1
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
2
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
4
|
Iban-Arias R, Sebastian-Valverde M, Wu H, Lyu W, Wu Q, Simon J, Pasinetti GM. Role of Polyphenol-Derived Phenolic Acid in Mitigation of Inflammasome-Mediated Anxiety and Depression. Biomedicines 2022; 10:1264. [PMID: 35740286 PMCID: PMC9219614 DOI: 10.3390/biomedicines10061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Overexposure to mental stress throughout life is a significant risk factor for the development of neuropsychiatric disorders, including depression and anxiety. The immune system can initiate a physiological response, releasing stress hormones and pro-inflammatory cytokines, in response to stressors. These effects can overcome allostatic physiological mechanisms and generate a pro-inflammatory environment with deleterious effects if occurring chronically. Previous studies in our lab have identified key anti-inflammatory properties of a bioavailable polyphenolic preparation BDPP and its ability to mitigate stress responses via the attenuation of NLRP3 inflammasome-dependent responses. Inflammasome activation is part of the first line of defense against stimuli of different natures, provides a rapid response, and, therefore, is of capital importance within the innate immunity response. malvidin-3-O-glucoside (MG), a natural anthocyanin present in high proportions in grapes, has been reported to exhibit anti-inflammatory effects, but its mechanisms remain poorly understood. This study aims to elucidate the therapeutic potential of MG on inflammasome-induced inflammation in vitro and in a mouse model of chronic unpredictable stress (CUS). Here, it is shown that MG is an anti-pyroptotic phenolic metabolite that targets NLRP3, NLRC4, and AIM2 inflammasomes, subsequently reducing caspase-1 and IL-1β protein levels in murine primary cortical microglia and the brain, as its beneficial effect to counteract anxiety and depression is also demonstrated. The present study supports the role of MG to mitigate bacterial-mediated inflammation (lipopolysaccharide or LPS) in vitro and CUS-induced behavior impairment in vivo to address stress-induced inflammasome-mediated innate response.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| | - Maria Sebastian-Valverde
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| | - Weiting Lyu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; (W.L.); (Q.W.); (J.S.)
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; (W.L.); (Q.W.); (J.S.)
| | - Jim Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; (W.L.); (Q.W.); (J.S.)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.I.-A.); (M.S.-V.); (H.W.)
| |
Collapse
|
5
|
Abdel-Aal RA, Hussein OA, Elsaady RG, Abdelzaher LA. Naproxen as a potential candidate for promoting rivastigmine anti-Alzheimer activity against aluminum chloride-prompted Alzheimer's-like disease in rats; neurogenesis and apoptosis modulation as a possible underlying mechanism. Eur J Pharmacol 2022; 915:174695. [PMID: 34914971 DOI: 10.1016/j.ejphar.2021.174695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is one of the leading causes of dependence and disability among the elderly worldwide. The traditional anti-Alzheimer medication, rivastigmine, one of the cholinesterase inhibitors (ChEIs), fails to achieve a definitive cure. We tested the hypothesis that naproxen administration to the rivastigmine-treated aluminum chloride (AlCl3) Alzheimer's rat model could provide an additive neuroprotective effect compared to rivastigmine alone. MATERIALS AND METHODS The studied groups were control (Cont), AlCl3 treated (Al), rivastigmine treated (RIVA), naproxen treated (Napro), and combined rivastigmine and naproxen treated (RIVA + Napro). Rats' memory, spatial learning, and cognitive behavior were assessed followed by evaluation of hippocampal acetylcholinesterase (AChE) activity. Hippocampal and cerebellar histopathology were thoroughly examined. Activated caspase-3 and the neuroepithelial stem cells marker; nestin expressions were immunohistochemically assayed. RESULTS AD rats displayed significantly impaired memory and cognitive function, augmented hippocampal AChE activity; massive neurodegeneration associated with enhanced astrogliosis, apoptosis, and impaired neurogenesis. Except for the enhancement of neurogenesis and suppression of apoptosis, the combination therapy had no additional neuroprotective benefit over rivastigmine-only therapy. CONCLUSION Naproxen's efficacy was established by its ability to function at the cellular level, improved neurogenesis, and decreased, apoptosis without having an additional mitigating impact on cognitive impairment in rivastigmine-treated AD rats.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham G Elsaady
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
6
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
8
|
Alamro AA, Alsulami EA, Almutlaq M, Alghamedi A, Alokail M, Haq SH. Therapeutic Potential of Vitamin D and Curcumin in an In Vitro Model of Alzheimer Disease. J Cent Nerv Syst Dis 2020; 12:1179573520924311. [PMID: 32528227 PMCID: PMC7262829 DOI: 10.1177/1179573520924311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Alzheimer disease is a progressive neurodegenerative disease, affecting a
very high proportion of the aging population. Several studies have
demonstrated that one of the main contributors to this disease is oxidative
stress (OS), which causes peroxidation of protein, lipids, and DNA resulting
in the formation of advanced glycosylated end products (AGE) in the brain
tissues. These AGE are usually associated with the amyloid β (Aβ), which
could further aggravate its toxicity and its clearance. Antioxidants
counteract the deterioration caused by OS. Objective: We aimed to evaluate the effect of vitamin D3 and curcumin on primary
cortical neuronal cultures exposed to Aβ1-42 toxicity for
different time periods. Methods: Primary cortical neuronal cultures were set up and exposed to
Aβ1-42 for up to 72 hours. Cell viability was studied by
3[4,5-dimethylthiazole-2-yl]-2,5-dipheyltetrazolium bromide (MTT) and
lactate dehydrogenase (LDH) assay. Biochemical assays for OS such as lipid
peroxidation, reduced Glutathione(GSH), Glutathione S-transferase (GST),
catalase, and superoxide dismutase (SOD) were conducted. Sandwich
enzyme-linked immunosorbent assay (ELISA) was used to study the neurotrophic
growth factor (NGF) expression. Results: Treatments with Aβ1-42 caused an elevation in lipid peroxidation
products, which were ameliorated in the presence of vitamin D3 and curcumin.
