1
|
Bennett T, Walmsley S, Bendayan R. Aging with HIV and HIV-associated neurocognitive impairment. AIDS 2025; 39:215-228. [PMID: 39878669 DOI: 10.1097/qad.0000000000004057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 01/31/2025]
Abstract
Antiretroviral therapy (ART) is the most effective therapeutic intervention for HIV infection. With improved survival, comorbidities, including neuropsychiatric and HIV-associated neurocognitive impairment (NCI) are of increasing concern to aging people with HIV (PWH). The clinical features and the inter-individual variability of the aging process confound the elucidation of the diagnosis and underlying mechanisms of cognitive dysfunction in aging PWH. Herein, we review the clinical aspects of HIV-associated NCI in the aging PWH contrasting to the normative neuro-aging seen in people without HIV (PWoH) and address the growing role of biomarkers to predict the onset of age-related diseases in PWH and their clinical significance. There is an urgent need for further research into the role of specific immune brain biomarkers in predicting the aging process and how these biomarkers may assist in understanding the mechanisms and possible prognosis of age-related neurocognitive comorbidities in aging PWH as an endpoint for interventional studies.
Collapse
Affiliation(s)
- Teresa Bennett
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| | - Sharon Walmsley
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| |
Collapse
|
2
|
Cheng Y, Jung J, Guo L, Shuboni-Mulligan DD, Chen JF, Hu W, Guo ML. HIV-TAT dysregulates microglial lipid metabolism through SREBP2/miR-124 axis: Implication of lipid droplet accumulation microglia in NeuroHIV. Brain Behav Immun 2025; 123:108-122. [PMID: 39260763 PMCID: PMC11624073 DOI: 10.1016/j.bbi.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic HIV infection can dysregulate lipid/cholesterol metabolism in the peripheral system, contributing to the higher incidences of diabetes and atherosclerosis in HIV (+) individuals. Recently, accumulating evidence indicate that HIV proteins can also dysregulate lipid/cholesterol metabolism in the brain and such dysregulation could be linked with the pathogenesis of HIV-associated neurological disorders (HAND)/NeuroHIV. To further characterize the association between lipid/cholesterol metabolism and HAND, we employed HIV-inducible transactivator of transcription (iTAT) and control mice to compare their brain lipid profiles. Our results reveal that HIV-iTAT mice possess dysregulated lipid profiles and have increased numbers of lipid droplets (LDs) accumulation microglia (LDAM) in the brains. HIV protein TAT can upregulate LDs formation through enhancing the lipid/cholesterol synthesis in vitro. Mechanistically, HIV-TAT increases the expression of sterol regulatory element-binding protein 2 (SREBP2) through microRNA-124 downregulation. Cholesterol synthesis inhibition can block HIV-TAT-mediated NLRP3 inflammasome activation and microglial activation in vitro as well as mitigate aging-related behavioral impairment and memory deficiency in HIV-iTAT mice. Taken together, our results indicate an inherent role of lipid metabolism and LDAM in the pathogenesis of NeuroHIV (immunometabolism). These findings suggest that LDAM reversal through modulating lipid/cholesterol metabolism could be a novel therapeutic target for ameliorating NeuroHIV symptoms in chronic HIV (+) individuals.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Jaekeun Jung
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Liyang Guo
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Dorela D Shuboni-Mulligan
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ming-Lei Guo
- Department of Biomedical and Translational Sciences, Macro & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Macro & Joan Brock Virginia Health Science, Old Dominion University, Norfolk, VA 23507, USA.
| |
Collapse
|
3
|
Kuhn TB, Minamide LS, Tahtamouni LH, Alderfer SA, Walsh KP, Shaw AE, Yanouri O, Haigler HJ, Ruff MR, Bamburg JR. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons. Biomedicines 2024; 12:93. [PMID: 38255199 PMCID: PMC10813319 DOI: 10.3390/biomedicines12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
Collapse
Affiliation(s)
- Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Omar Yanouri
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Haigler
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
4
|
Tahtamouni LH, Alderfer SA, Kuhn TB, Minamide LS, Chanda S, Ruff MR, Bamburg JR. Characterization of a Human Neuronal Culture System for the Study of Cofilin-Actin Rod Pathology. Biomedicines 2023; 11:2942. [PMID: 38001943 PMCID: PMC10669520 DOI: 10.3390/biomedicines11112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer's disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-β (Aβ) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aβ-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aβ between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.
