (µmol/L) × min versus 622.7 ± 62.9 (µmol/L) × min versus 466.3 ± 47.9 (µmol/L) × min; p < .001). The peak serum creatine levels at 60-min sampling interval were significantly higher in CN-CRN group (183.7 ± 15.5 µmol/L), as compared to CN group (163.8 ± 12.9 µmol/L) and CRM group (118.6 ± 12.9 µmol/L) (p < .001). This was accompanied by a significantly superior increase in muscle creatine levels after CN-CRN administration at 5-days follow-up, as compared to CN and CRM, respectively (9.6% versus 8.0% versus 2.1%; p = .01). While 2 out of 10 participants were found to be nonresponsive to CN intervention (20.0%) (e.g., no amplification in muscle creatine levels found at 5-days follow-up), and 3 participants out of 10 were nonresponsive in CRM trial (30%), no nonresponders were found after CN-CRN administration, with individual upswing in total muscle creatine varied in this group from 2.0% (lowest increment) to 16.8% (highest increment). Supplemental CN-CRN significantly decreased estimated glomerular filtration rate (eGFR) at 5-days follow-up, as compared to other interventions (p = .004), with the average reduction was 14.8 ± 7.7% (95% confidence interval; from 9.3 to 20.3). Nevertheless, no single participant experienced a clinically relevant reduction in eGFR (< 60 ml/min/1.73 m2) throughout the course of the trial. Liver enzymes remained in reference ranges throughout the study, with no participant experienced high liver blood tests (e.g., AST > 40 units per L or ALT >56 units per L). Besides, no participant reported any major side effects during the trial, while the odors of CN-CRN and CN formulations were considered somewhat unpleasant in 8 out of 10 participants (80.0%). Our results suggest that CN-CRN is a preferred and relatively safe alternative to traditional creatine formulations for improved creatine bioavailability in the blood and skeletal muscle after single-dose and 5-days interventions.
Collapse
Affiliation(s)
- Sergej M. Ostojic
- Applied Bioenergetics LabFaculty of Sport and PEUniversity of Novi SadNovi SadSerbia
- Faculty of Health SciencesUniversity of PecsPecsHungary
| | - Valdemar Stajer
- Applied Bioenergetics LabFaculty of Sport and PEUniversity of Novi SadNovi SadSerbia
| | - Milan Vranes
- Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Jelena Ostojic
- Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
14
|
Iraki J, Fitschen P, Espinar S, Helms E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports (Basel) 2019; 7:E154. [PMID: 31247944 PMCID: PMC6680710 DOI: 10.3390/sports7070154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Many nutrition practices often used by bodybuilders lack scientific support and can be detrimental to health. Recommendations during the dieting phase are provided in the scientific literature, but little attention has been devoted to bodybuilders during the off-season phase. During the off-season phase, the goal is to increase muscle mass without adding unnecessary body fat. This review evaluated the scientific literature and provides nutrition and dietary supplement recommendations for natural bodybuilders during the off-season phase. A hyper-energetic diet (~10-20%) should be consumed with a target weight gain of ~0.25-0.5% of bodyweight/week for novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the caloric surplus and weekly weight gain. Sufficient protein (1.6-2.2 g/kg/day) should be consumed with optimal amounts 0.40-0.55 g/kg per meal and distributed evenly throughout the day (3-6 meals) including within 1-2 hours pre- and post-training. Fat should be consumed in moderate amounts (0.5-1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming sufficient amounts (≥3-5 g/kg/day) to support energy demands from resistance exercise. Creatine monohydrate (3-5 g/day), caffeine (5-6 mg/kg), beta-alanine (3-5 g/day) and citrulline malate (8 g/day) might yield ergogenic effects that can be beneficial for bodybuilders.