Both enzymatic (GST, catalase, and SOD) and nonenzymatic antioxidants
(reduced GSH) were raised significantly in the presence of vitamin D3 and
curcumin, which resulted in the better recovery of neuronal cells from
Aβ1-42 treatment. Treatment with vitamin D3 and curcumin also
resulted in the upregulation of NGF levels. Conclusions: This study suggests that vitamin D3 and curcumin can be a promising natural
therapy for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam Atiah Alsulami
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Moudhi Almutlaq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Alghamedi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Majed Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Morsy A, Trippier PC. Current and Emerging Pharmacological Targets for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 72:S145-S176. [PMID: 31594236 DOI: 10.3233/jad-190744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
No cure or disease-modifying therapy for Alzheimer's disease (AD) has yet been realized. However, a multitude of pharmacological targets have been identified for possible engagement to enable drug discovery efforts for AD. Herein, we review these targets comprised around three main therapeutic strategies. First is an approach that targets the main pathological hallmarks of AD: amyloid-β (Aβ) oligomers and hyperphosphorylated tau tangles which primarily focuses on reducing formation and aggregation, and/or inducing their clearance. Second is a strategy that modulates neurotransmitter signaling. Comprising this strategy are the cholinesterase inhibitors and N-methyl-D-aspartate receptor blockade treatments that are clinically approved for the symptomatic treatment of AD. Additional targets that aim to stabilize neuron signaling through modulation of neurotransmitters and their receptors are also discussed. Finally, the third approach comprises a collection of 'sensitive targets' that indirectly influence Aβ or tau accumulation. These targets are proteins that upon Aβ accumulation in the brain or direct Aβ-target interaction, a modification in the target's function is induced. The process occurs early in disease progression, ultimately causing neuronal dysfunction. This strategy aims to restore normal target function to alleviate Aβ-induced toxicity in neurons. Overall, we generally limit our analysis to targets that have emerged in the last decade and targets that have been validated using small molecules in in vitro and/or in vivo models. This review is not an exhaustive list of all possible targets for AD but serves to highlight the most promising and critical targets suitable for small molecule drug intervention.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci 2017; 11:316. [PMID: 28676747 PMCID: PMC5476783 DOI: 10.3389/fnhum.2017.00316] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023] Open
Abstract
While modernization has dramatically increased lifespan, it has also witnessed that the nature of stress has changed dramatically. Chronic stress result failures of homeostasis thus lead to various diseases such as atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and depression. However, while 75%-90% of human diseases is related to the activation of stress system, the common pathways between stress exposure and pathophysiological processes underlying disease is still debatable. Chronic inflammation is an essential component of chronic diseases. Additionally, accumulating evidence suggested that excessive inflammation plays critical roles in the pathophysiology of the stress-related diseases, yet the basis for this connection is not fully understood. Here we discuss the role of inflammation in stress-induced diseases and suggest a common pathway for stress-related diseases that is based on chronic mild inflammation. This framework highlights the fundamental impact of inflammation mechanisms and provides a new perspective on the prevention and treatment of stress-related diseases.
Collapse
Affiliation(s)
- Yun-Zi Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| | - Yun-Xia Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| |
Collapse
|
11
|
Raper D, Louveau A, Kipnis J. How Do Meningeal Lymphatic Vessels Drain the CNS? Trends Neurosci 2016; 39:581-586. [PMID: 27460561 PMCID: PMC5002390 DOI: 10.1016/j.tins.2016.07.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow.