Collapse
Affiliation(s)
- Lubna H. Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan;
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Soham Chanda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA;
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| |
Collapse
|
5
|
Zheng X, Zhang X, Dong L, Zhao J, Zhang C, Chen R. Neuroprotective mechanism of salvianolic acid B against cerebral ischemia-reperfusion injury in mice through downregulation of TLR4, p-p38MAPK, p-JNK, NF-κB, and IL-1β. Immun Inflamm Dis 2023; 11:e1030. [PMID: 37904689 PMCID: PMC10549825 DOI: 10.1002/iid3.1030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Tissue injury and inflammation are two potential outcomes of cerebral ischemia-reperfusion (I/R) injury. Salvianolic acid B (Sal B), isolated from the roots of Salvia miltiorrhiza, is one of the major water-soluble compounds with a wide range of pharmacological effects including antioxidant, anti-inflammatory, antiproliferative, and neuroprotective effects. In the present study, we explored the neuroprotective effects and potential mechanisms of Sal B after I/R injury. METHODS We induced cerebral ischemia in male CD-1 mice through transient (60 min) middle cerebral artery occlusion (tMCAO), and then injected Sal B (30 mg/kg) intraperitoneally. Neurological deficits, infarct volumes, and brain edema were assessed at 24 and 72 h after tMCAO. We detected the expression of Toll-like receptor 4 (TLR4), phosphorylated-p38 mitogen-activated protein kinase (P-p38 MAPK), phosphorylated c-Jun amino (N)-terminal kinases (p-JNK), nuclear factor-κB (NF-κB), and interleukin-1β (IL-1β) in the brain tissue. RESULTS Compared with the tMCAO group, Sal B significantly improved neurological deficits, reduced infarct size, attenuated cerebral edema, and downregulated the expression of pro-inflammatory mediators TLR4, p-p38MAPK, p-JNK, nuclear NF-κB, and IL-1β in brain tissue after I/R injury. CONCLUSION We found that Sal B protects brain tissues from I/R injury by activating its anti-inflammatory properties.
Collapse
Affiliation(s)
- Xiu‐fen Zheng
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiPR China
- Department of PediatricsTangshan Central HospitalTangshanHebeiPR China
| | - Xiang‐jian Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiPR China
- Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuangHebeiPR China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuangHebeiPR China
| | - Li‐peng Dong
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiPR China
- Department of NeurologyHebei General HospitalShijiazhuangHebeiPR China
| | - Jing‐ru Zhao
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiPR China
- Department of NeurologyHebei General HospitalShijiazhuangHebeiPR China
| | - Cong Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiPR China
| | - Rong Chen
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiPR China
- Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuangHebeiPR China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuangHebeiPR China
| |
Collapse
|
6
|
Borrajo A, Pérez-Rodríguez D, Fernández-Pereira C, Prieto-González JM, Agís-Balboa RC. Genomic Factors and Therapeutic Approaches in HIV-Associated Neurocognitive Disorders: A Comprehensive Review. Int J Mol Sci 2023; 24:14364. [PMID: 37762667 PMCID: PMC10531836 DOI: 10.3390/ijms241814364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) still persist despite improved life expectancy, reduced viral loads, and decreased infection severity. The number of patients affected by HANDs ranges from (30 to 50) % of HIV-infected individuals. The pathological mechanisms contributing to HANDs and the most serious manifestation of the disease, HIV-associated dementia (HAD), are not yet well understood. Evidence suggests that these mechanisms are likely multifactorial, producing neurocognitive complications involving disorders such as neurogenesis, autophagy, neuroinflammation, and mitochondrial dysfunction. Over the years, multiple pharmacological approaches with specific mechanisms of action acting upon distinct targets have been approved. Although these therapies are effective in reducing viral loading to undetectable levels, they also present some disadvantages such as common side effects, the need for administration with a very high frequency, and the possibility of drug resistance. Genetic studies on HANDs provide insights into the biological pathways and mechanisms that contribute to cognitive impairment in people living with HIV-1. Furthermore, they also help identify genetic variants that increase susceptibility to HANDs and can be used to tailor treatment approaches for HIV-1 patients. Identification of the genetic markers associated with disease progression can help clinicians predict which individuals require more aggressive management and by understanding the genetic basis of the disorder, it will be possible to develop targeted therapies to mitigate cognitive impairment. The main goal of this review is to provide details on the epidemiological data currently available and to summarise the genetic (specifically, the genetic makeup of the immune system), transcriptomic, and epigenetic studies available on HANDs to date. In addition, we address the potential pharmacological therapeutic strategies currently being investigated. This will provide valuable information that can guide clinical care, drug development, and our overall understanding of these diseases.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Daniel Pérez-Rodríguez
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Facultade de Bioloxía, Universidade de Vigo (UVigo), Campus Universitario Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| | - Carlos Fernández-Pereira