Collapse
Affiliation(s)
- Juma Iraki
- Iraki Nutrition AS, 2008 Fjerdingby, Norway.
| | | | | | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Auckland University of Technology, Auckland 0632, New Zealand
| |
Collapse
|
15
|
Valenzuela PL, Morales JS, Emanuele E, Pareja-Galeano H, Lucia A. Supplements with purported effects on muscle mass and strength. Eur J Nutr 2019; 58:2983-3008. [PMID: 30604177 DOI: 10.1007/s00394-018-1882-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Several supplements are purported to promote muscle hypertrophy and strength gains in healthy subjects, or to prevent muscle wasting in atrophying situations (e.g., ageing or disuse periods). However, their effectiveness remains unclear. METHODS This review summarizes the available evidence on the beneficial impacts of several popular supplements on muscle mass or strength. RESULTS Among the supplements tested, nitrate and caffeine returned sufficient evidence supporting their acute beneficial effects on muscle strength, whereas the long-term consumption of creatine, protein and polyunsaturated fatty acids seems to consistently increase or preserve muscle mass and strength (evidence level A). On the other hand, mixed or unclear evidence was found for several popular supplements including branched-chain amino acids, adenosine triphosphate, citrulline, β-Hydroxy-β-methylbutyrate, minerals, most vitamins, phosphatidic acid or arginine (evidence level B), weak or scarce evidence was found for conjugated linoleic acid, glutamine, resveratrol, tribulus terrestris or ursolic acid (evidence level C), and no evidence was found for other supplements such as ornithine or α-ketoglutarate (evidence D). Of note, although most supplements appear to be safe when consumed at typical doses, some adverse events have been reported for some of them (e.g., caffeine, vitamins, α-ketoglutarate, tribulus terrestris, arginine) after large intakes, and there is insufficient evidence to determine the safety of many frequently used supplements (e.g., ornithine, conjugated linoleic acid, ursolic acid). CONCLUSION In summary, despite their popularity, there is little evidence supporting the use of most supplements, and some of them have been even proven ineffective or potentially associated with adverse effects.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain.,Physiology Unit. Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain
| | | | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain. .,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain.,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain
| |
Collapse
|
16
|
Dalton RL, Sowinski RJ, Grubic TJ, Collins PB, Coletta AM, Reyes AG, Sanchez B, Koozehchian M, Jung YP, Rasmussen C, Greenwood M, Murano PS, Earnest CP, Kreider RB. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation. Nutrients 2017; 9:nu9121359. [PMID: 29244743 PMCID: PMC5748809 DOI: 10.3390/nu9121359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022] Open
Abstract
In a double-blind, crossover, randomized and placebo-controlled trial; 28 men and women ingested a placebo (PLA), 3 g of creatine nitrate (CNL), and 6 g of creatine nitrate (CNH) for 6 days. Participants repeated the experiment with the alternate supplements after a 7-day washout. Hemodynamic responses to a postural challenge, fasting blood samples, and bench press, leg press, and cycling time trial performance and recovery were assessed. Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM). No significant differences were found among treatments for hemodynamic responses, clinical blood markers or self-reported side effects. After 5 days of supplementation, one repetition maximum (1RM) bench press improved significantly for CNH (mean change, 95% CI; 6.1 [3.5, 8.7] kg) but not PLA (0.7 [-1.6, 3.0] kg or CNL (2.0 [-0.9, 4.9] kg, CNH, p = 0.01). CNH participants also tended to experience an attenuated loss in 1RM strength during the recovery performance tests following supplementation on day 5 (PLA: -9.3 [-13.5, -5.0], CNL: -9.3 [-13.5, -5.1], CNH: -3.9 [-6.6, -1.2] kg, p = 0.07). After 5 days, pre-supplementation 1RM leg press values increased significantly, only with CNH (24.7 [8.8, 40.6] kg, but not PLA (13.9 [-15.7, 43.5] or CNL (14.6 [-0.5, 29.7]). Further, post-supplementation 1RM leg press recovery did not decrease significantly for CNH (-13.3 [-31.9, 5.3], but did for PLA (-30.5 [-53.4, -7.7] and CNL (-29.0 [-49.5, -8.4]). CNL treatment promoted an increase in bench press repetitions at 70% of 1RM during recovery on day 5 (PLA: 0.4 [-0.8, 1.6], CNL: 0.9 [0.35, 1.5], CNH: 0.5 [-0.2, 0.3], p = 0.56), greater leg press endurance prior to supplementation on day 5 (PLA: -0.2 [-1.6, 1.2], CNL: 0.9 [0.2, 1.6], CNH: 0.2 [-0.5, 0.9], p = 0.25) and greater leg press endurance during recovery on day 5 (PLA: -0.03 [-1.2, 1.1], CNL: 1.1 [0.3, 1.9], CNH: 0.4 [-0.4, 1.2], p = 0.23). Cycling time trial performance (4 km) was not affected. Results indicate that creatine nitrate supplementation, up to a 6 g dose, for 6 days, appears to be safe and provide some ergogenic benefit.