Collapse
Affiliation(s)
- Daniel Raper
- Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Neurosurgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Antoine Louveau
- Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Ma Y, Bao J, Zhao X, Shen H, Lv J, Ma S, Zhang X, Li Z, Wang S, Wang Q, Ji J. Activated cyclin-dependent kinase 5 promotes microglial phagocytosis of fibrillar β-amyloid by up-regulating lipoprotein lipase expression. Mol Cell Proteomics 2013; 12:2833-44. [PMID: 23816988 DOI: 10.1074/mcp.m112.026864] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Amyloid plaques are crucial for the pathogenesis of Alzheimer disease (AD). Phagocytosis of fibrillar β-amyloid (Aβ) by activated microglia is essential for Aβ clearance in Alzheimer disease. However, the mechanism underlying Aβ clearance in the microglia remains unclear. In this study, we performed stable isotope labeling of amino acids in cultured cells for quantitative proteomics analysis to determine the changes in protein expression in BV2 microglia treated with or without Aβ. Among 2742 proteins identified, six were significantly up-regulated and seven were down-regulated by Aβ treatment. Bioinformatic analysis revealed strong over-representation of membrane proteins, including lipoprotein lipase (LPL), among proteins regulated by the Aβ stimulus. We verified that LPL expression increased at both mRNA and protein levels in response to Aβ treatment in BV2 microglia and primary microglial cells. Silencing of LPL reduced microglial phagocytosis of Aβ, but did not affect degradation of internalized Aβ. Importantly, we found that enhanced cyclin-dependent kinase 5 (CDK5) activity by increasing p35-to-p25 conversion contributed to LPL up-regulation and promoted Aβ phagocytosis in microglia, whereas inhibition of CDK5 reduced LPL expression and Aβ internalization. Furthermore, Aβ plaques was increased with reducing p25 and LPL level in APP/PS1 mouse brains, suggesting that CDK5/p25 signaling plays a crucial role in microglial phagocytosis of Aβ. In summary, our findings reveal a potential role of the CDK5/p25-LPL signaling pathway in Aβ phagocytosis by microglia and provide a new insight into the molecular pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- Yuanhui Ma
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yarchoan M, Xie SX, Kling MA, Toledo JB, Wolk DA, Lee EB, Van Deerlin V, Lee VMY, Trojanowski JQ, Arnold SE. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 2012. [PMID: 23204143 DOI: 10.1093/brain/aws271] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A growing body of evidence demonstrates an association between vascular risk factors and Alzheimer's disease. This study investigated the frequency and severity of atherosclerotic plaques in the circle of Willis in Alzheimer's disease and multiple other neurodegenerative diseases. Semi-quantitative data from gross and microscopic neuropathological examinations in 1000 cases were analysed, including 410 with a primary diagnosis of Alzheimer's disease, 230 with synucleinopathies, 157 with TDP-43 proteinopathies, 144 with tauopathies and 59 with normal ageing. More than 77% of subjects with Alzheimer's disease had grossly apparent circle of Willis atherosclerosis, a percentage that was significantly higher than normal (47%), or other neurodegenerative diseases (43-67%). Age- and sex-adjusted atherosclerosis ratings were highly correlated with neuritic plaque, paired helical filaments tau neurofibrillary tangle and cerebral amyloid angiopathy ratings in the whole sample and within individual groups. We found no associations between atherosclerosis ratings and α-synuclein or TDP-43 lesion ratings. The association between age-adjusted circle of Willis atherosclerosis and Alzheimer's disease-type pathology was more robust for female subjects than male subjects. These results provide further confirmation and specificity that vascular disease and Alzheimer's disease are interrelated and suggest that common aetiologic or reciprocally synergistic pathophysiological mechanisms promote both vascular pathology and plaque and tangle pathology.
Collapse
|
15
|
Sun N, Funke SA, Willbold D. A survey of peptides with effective therapeutic potential in Alzheimer's disease rodent models or in human clinical studies. Mini Rev Med Chem 2012; 12:388-98. [PMID: 22303971 PMCID: PMC3426789 DOI: 10.2174/138955712800493942] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia. Today, only palliative therapies are available. The pathological hallmarks of AD are the presence of neurofibrillary tangles and amyloid plaques, mainly composed of the amyloid-β peptide (Aβ), in the brains of the patients. Several lines of evidence suggest that the increased production and/or decreased cleavage of Aβ and subsequent accumulation of Aβ oligomers and aggregates play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. A wide range of Aβ binding peptides were investigated to date for therapeutic purposes. Only very few were shown to be effective in rodent AD models or in clinical studies. Here, we review those peptides and discuss their possible mechanisms of action.