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Area Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - José María Prieto-González
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Namba MD, Phillips MN, Chen PJ, Blass BE, Olive MF, Neisewander JL. HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats. ADDICTION NEUROSCIENCE 2023; 5:100062. [PMID: 36909738 PMCID: PMC9997483 DOI: 10.1016/j.addicn.2023.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Megan N Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
8
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
10
|
Whyte-Allman SK, Kaul R, Bendayan R. Regulation of ABC Drug Efflux Transporters in Human T-Cells Exposed to an HIV Pseudotype. Front Pharmacol 2021; 12:711999. [PMID: 34421607 PMCID: PMC8371480 DOI: 10.3389/fphar.2021.711999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
ATP-binding cassette (ABC) drug efflux transporters could contribute to low intracellular concentrations of antiretroviral drugs in HIV-1 cell reservoirs and sanctuary sites. Furthermore, the functional expression of these transporters could be induced in activated T-cells. Therefore, we investigated the expression of ABC drug efflux transporters in human T-cells exposed to an HIV pseudotype virus (pHIVNL4-3), and further examined the potential involvement of the mammalian target of rapamycin (mTOR) signaling pathway in regulating their expression following exposure to pHIVNL4-3. Additionally, we investigated the contribution of the drug efflux transporters to the inflammatory response following pHIVNL4-3-induced T-cell activation. Human peripheral blood mononuclear cells (PBMCs) were exposed to HIV-1 envelope glycoprotein gp120IIIB, pHIVNL4-3 and/or mTOR inhibitors. The expression of ABC transporters, T-cell activation marker CD69, mTOR and pHIVNL4-3 was assessed in CD4+ T-cells by Flow cytometry. mRNA and protein levels of proinflammatory cytokines (IL6, TNFα and INFγ) were examined in PBMCs by qPCR and ELISA analyses, respectively, following exposure to pHIVNL4-3 with or without inhibitors of mTOR or ABC transporters. The expression of ABC transporters (P-glycoprotein, breast cancer resistance protein and multi-drug resistance associated protein-1) was significantly increased in CD4+ T-cells exposed to pHIVNL4-3. Treatment with mTOR inhibitors attenuated pHIVNL4-3-induced transporter expression, as well as mRNA and protein levels of IL6, TNFα and INFγ. Additionally, inhibition of P-gp or MRP1 activity resulted in lower concentrations of proinflammatory cytokines in supernatants of PBMC exposed to pHIVNL4-3. Herein we present novel data demonstrating that upregulation of ABC drug efflux transporters could involve the mTOR signaling pathway in CD4+ T-cells exposed to an HIV pseudotype. These transporters could limit antiretroviral drug penetration in HIV target T-cells. Furthermore, ABC transporters could potentially contribute to HIV-associated proinflammatory cytokine secretion.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
12
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
13
|
Hendricks K, Parrado MG, Bradley J. Opinion: An Existing Drug to Assess In Vivo for Potential Adjunctive Therapy of Ebola Virus Disease and Post-Ebola Syndrome. Front Pharmacol 2020; 10:1691. [PMID: 32082173 PMCID: PMC7002323 DOI: 10.3389/fphar.2019.01691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | - John Bradley
- Division of Infectious Diseases, Department of Pediatrics, UCSD School of Medicine, San Diego, CA, United States
| |
Collapse
|
14
|
Zhang YP, Cui QY, Zhang TM, Yi Y, Nie JJ, Xie GH, Wu JH. Chloroquine pretreatment attenuates ischemia-reperfusion injury in the brain of ob/ob diabetic mice as well as wildtype mice. Brain Res 2020; 1726:146518. [PMID: 31647899 DOI: 10.1016/j.brainres.2019.146518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/15/2019] [Accepted: 10/19/2019] [Indexed: 11/28/2022]
Abstract
Chloroquine, a prototype anti-malaria drug, has been reported to possess anti-inflammatory effects. Moreover, chloroquine pretreatment could improve DNA damage repair. It is therefore reasonable to hypothesize that chloroquine pretreatment could attenuate ischemia/reperfusion injury in the brain. Considering the fact that chloroquine could also improve glucose metabolism, we speculated that the potential effects of chloroquine on ischemia/reperfusion injury might be particularly pronounced in diabetic mice. In this study, chloroquine pretreatment protected neurons from Oxygen Glucose Deprivation (OGD) induced cytotoxicity and apoptosis. In vivo, Ob/ob mice and wildtype (WT) mice were pretreated with chloroquine for 3 weeks. Then, ischemic stroke was induced by 60 min Middle Cerebral Artery Occlusion (MCAO). We found that chloroquine pretreatment normalized blood glucose in diabetic ob/ob mice, and reduced cerebral damage after ischemic stroke especially for diabetic mice. In addition, chloroquine pretreatment reduced High-mobility group box 1 (HMGB1) content in the cerebrospinal fluid (CSF) and serum and lowered myeloperoxidase (MPO) activity and inflammatory cytokines gene expression both in the ob/ob diabetic mice and WT mice. Moreover, harmful DNA damage-signaling responses, including PARP activation and p53 activation, were also attenuated by chloroquine pretreatment in these two kinds of mice. In conclusion, chloroquine pretreatment could reduce cerebral damage after ischemic stroke especially in diabetic mice through multiple mechanisms, which include reducing neural cell DNA injury, restoring euglycemia and anti-inflammatory effects. The findings may provide potential for the development of chloroquine in the prevention and treatment of stroke in diabetic high-risk patients.