Collapse
Affiliation(s)
- Ryan L Dalton
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Ryan J Sowinski
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Tyler J Grubic
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Patrick B Collins
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Adriana M Coletta
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Aimee G Reyes
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Brittany Sanchez
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Majid Koozehchian
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Yanghoon P Jung
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Christopher Rasmussen
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Mike Greenwood
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Peter S Murano
- Institute for Obesity and Program Evaluation, Texas A & M University, College Station, TX 77843, USA.
| | - Conrad P Earnest
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
- Clinical Science Division, Nutrabolt, 3891 S. Traditions Drive, Bryan, TX 77807, USA.
| | - Richard B Kreider
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| |
Collapse
|
17
|
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017; 14:18. [PMID: 28615996 PMCID: PMC5469049 DOI: 10.1186/s12970-017-0173-z] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Douglas S. Kalman
- Nutrition Research Unit, QPS, 6141 Sunset Drive Suite 301, Miami, FL 33143 USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328 USA
| | - Tim N. Ziegenfuss
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
| | - Robert Wildman
- Post Active Nutrition, 111 Leslie St, Dallas, TX 75208 USA
| | - Rick Collins
- Collins Gann McCloskey & Barry, PLLC, 138 Mineola Blvd., Mineola, NY 11501 USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2 Canada
| | | | | | - Hector L. Lopez
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
- Supplement Safety Solutions, LLC, Bedford, MA 01730 USA
| |
Collapse
|
18
|
|
19
|
Jung YP, Earnest CP, Koozehchian M, Cho M, Barringer N, Walker D, Rasmussen C, Greenwood M, Murano PS, Kreider RB. Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males. J Int Soc Sports Nutr 2017; 14:1. [PMID: 28096757 PMCID: PMC5234097 DOI: 10.1186/s12970-016-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine whether ingesting a pre-workout dietary supplement (PWS) with and without synephrine (S) during training affects training responses in resistance-trained males. METHODS Resistance-trained males (N = 80) were randomly assigned to supplement their diet in a double-blind manner with either a flavored placebo (PLA); a PWS containing beta-alanine (3 g), creatine nitrate as a salt (2 g), arginine alpha-ketoglutarate (2 g), N-Acetyl-L-Tyrosine (300 mg), caffeine (284 mg), Mucuna pruiriens extract standardized for 15% L-Dopa (15 mg), Vitamin C as Ascorbic Acid (500 mg), niacin (60 mg), folate as folic acid (50 mg), and Vitamin B12 as Methylcobalamin (70 mg); or, the PWS supplement with Citrus aurantium extract containing 20 mg of synephrine (PWS + S) once per day for 8-weeks during training. Participants donated a fasting blood sample and had body composition (DXA), resting heart rate and blood pressure, cognitive function (Stroop Test), readiness to perform, bench and leg press 1 RM, and Wingate anaerobic capacity assessments determined a 0, 4, and 8-weeks of standardized training. Data were analyzed by MANOVA with repeated measures. Performance and cognitive function data were analyzed using baseline values as covariates as well as mean changes from baseline with 95% confidence intervals (CI). Blood chemistry data were also analyzed using Chi-square analysis. RESULTS Although significant time effects were seen, no statistically significant overall MANOVA Wilks' Lambda interactions were observed among groups for body composition, resting heart and blood pressure, readiness to perform questions, 1RM strength, anaerobic sprint capacity, or blood chemistry panels. MANOVA univariate analysis and analysis of changes from baseline with 95% CI revealed some evidence that cognitive function and 1RM strength were increased to a greater degree in the PWS and/or PWS + S groups after 4- and/or 8-weeks compared to PLA responses. However, there was no evidence that PWS + S promoted greater overall training adaptations compared to the PWS group. Dietary supplementation of PWS and PWS + S did not increase the incidence of reported side effects or significantly affect the number of blood values above clinical norms compared to PLA. CONCLUSION Results provide some evidence that 4-weeks of PWS and/or PWS + S supplementation can improve some indices of cognitive function and exercise performance during resistance-training without significant side effects in apparently health males. However, these effects were similar to PLA responses after 8-weeks of supplementation and inclusion of synephrine did not promote additive benefits. TRIAL REGISTRATION This trial (NCT02999581) was retrospectively registered on December 16th 2016.