Collapse
Affiliation(s)
- N Sun
- ICS-6, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | |
Collapse
|
16
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sci 2011; 88:384-91. [DOI: 10.1016/j.lfs.2010.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/17/2010] [Accepted: 12/06/2010] [Indexed: 11/23/2022]
|
18
|
Xie C, Ng H, Nagarajan S. OxLDL or TLR2-induced cytokine response is enhanced by oxLDL-independent novel domain on mouse CD36. Immunol Lett 2011; 137:15-27. [PMID: 21281677 DOI: 10.1016/j.imlet.2011.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 12/09/2010] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
OxLDL binding to CD36 is shown to result in macrophage activation and foam cell formation that have been implicated in atherosclerosis. However, CD36 has also been shown to induce inflammatory response to other ligands besides oxLDL. During the course of blocking CD36 oxLDL binding function using anti CD36 antibodies, we have identified a novel domain of CD36 that triggers inflammatory response-independent of oxLDL binding. OxLDL bound to the mouse reporter cell line RAW-Blue induced TNF-α and RANTES mRNA and protein expression. Pretreatment of RAW-Blue cells with an anti-mCD36 mAb, JC63.1, an activating mCD36 mAb, surprisingly did not inhibit oxLDL-induced response. Further, binding of this antibody to CD36 alone induced a pro-inflammatory cytokine response in RAW-Blue cells as well as primary mouse macrophages. The induction of cytokine response was specific only to this antibody and was CD36-dependent, since CD36(-/-) macrophages failed to induce a similar response. The interaction of the antibody to CD36 led to activation of NF-κB and MAP kinase. Notably, a CD36 peptide blocked oxLDL-induced foam cell formation and macrophage activation. However, the activating mCD36 mAb induced macrophage activation was not inhibited by CD36 peptide. Further, activating mCD36 mAb enhanced oxLDL- or TLR2- or TLR4-mediated inflammatory responses. Collectively, our data provide evidence that activating mCD36 mAb binds to a domain different from the oxLDL-binding domain on mouse CD36, and suggest that interaction at this domain may contribute to oxLDL-independent macrophage inflammatory responses that lead to chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chenghui Xie
- Department of Physiology and Biophysics, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | | | | |
Collapse
|
19
|
Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils. J Mol Biol 2010; 399:731-40. [PMID: 20433849 DOI: 10.1016/j.jmb.2010.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
Abstract
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 x 10(-13) to 1.2 x 10(-6) microM(-3) without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.
Collapse
|
20
|
de Paula VDJR, Guimarães FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer's disease: Amyloid-beta, TAU protein or both? Dement Neuropsychol 2009; 3:188-194. [PMID: 29213627 PMCID: PMC5618972 DOI: 10.1590/s1980-57642009dn30300003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by
progressive cognitive decline, including memory loss, behavioral and
psychological symptoms and personality changes. The neuropathological hallmarks
of AD are the presence of neuritic (senile) plaques (NP) and neurofibrillary
tangles (NFT), along with neuronal loss, dystrophic neurites, and gliosis.
Neuritic plaques are extracellular lesions and their main constituent is the
amyloid-β42 peptide (Aβ42).
Neurofibrillary tangles are intracellular lesions that are mainly composed of
hyperphosphorylated Tau protein. In this article, we review the major hypotheses
concerning the physiopathology of AD, focusing on the β-amyloid cascade
as primary events (supported by the “βaptists”) and cytoskeletal
abnormalities secondary to the hyperphosphorylation of protein Tau (as advocated
by the “Tauists”). We further provide an integrative view of the physiopathology
of AD.
Collapse
Affiliation(s)
- Vanessa de Jesus R de Paula
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| | - Fabiana Meira Guimarães
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| | - Breno Satler Diniz
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| |
Collapse
|
21
|
Persaud-Sawin DA, Banach L, Harry GJ. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia 2009; 57:320-35. [PMID: 18756527 DOI: 10.1002/glia.20759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microglial phagocytosis contributes to the maintenance of brain homeostasis. Mechanisms involved, however, remain unclear. Using Abeta(42) solely as a stimulant, we provide novel insight into regulation of microglial phagocytosis by rafts. We demonstrate the existence of an Abeta(42) threshold level of 250 pg/mL, above which microglial phagocytic function is impaired. Low levels of Abeta(42) facilitate fluorescent bead uptake, whereas phagocytosis is inhibited when Abeta(42) accumulates. We also show that region-specific raft clustering occurs before microglial phagocytosis. Low Abeta(42) levels stimulated this type of raft aggregation, but high Abeta(42) levels inhibited it. Additionally, treatment with high Abeta(42) concentrations caused a redistribution of the raft structural protein flotillin1 from low to higher density fractions along a sucrose gradient. This suggests a loss of raft structural integrity. Certain non-steroidal anti-inflammatory drugs, e.g., the cyclooxygenase 2-specific nonsteroidal anti-inflammatory drugs, celecoxib, raise Abeta(42) levels. We demonstrated that prolonged celecoxib exposure can disrupt rafts in a manner similar to that seen in an elevated Abeta(42) environment: abnormal raft aggregation and Flot1 distribution. This resulted in aberrant receptor recruitment to rafts and impaired receptor-mediated phagocytosis by microglial cells. Specifically, recruitment of the scavenger receptor CD36 to rafts during active phagocytosis was affected. Thus, we propose that maintaining raft integrity is crucial for determining microglial phagocytic outcomes and disease progression.