Collapse
Affiliation(s)
- Ying-Pei Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiu-Yan Cui
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tong-Mei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Yi
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Jie Nie
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guang-Hui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian-Hua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
15
|
Omeragic A, Saikali MF, Currier S, Volsky DJ, Cummins CL, Bendayan R. Selective peroxisome proliferator-activated receptor-gamma modulator, INT131 exhibits anti-inflammatory effects in an EcoHIV mouse model. FASEB J 2019; 34:1996-2010. [PMID: 31907999 DOI: 10.1096/fj.201901874r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Despite the use of antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments, that is, HIV-1-associated neurocognitive disorders remain prevalent potentially due to persistent viral replication, production of viral proteins, associated brain inflammation or in certain instances, antiretroviral neurotoxicity. Cellular targets in the brain include microglia which in response to infection release inflammatory markers and viral proteins. Evidence suggests that PPARγ agonists exert anti-inflammatory properties in neurological disorders. However, these agonists namely, thiazolidinediones have limited use in the clinic due to reported adverse side effects. INT131 is a novel non-thiazolidinedione compound that belongs to a new class of drugs known as selective PPARγ modulators. INT131 is considered to have a safer profile; however, its neuroprotective role in vivo is not known.The goal of this study was to examine the effect of INT131 in the context of EcoHIV-induced inflammation in vitro, in primary cultures of mouse glial cells and in vivo, in a mouse model of EcoHIV-associated brain inflammation, as well as characterize its pharmacokinetic properties and brain penetration. In primary cultures of glial cells and in the in vivo mouse model, EcoHIV exposure resulted in a significant elevation of inflammatory markers such as TNFα, IL-1β, CCL3, and C3 which were attenuated with INT131 treatment. Pharmacokinetic analyses revealed that INT131 penetrates into the brain with a brain to blood partition ratio Kp value of 8.5%. Overall, this is the first report to demonstrate that INT131 could be a potential candidate for the treatment of HIV-1-associated brain inflammation.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Sydney Currier
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David J Volsky
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Su SH, Wu YF, Lin Q, Wang DP, Hai J. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. J Neuroinflammation 2019; 16:260. [PMID: 31815636 PMCID: PMC6900848 DOI: 10.1186/s12974-019-1668-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported that URB597 (URB) had therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced neuroinflammation and autophagy dysfunction. However, the interaction mechanisms underlying the CCH-induced abnormal excessive autophagy and neuroinflammation remain unknown. In this study, we investigated the roles of impaired autophagy in nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 inflammasome activation in the rat hippocampus and the underlying mechanisms under the condition of induced CCH as well as the effect of URB treatment. Methods The CCH rat model was established by bilateral common carotid artery occlusion (BCCAo), and rats were randomly divided into 11 groups as follows: (1) sham-operated, (2) BCCAo; (3) BCCAo+autophagy inhibitor 3-methyladenine (3-MA), (4) BCCAo+lysosome inhibitor chloroquine (CQ), (5) BCCAo+microglial activation inhibitor minocycline, (6) BCCAo+ROS scavenger N-acetylcysteine (NAC), (7) BCCAo+URB, (8) BCCAo+URB+3-MA, (9) BCCAo+URB+CQ, (10) BCCAo+URB+minocycline, (11) BCCAo+URB+NAC. The cell localizations of LC3, p62, LAMP1, TOM20 and NLRP3 were assessed by immunofluorescence staining. The levels of autophagy-related proteins (LC3, p62, LAMP1, BNIP3 and parkin), NLRP3 inflammasome-related proteins (NLRP3, CASP1 and IL-1β), microglial marker (OX-42) and proinflammatory cytokines (iNOS and COX-2) were evaluated by western blotting, and proinflammatory cytokines (IL-1β and TNF-a) were determined by ELISA. Reactive oxygen species (ROS) were assessed by dihydroethidium staining. The mitochondrial ultrastructural changes were examined by electron microscopy. Results CCH induced microglial overactivation and ROS accumulation, promoting the activation of the NLRP3 inflammasome and the release of IL-1β. Blocked autophagy and mitophagy flux enhanced the activation of the NLRP3-CASP1 inflammasome pathway. However, URB alleviated impaired autophagy and mitophagy by decreasing mitochondrial ROS and microglial overactivation as well as restoring lysosomal function, which would further inhibit the activation of the NLRP3-CASP1 inflammasome pathway. Conclusion These findings extended previous studies indicating the function of URB in the mitigation of chronic ischemic injury of the brain.