Collapse
Affiliation(s)
- Y. Peter Jung
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Conrad P. Earnest
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
- Nutrabolt, Bryan, TX 77807 USA
| | - Majid Koozehchian
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Minye Cho
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Nick Barringer
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Dillon Walker
- Department of Health & Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Peter S. Murano
- Department of Nutrition and Food Sciences, Institute for Obesity Research & Program Evaluation, Texas A&M University, College Station, TX 77843 USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
20
|
Kresta JY, Oliver JM, Jagim AR, Fluckey J, Riechman S, Kelly K, Meininger C, Mertens-Talcott SU, Rasmussen C, Kreider RB. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J Int Soc Sports Nutr 2014; 11:55. [PMID: 25505854 PMCID: PMC4263036 DOI: 10.1186/s12970-014-0055-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The purpose of this study was to examine the short-term and chronic effects of β-ALA supplementation with and without creatine monohydrate on body composition, aerobic and anaerobic exercise performance, and muscle carnosine and creatine levels in college-aged recreationally active females. METHODS Thirty-two females were randomized in a double-blind, placebo-controlled manner into one of four supplementation groups: β-ALA only (BA, n = 8), creatine only (CRE, n = 8), β-ALA and creatine combined (BAC, n = 9) and placebo (PLA, n = 7). Participants supplemented for four weeks included a loading phase for the creatine for week 1 of 0.3 g/kg of body weight and a maintenance phase for weeks 2-4 of 0.1 g/kg of body weight, with or without a continuous dose of β-ALA of 0.1 g/kg of body weight with doses rounded to the nearest 800 mg capsule providing an average of 6.1 ± 0.7 g/day of β-ALA. Participants reported for testing at baseline, day 7 and day 28. Testing sessions consisted of obtaining a resting muscle biopsy of the vastus lateralis, body composition measurements, performing a graded exercise test on the cycle ergometer for VO2peak with lactate threshold determination, and multiple Wingate anaerobic capacity tests. RESULTS Although mean changes were consistent with prior studies and large effect sizes were noted, no significant differences were observed among groups in changes in muscle carnosine levels (BA 35.3 ± 45; BAC 42.5 ± 99; CRE 0.72 ± 27; PLA 13.9 ± 44%, p = 0.59). Similarly, although changes in muscle phosphagen levels after one week of supplementation were consistent with prior reports and large effect sizes were seen, no statistically significant effects were observed among groups in changes in muscle phosphagen levels and the impact of CRE supplementation appeared to diminish during the maintenance phase. Additionally, significant time × group × Wingate interactions were observed among groups for repeated sprint peak power normalized to bodyweight (p = 0.02) and rate of fatigue (p = 0.04). CONCLUSIONS Results of the present study did not reveal any consistent additive benefits of BA and CRE supplementation in recreationally active women.