Collapse
Affiliation(s)
- Dixie-Ann Persaud-Sawin
- Laboratory of Neurobiology, Neurotoxicology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
22
|
Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer's disease. Neurobiol Dis 2009; 34:525-34. [PMID: 19344763 DOI: 10.1016/j.nbd.2009.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/11/2009] [Accepted: 03/18/2009] [Indexed: 12/31/2022] Open
Abstract
Recent evidence indicates that inflammation may significantly contribute to the pathogenesis of Alzheimer's disease (AD). Since the apo A-I mimetic peptide D-4F has been shown to inhibit atherosclerotic lesion formation and regress already existing lesions (in the presence of pravastatin) and the peptide also decreases brain arteriole inflammation, we undertook a study to evaluate the efficacy of oral D-4F co-administered with pravastatin on cognitive function and amyloid beta (A beta) burden in the hippocampus of APPSwe-PS1 Delta E9 mice. Three groups of male mice were administered D-4F and pravastatin, Scrambled D-4F (ScD-4F, a control peptide) and pravastatin in drinking water, while drinking water alone served as control. The escape latency in the Morris Water Maze test was significantly shorter for the D-4F+statin administered animals compared to the other two groups. While the hippocampal region of the brain was covered with 4.2+/-0.5 and 3.8+/-0.6% of A beta load in the control and ScD-4F+statin administered groups, in the D-4F+statin administered group A beta load was only 1.6+/-0.1%. Furthermore, there was a significant decrease in the number of activated microglia (p<0.05 vs the other two groups) and activated astrocytes (p<0.05 vs control) upon oral D-4F+statin treatment. Inflammatory markers TNFalpha and IL-1 beta levels were decreased significantly in the D-4F+statin group compared to the other two groups (for IL-1 beta p<0.01 vs the other two groups and for TNF-alpha p<0.001 vs control) and the expression of MCP-1 were also less in D-4F+statin administered group compared to the other two groups. These results suggest that the apo A-I mimetic peptide inhibits amyloid beta deposition and improves cognitive function via exerting anti-inflammatory properties in the brain.
Collapse
|
23
|
Macrophage scavenger receptors and host-derived ligands. Methods 2008; 43:207-17. [PMID: 17920517 DOI: 10.1016/j.ymeth.2007.06.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023] Open
Abstract
The scavenger receptors are a large family of molecules that are structurally diverse and have been implicated in a range of functions. They are expressed by myeloid cells, selected endothelial cells and some epithelial cells and recognise many different ligands, including microbial pathogens as well as endogenous and modified host-derived molecules. This review will focus on the eight classes of scavenger receptors (class A-H) in terms of their structure, expression and recognition of host-derived ligands. Scavenger receptors have been implicated in a range of physiological and pathological processes, such as atherosclerosis and Alzheimer's disease, and function in adhesion and tissue maintenance. More recently, some of the scavenger receptors have been shown to mediate binding and endocytosis of chaperone proteins, such as the heat shock proteins, thereby playing an important role in antigen cross-presentation.
Collapse
|
24
|
Stewart CR, Haw A, Lopez R, McDonald TO, Callaghan JM, McConville MJ, Moore KJ, Howlett GJ, O'Brien KD. Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications. J Lipid Res 2007; 48:2162-71. [PMID: 17630380 DOI: 10.1194/jlr.m700098-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum amyloid P (SAP) is a common component of human amyloid deposits and has been identified in atherosclerotic lesions. We investigated the extent of the colocalization of SAP with apolipoprotein A-I (apoA-I), apoB, apoC-II, and apoE in human coronary arteries and explored potential roles for SAP in these regions, specifically the effect of SAP on the rate of formation and macrophage recognition of amyloid fibrils composed of apoC-II. Analysis of 42 human arterial sections by immunohistochemistry and double label fluorescence microscopy demonstrated that SAP and apoA-I, apoB, apoC-II, and apoE were increased significantly in atherosclerotic lesions compared with nonatherosclerotic segments. SAP colocalized with all four apolipoproteins to a similar extent, whereas plaque macrophages were found to correlate most strongly with apoC-II and apoB. In vitro studies showed that SAP accelerated the formation of amyloid fibrils by purified apoC-II. Furthermore, SAP strongly inhibited the phagocytosis of apoC-II amyloid fibrils by primary macrophages and macrophage cell lines and blocked the resultant production of reactive oxygen species. The ability of SAP to accelerate apoC-II amyloid fibril formation and inhibit macrophage recognition of apoC-II fibrils suggests that SAP may modulate the inflammatory response to amyloid fibrils in atherosclerosis.