Collapse
Affiliation(s)
- Julie Y Kresta
- Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jonathan M Oliver
- Kinesiology Department, Texas Christian University, Fort Worth, TX 76129 USA
| | - Andrew R Jagim
- Department of Exercise & Sport Science, University of Wisconsin - La Crosse, La Crosse, WI 54601 USA
| | - James Fluckey
- Department of Health and Kinesiology, Muscle Biology Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Steven Riechman
- Department of Health and Kinesiology, Human Countermeasures Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Katherine Kelly
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843-1114 USA
| | - Cynthia Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843-1114 USA
| | - Susanne U Mertens-Talcott
- Department of Nutrition and Food Science, Institute for Obesity Research and Program Evaluation, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Department of Health and Kinesiology, Exercise and Sport Nutrition Lab, Texas A&M University, College Station, TX 77843-4243 USA
| | - Richard B Kreider
- Department of Health and Kinesiology, Exercise and Sport Nutrition Lab, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
21
|
Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr 2014; 11:20. [PMID: 24864135 PMCID: PMC4033492 DOI: 10.1186/1550-2783-11-20] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 04/29/2014] [Indexed: 12/19/2022] Open
Abstract
The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming 2.3-3.1 g/kg of lean body mass per day of protein, 15-30% of calories from fat, and the reminder of calories from carbohydrate. Eating three to six meals per day with a meal containing 0.4-0.5 g/kg bodyweight of protein prior and subsequent to resistance training likely maximizes any theoretical benefits of nutrient timing and frequency. However, alterations in nutrient timing and frequency appear to have little effect on fat loss or lean mass retention. Among popular supplements, creatine monohydrate, caffeine and beta-alanine appear to have beneficial effects relevant to contest preparation, however others do not or warrant further study. The practice of dehydration and electrolyte manipulation in the final days and hours prior to competition can be dangerous, and may not improve appearance. Increasing carbohydrate intake at the end of preparation has a theoretical rationale to improve appearance, however it is understudied. Thus, if carbohydrate loading is pursued it should be practiced prior to competition and its benefit assessed individually. Finally, competitors should be aware of the increased risk of developing eating and body image disorders in aesthetic sport and therefore should have access to the appropriate mental health professionals.
Collapse
Affiliation(s)
- Eric R Helms
- Sport Performance Research in New Zealand (SPRINZ) at AUT Millennium Institute, AUT University, 17 Antares Place, Mairangi Bay, Auckland 0632, New Zealand
| | | | - Peter J Fitschen
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Kendall KL, Moon JR, Fairman CM, Spradley BD, Tai CY, Falcone PH, Carson LR, Mosman MM, Joy JM, Kim MP, Serrano ER, Esposito EN. Ingesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men. Nutr Res 2014; 34:442-9. [PMID: 24916558 DOI: 10.1016/j.nutres.2014.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/21/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to determine the safety and efficacy of consuming a preworkout supplement (SUP) containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days. We hypothesized that little to no changes in kidney and liver clinical blood markers or resting heart rate and blood pressure (BP) would be observed. In addition, we hypothesized that body composition and performance would improve in recreationally active males after 28 days of supplementation. In a double-blind, placebo-controlled study, participants were randomly assigned to ingest one scoop of either the SUP or placebo every day for 28 days, either 20 minutes before exercise or ad libitum on nonexercise days. Resting heart rate and BP, body composition, and fasting blood samples were collected before and after supplementation. Aerobic capacity as well as muscular strength and endurance were also measured. Significant (P < .05) main effects for time were observed for resting heart rate (presupplementation, 67.59 ± 7.90 beats per minute; postsupplementation, 66.18 ± 7.63 beats per minute), systolic BP (presupplementation, 122.41 ± 11.25 mm Hg; postsupplementation, 118.35 ± 11.58 mm Hg), blood urea nitrogen (presupplementation, 13.12 ± 2.55 mg/dL; postsupplementation, 15.24 ± 4.47 mg/dL), aspartate aminotransferase (presupplementation, 34.29 ± 16.48 IU/L; postsupplementation, 24.76 ± 4.71 IU/L), and alanine aminotransferase (presupplementation, 32.76 ± 19.72 IU/L; postsupplementation, 24.88 ± 9.68 IU/L). Significant main effects for time were observed for body fat percentage (presupplementation, 15.55% ± 5.79%; postsupplementation, 14.21% ± 5.38%; P = .004) and fat-free mass (presupplementation, 70.80 ± 9.21 kg; postsupplementation, 71.98 ± 9.27 kg; P = .006). A significant decrease in maximal oxygen consumption (presupplementation, 47.28 ± 2.69 mL/kg per minute; postsupplementation, 45.60 ± 2.81 mL/kg per minute) and a significant increase in percentage of oxygen consumption per unit time at which ventilatory threshold occurred (presupplementation, 64.38% ± 6.63%; postsupplementation, 70.63% ± 6.39%) and leg press one-repetition maximum (presupplementation, 218.75 ± 38.43 kg; postsupplementation, 228.75 ± 44.79 kg) were observed in the SUP only. No adverse effects were noted for renal and hepatic clinical blood markers, resting heart rate, or BP. Supplements containing similar ingredients and doses should be safe for ingestion periods lasting up to 28 days in healthy, recreationally trained, college-aged men.
Collapse
Affiliation(s)
- Kristina L Kendall
- Department of Health and Kinesiology, Georgia Southern University, Statesboro, GA.
| | - Jordan R Moon
- Department of Sports Exercise Science, United States Sports Academy, Daphne, AL; Sports Science Institute, MusclePharm, Corp, Denver, CO
| | - Ciaran M Fairman
- Department of Health and Kinesiology, Georgia Southern University, Statesboro, GA
| | - Brandon D Spradley
- Department of Sports Exercise Science, United States Sports Academy, Daphne, AL
| | - Chih-Yin Tai
- Department of Sports Exercise Science, United States Sports Academy, Daphne, AL; Sports Science Institute, MusclePharm, Corp, Denver, CO
| | | | | | - Matt M Mosman
- Sports Science Institute, MusclePharm, Corp, Denver, CO
| | - Jordan M Joy
- Sports Science Institute, MusclePharm, Corp, Denver, CO
| | - Michael P Kim
- Sports Science Institute, MusclePharm, Corp, Denver, CO
| | | | - Enrico N Esposito
- Department of Sports Exercise Science, United States Sports Academy, Daphne, AL; Department of Human Performance & Exercise Science, University of Mobile, Mobile, AL
| |
Collapse
|
23
|
Oliver JM, Jagim AR, Pischel I, Jäger R, Purpura M, Sanchez A, Fluckey J, Riechman S, Greenwood M, Kelly K, Meininger C, Rasmussen C, Kreider RB. Effects of short-term ingestion of Russian Tarragon prior to creatine monohydrate supplementation on whole body and muscle creatine retention and anaerobic sprint capacity: a preliminary investigation. J Int Soc Sports Nutr 2014; 11:6. [PMID: 24568653 PMCID: PMC3975968 DOI: 10.1186/1550-2783-11-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/19/2014] [Indexed: 11/28/2022] Open
Abstract
Background Extracts of Russian Tarragon (RT) have been reported to produce anti-hyperglycemic effects and influence plasma creatine (Cr) levels while supplementing with creatine monohydrate (CrM). The purpose of this preliminary study was to determine if short-term, low-dose aqueous RT extract ingestion prior to CrM supplementation influences whole body Cr retention, muscle Cr or measures of anaerobic sprint performance. Methods In a double-blind, randomized, and crossover manner; 10 recreationally trained males (20 ± 2 yrs; 179 ± 9 cm; 91.3 ± 34 kg) ingested 500 mg of aqueous RT extract (Finzelberg, Andernach, Germany) or 500 mg placebo 30-minutes prior to ingesting 5 g of CrM (Creapure®, AlzChem AG, Germany) twice per day for 5-days then repeated after a 6-week wash-out period. Urine was collected at baseline and during each of the 5-days of supplementation to determine urine Cr content. Whole body Cr retention was estimated from urine samples. Muscle biopsies were obtained for determination of muscle free Cr content. Participants also performed two 30-second Wingate anaerobic capacity tests prior to and following supplementation for determination of peak power (PP), mean power (MP), and total work (TW). Data were analysed by repeated measures MANOVA. Results Whole body daily Cr retention increased in both groups following supplementation (0.0 ± 0.0; 8.2 ± 1.4, 6.5 ± 2.4, 5.6 ± 3.2, 6.1 ± 2.6, 4.8 ± 3.2 g · d-1; p = 0.001) with no differences observed between groups (p = 0.59). After 3 and 5-days of supplementation, respectively, both supplementation protocols demonstrated a significant increase in muscle free Cr content from baseline (4.8 ± 16.7, 15.5 ± 23.6 mmol · kg-1 DW, p = 0.01) with no significant differences observed between groups (p = 0.34). Absolute change in MP (9 ± 57, 35 ± 57 W; p = 0.031), percent change in MP (2.5 ± 10.5, 6.7 ± 10.4%; p = 0.026), absolute change in TW (275 ± 1,700, 1,031 ± 1,721 J; p = 0.032), and percent change in TW (2.5 ± 10.5, 6.6 ± 10.4%; p = 0.027) increased over time in both groups with no differences observed between groups. Conclusions Short-term CrM supplementation (10 g · d-1 for 5-days) significantly increased whole body Cr retention and muscle free Cr content. However, ingesting 500 mg of RT 30-min prior to CrM supplementation did not affect whole body Cr retention, muscle free Cr content, or anaerobic sprint capacity in comparison to ingesting CrM with a placebo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Richard B Kreider
- Department of Health and Kinesiology, Exercise and Sport Nutrition Lab, Texas A&M University, College Station, TX 77843-4243, USA.