Collapse
Affiliation(s)
- Cameron R Stewart
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J, Goss JL, Tseng AA, Zhang A, Khoury JBE, Moore KJ. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J Biol Chem 2007; 282:27392-27401. [PMID: 17623670 DOI: 10.1074/jbc.m702887200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.
Collapse
Affiliation(s)
- Lynda M Stuart
- Developmental Immunology/Department of Pediatrics, the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and; University of Edinburgh Centre for Inflammation Research, Edinburgh EH16 4TJ, United Kingdom
| | - Susan A Bell
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Cameron R Stewart
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Jessica M Silver
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - James Richard
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Julie L Goss
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Anita A Tseng
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Ailiang Zhang
- University of Edinburgh Centre for Inflammation Research, Edinburgh EH16 4TJ, United Kingdom
| | - Joseph B El Khoury
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Kathryn J Moore
- Lipid Metabolism Unit, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and.
| |
Collapse
|
26
|
Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson's disease. Neurobiol Aging 2007; 29:1690-701. [PMID: 17537546 PMCID: PMC2621109 DOI: 10.1016/j.neurobiolaging.2007.04.006] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 04/16/2007] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder afflicting >500,000 patients in the United States alone. This age-related progressive disorder is typified by invariant loss of dopaminergic substantia nigra neurons (DAN), dystrophic neurites, the presence of alpha-synuclein (SYN) positive intracytoplasmic inclusions (Lewy bodies) in the remaining DAN, and activated microglia. As such, microglial activation and resultant increase in proinflammatory molecules have moved to the forefront of PD research as a potential pathobiologic mechanism of disease. Herein, we present data demonstrating early microglial activation in mice that over-express wild-type SYN, the release of SYN from a SYN overexpressing MN9D cell line, and dose-dependent SYN-mediated activation of primary microglial cultures with consequent increases in proinflammatory molecules. Furthermore, we provide evidence that the CD36 scavenger receptor and downstream kinases are involved in SYN-mediated microglial activation. Together, our data suggest an early role for SYN and inflammation in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaomin Su
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
27
|
Lee CL, Kuo TF, Wang JJ, Pan TM. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid β-infused rat by repressing amyloid β accumulation. J Neurosci Res 2007; 85:3171-82. [PMID: 17663476 DOI: 10.1002/jnr.21428] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amyloid beta (Abeta) peptide related to the onset of Alzheimer's disease (AD) damaged neurons and further resulted in dementia. Monascus-fermented red mold rice (RMR), a traditional Chinese medicine as well as health food, includes monacolins (with the same function as statins) and multifunctional metabolites. In this study, ethanol extract of RMR (RE) was used to evaluate neuroprotection against Abeta40 neurotoxicity in PC12 cells. Furthermore, the effects of dietary administration of RMR on memory and learning abilities are confirmed in an animal model of AD rats infused with Abeta40 into the cerebral ventricle. During continuous Abeta40 infusion for 28 days, the rats of test groups were administered RMR or lovastatin. Memory and learning abilities were evaluated in the water maze and passive avoidance tasks. After sacrifice, cerebral cortex and hippocampus were collected for the examination of AD risk factors. The in vitro results clearly indicate that RE provides stronger neuroprotection in rescuing cell viability as well as repressing inflammatory response and oxidative stress. RMR administration potently reverses the memory deficit in the memory task. Abeta40 infusion increases acetylcholinesterase activity, reactive oxygen species, and lipid peroxidation and decreases total antioxidant status and superoxide dismutase activity in brain, but these damages were potently reversed by RMR administration, and the protection was more significant than that with lovastatin administration. The protection provided by RMR is able to prevent Abeta fibrils from being formed and deposited in hippocampus and further decrease Abeta40 accumulation, even though Abeta40 solution was infused into brain continuously.
Collapse
Affiliation(s)
- Chun-Lin Lee
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Amyloid deposits are a defining feature of several age-related and debilitating diseases. Their widespread presence in atherosclerotic plaques suggests a potential role in lesion development. This review discusses the proteins known to accumulate in atheroma and examines the evidence that amyloid-like structures activate macrophage signaling pathways linked to inflammation and prothrombotic potential. RECENT FINDINGS Numerous proteins that accumulate in atherosclerotic plaques form amyloid fibrils in vivo, including apolipoproteins, beta-amyloid, and alpha1-antitrypsin. In addition, oxidation or enzymatic modification of low-density lipoproteins induces a structural reorganization of the particle, including the acquisition of amyloid-like properties. Similarly, glycation of serum albumin, as observed in diabetes, is accompanied by the formation of aggregates with all the hallmarks of amyloid. Several receptors implicated in atherogenesis modulate the fate of amyloid fibrils by mediating their clearance (scavenger receptors A and B-I), activating inflammatory signaling cascades (receptor for advanced glycation endproducts), or both (CD36). Finally, recent studies indicate that amyloid deposition accelerates diet-induced atherosclerosis in mice. SUMMARY Given the substantial evidence that amyloid fibrils or preamyloidogenic species are cytotoxic, the aberrant deposition of amyloid in the intima may be pathologically important in vascular inflammation and the promotion of atherosclerosis.
Collapse
Affiliation(s)
- Geoffrey J Howlett
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Buga GM, Frank JS, Mottino GA, Hendizadeh M, Hakhamian A, Tillisch JH, Reddy ST, Navab M, Anantharamaiah GM, Ignarro LJ, Fogelman AM. D-4F decreases brain arteriole inflammation and improves cognitive performance in LDL receptor-null mice on a Western diet. J Lipid Res 2006; 47:2148-60. [PMID: 16835442 DOI: 10.1194/jlr.m600214-jlr200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
LDL receptor-null mice on a Western diet (WD) have inflammation in large arteries and endothelial dysfunction in small arteries, which are improved with the apolipoprotein A-I mimetic D-4F. The role of hyperlipidemia in causing inflammation of very small vessels such as brain arterioles has not previously been studied. A WD caused a marked increase in the percent of brain arterioles with associated macrophages (microglia) (P < 0.01), which was reduced by oral D-4F but not by scrambled D-4F (ScD-4F; P < 0.01). D-4F (but not ScD-4F) reduced the percent of brain arterioles associated with CCL3/macrophage inflammatory protein-1alpha (P < 0.01) and CCL2/monocyte chemoattractant protein-1 (P < 0.001). A WD increased (P < 0.001) brain arteriole wall thickness and smooth muscle alpha-actin, which was reduced by D-4F but not by ScD-4F (P < 0.0001). There was no difference in plasma lipid levels, blood pressure, or arteriole lumen diameter with D-4F treatment. Cognitive performance in the T-maze continuous alternation task and in the Morris Water Maze was impaired by a WD and was significantly improved with D-4F but not ScD-4F (P < 0.05). We conclude that a WD induces brain arteriole inflammation and cognitive impairment that is ameliorated by oral D-4F without altering plasma lipids, blood pressure, or arteriole lumen size.
Collapse
Affiliation(s)
- Georgette M Buga
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
31
|
Korporaal SJA, Akkerman JWN. Lipoprotein-associated proteins involved in platelet signaling. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:305-13. [PMID: 16877879 DOI: 10.1159/000093223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets and lipoproteins are both key elements in the development of atherosclerosis and thrombosis. Based on their density, five classes of lipoproteins have been identified which all influence platelets via distinct mechanisms. The activation of platelets starts with binding of apolipoproteins to different platelet receptors and is followed by the activation of signaling pathways resulting in activation or inhibition of platelet functions like aggregation or secretion. In addition to apolipoproteins, lipoproteins are also associated to a large amount of proteins, enzymes and lipids that also can induce platelet activation or inhibition. This review provides a summary of the activation of signaling pathways after platelet-lipoprotein interactions initiated by lipoprotein-associated proteins and lipids.
Collapse
Affiliation(s)
- Suzanne J A Korporaal
- Thrombosis and Haemostasis Laboratory, Department of Haematology, University Medical Center Utrecht and The Institute for Biomembranes, University of Utrecht, The Netherlands.
| | | |
Collapse
|
32
|
Abstract
Historically, the amyloidoses have been associated with inflammation and the immune response. From Virchow's original description in human pathologic inflammatory states through their identification in horses used to produce antitoxin to their frequent occurrence in the course of multiple myeloma and a somewhat abortive designation as 'gammaloid', the disorders were felt to have an inflammatory origin. These presumptive associations antedated the availability of a reliable method for tissue extraction that would allow chemical analysis of the major deposited molecules. With the identification of the multiple precursors and the realization that most were not intrinsic elements of immune/inflammatory pathways, the investigative emphasis shifted to the analysis of the biophysical events involved in aggregation and fibril formation. As more in vivo models and better tools for examination of tissues have become available, it appears as if inflammation may participate as both a response to, and an amplifier of, the effects of the fibrillar aggregates. Hence, while only a limited number of amyloid protein precursors are involved in immunity and inflammation per se, host defense, in its broadest sense, is likely to be involved in the clinically relevant amyloidoses. Further it now appears that harnessing the immune response in an appropriate fashion may be able to play a role in treatment.