| |
Collapse
|
24
|
Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr 2013; 10:36. [PMID: 23919405 PMCID: PMC3750511 DOI: 10.1186/1550-2783-10-36] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/10/2013] [Indexed: 01/07/2023] Open
Abstract
Background Chronic supplementation with creatine monohydrate has been shown to promote increases in total intramuscular creatine, phosphocreatine, skeletal muscle mass, lean body mass and muscle fiber size. Furthermore, there is robust evidence that muscular strength and power will also increase after supplementing with creatine. However, it is not known if the timing of creatine supplementation will affect the adaptive response to exercise. Thus, the purpose of this investigation was to determine the difference between pre versus post exercise supplementation of creatine on measures of body composition and strength. Methods Nineteen healthy recreational male bodybuilders (mean ± SD; age: 23.1 ± 2.9; height: 166.0 ± 23.2 cm; weight: 80.18 ± 10.43 kg) participated in this study. Subjects were randomly assigned to one of the following groups: PRE-SUPP or POST-SUPP workout supplementation of creatine (5 grams). The PRE-SUPP group consumed 5 grams of creatine immediately before exercise. On the other hand, the POST-SUPP group consumed 5 grams immediately after exercise. Subjects trained on average five days per week for four weeks. Subjects consumed the supplement on the two non-training days at their convenience. Subjects performed a periodized, split-routine, bodybuilding workout five days per week (Chest-shoulders-triceps; Back-biceps, Legs, etc.). Body composition (Bod Pod®) and 1-RM bench press (BP) were determined. Diet logs were collected and analyzed (one random day per week; four total days analyzed). Results 2x2 ANOVA results - There was a significant time effect for fat-free mass (FFM) (F = 19.9; p = 0.001) and BP (F = 18.9; p < 0.001), however, fat mass (FM) and body weight did not reach significance. While there were trends, no significant interactions were found. However, using magnitude-based inference, supplementation with creatine post workout is possibly more beneficial in comparison to pre workout supplementation with regards to FFM, FM and 1-RM BP. The mean change in the PRE-SUPP and POST-SUPP groups for body weight (BW kg), FFM (kg), FM (kg) and 1-RM bench press (kg) were as follows, respectively: Mean ± SD; BW: 0.4 ± 2.2 vs. 0.8 ± 0.9; FFM: 0.9 ± 1.8 vs. 2.0 ± 1.2; FM: -0.1 ± 2.0 vs. −1.2 ± 1.6; Bench Press 1-RM: 6.6 ± 8.2 vs. 7.6 ± 6.1. Qualitative inference represents the likelihood that the true value will have the observed magnitude. Furthermore, there were no differences in caloric or macronutrient intake between the groups. Conclusions Creatine supplementation plus resistance exercise increases fat-free mass and strength. Based on the magnitude inferences it appears that consuming creatine immediately post-workout is superior to pre-workout vis a vis body composition and strength.
Collapse
Affiliation(s)
- Jose Antonio
- Exercise and Sports Sciences, Nova Southeastern University, 3532 S. University Drive, University Park Plaza Suite 3532, Davie, FL 33314, USA
| | - Victoria Ciccone
- Exercise and Sports Sciences, Nova Southeastern University, 3532 S. University Drive, University Park Plaza Suite 3532, Davie, FL 33314, USA
| |
Collapse
|
25
|
|