Collapse
Affiliation(s)
- J Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Ho M, Hoang HL, Lee KM, Liu N, MacRae T, Montes L, Flatt CL, Yipp BG, Berger BJ, Looareesuwan S, Robbins SM. Ectophosphorylation of CD36 regulates cytoadherence of Plasmodium falciparum to microvascular endothelium under flow conditions. Infect Immun 2006; 73:8179-87. [PMID: 16299313 PMCID: PMC1307088 DOI: 10.1128/iai.73.12.8179-8187.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The adhesion of Plasmodium falciparum-infected erythrocytes (IRBCs) to human dermal microvascular endothelial cells (HDMECs) under flow conditions is regulated by a Src family kinase- and alkaline phosphatase (AP)-dependent mechanism. In this study, we showed that the target of the phosphatase activity is the ectodomain of CD36 at threonine-92 (Thr92). Mouse fibroblasts (NIH 3T3 cells) transfected with wild-type CD36 or a mutant protein in which Thr92 was substituted by Ala supported the rolling and adhesion of IRBCs. However, while the Src family kinase inhibitors PP1 and PP2 and the specific AP inhibitor levamisole significantly reduced IRBC adhesion to wild-type CD36 transfectants as with HDMECs, the inhibitors had no effect on IRBC adhesion to the mutant cells. Using a phosphospecific antibody directed at a 12-amino-acid peptide spanning Thr92, we demonstrated directly that CD36 was constitutively phosphorylated and could be dephosphorylated by exogenous AP. Endothelial CD36 was likewise constitutively phosphorylated. The phosphospecific antibody inhibited IRBC adhesion to HDMECs that could be reversed by preincubating the antibody with the phosphorylated but not the nonphosphorylated peptide. Pretreatment of HDMECs with AP abrogated the effect of PP1 on IRBC adhesion. Collectively, these results are consistent with a critical role for CD36 dephosphorylation through Src family kinase activation in regulating IRBC adhesion to vascular endothelium.
Collapse
Affiliation(s)
- May Ho
- Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1 Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Macrophage scavenger receptors, such as CD36 and class A scavenger receptor (SR-A), have previously been thought to play a central role in foam cell formation and atherogenesis by mediating the uptake of oxidized LDL. In this issue of the JCI, Moore et al. report that Apoe mice deficient in either CD36 or SR-A did not have less atherosclerosis at the level of the aortic valve than did wild-type Apoe mice. In contrast, similar studies by previous investigators found that deletion of these receptors decreased atherogenesis. The reasons for the different results are not known, but these data suggest that the role of these receptors in atherogenesis remains unresolved.
Collapse
Affiliation(s)
- Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
35
|
Stewart CR, Tseng AA, Mok YF, Staples MK, Schiesser CH, Lawrence LJ, Varghese JN, Moore KJ, Howlett GJ. Oxidation of low-density lipoproteins induces amyloid-like structures that are recognized by macrophages. Biochemistry 2005; 44:9108-16. [PMID: 15966734 DOI: 10.1021/bi050497v] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The macrophage scavenger receptor CD36 plays a key role in the initiation of atherosclerosis through its ability to bind to and internalize oxidized low-density lipoproteins (oxLDL). Prompted by recent findings that the CD36 receptor also recognizes amyloid fibrils formed by beta-amyloid and apolipoprotein C-II, we investigated whether the oxidation of low-density lipoproteins (LDL) generates characteristic amyloid-like structures and whether these structures serve as CD36 ligands. Our studies demonstrate that LDL oxidized by copper ions, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH), or ozone react with the diagnostic amyloid dyes thioflavin T and Congo Red and bind to serum amyloid P component (SAP), a universal constituent of physiological amyloid deposits. X-ray powder diffraction patterns for native LDL show a diffuse powder diffraction ring with maximum intensity corresponding to an atomic spacing of approximately 4.7 A, consistent with the spacing between beta-strands in a beta-sheet. Ozone treatment of LDL generates an additional diffuse powder diffraction ring with maximum intensity indicating a spacing of approximately 9.8 A. This distance is consistent with the presence of cross-beta-structure, a defining characteristic of amyloid. Evidence that these cross-beta-amyloid structures in oxLDL are recognized by macrophages is provided by the observation that SAP strongly inhibits the association and internalization of (125)I-labeled copper-oxidized LDL by peritoneal macrophages. The ability of SAP to bind to amyloid-like structures in oxLDL and prevent lipid uptake by macrophages highlights the potential importance of these structures and suggests an important preventative role for SAP in foam cell formation and early-stage atherosclerosis.
Collapse
Affiliation(s)
- Cameron R Stewart
- Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|