Collapse
Affiliation(s)
- Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
17
|
NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol 2019; 17:283-299. [PMID: 31320730 DOI: 10.1038/s41423-019-0260-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) envelope protein gp120 is the major contributor to the pathogenesis of HIV-associated neurocognitive disorder (HAND). Neuroinflammation plays a pivotal role in gp120-induced neuropathology, but how gp120 triggers neuroinflammatory processes and subsequent neuronal death remains unknown. Here, we provide evidence that NLRP3 is required for gp120-induced neuroinflammation and neuropathy. Our results showed that gp120-induced NLRP3-dependent pyroptosis and IL-1β production in microglia. Inhibition of microglial NLRP3 inflammasome activation alleviated gp120-mediated neuroinflammatory factor release and neuronal injury. Importantly, we showed that chronic administration of MCC950, a novel selective NLRP3 inhibitor, to gp120 transgenic mice not only attenuated neuroinflammation and neuronal death but also promoted neuronal regeneration and restored the impaired neurocognitive function. In conclusion, our data revealed that the NLRP3 inflammasome is important for gp120-induced neuroinflammation and neuropathology and suggest that NLRP3 is a potential novel target for the treatment of HAND.
Collapse
|
18
|
Omeragic A, Kara-Yacoubian N, Kelschenbach J, Sahin C, Cummins CL, Volsky DJ, Bendayan R. Peroxisome Proliferator-Activated Receptor-gamma agonists exhibit anti-inflammatory and antiviral effects in an EcoHIV mouse model. Sci Rep 2019; 9:9428. [PMID: 31263138 PMCID: PMC6603270 DOI: 10.1038/s41598-019-45878-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The widespread use of combination antiretroviral therapy (cART) has resulted in significantly reduced deaths from HIV-1 associated complications and opportunistic infections. However, it is estimated that up to 50% of HIV-1 infected individuals still develop HIV-1 associated neurocognitive disorders (HAND). With no treatment currently available for patients, there is a critical need to identify therapeutic approaches that can treat this disorder. Evidence suggests that targeting Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) can be anti-inflammatory in neurological disorders. Here we show that treatment with PPARγ agonists (rosiglitazone or pioglitazone) in primary cultures of mouse glial cells reversed EcoHIV-induced inflammatory genes (TNFα, IL-1β, CCL2, CCL3, CXCL10) and indicator of oxidative stress (iNOS). Furthermore, in vivo, mice administered with EcoHIV through intracranial injection resulted in upregulation of inflammatory genes (TNFα, IL-1β, IFNγ, CCL2, CCL3, CXCL10) and oxidative stress marker (iNOS) in the brain which was reversed through intraperitoneal administration of PPARγ agonists (rosiglitazone or pioglitazone). Finally, we demonstrated that treatment with these compounds in vivo reduced EcoHIV p24 protein burden in the brain. Our results suggest that treatment with PPARγ agonists are anti-inflammatory and antiviral in an in vivo model of EcoHIV infection. These drugs hold promise as potential candidates for HAND treatment in the future.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Nareg Kara-Yacoubian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Jennifer Kelschenbach
- Department of Medicine - Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - David J Volsky
- Department of Medicine - Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Clark IA, Vissel B. Neurodegenerative disease treatments by direct TNF reduction, SB623 cells, maraviroc and irisin and MCC950, from an inflammatory perspective – a Commentary. Expert Rev Neurother 2019; 19:535-543. [DOI: 10.1080/14737175.2019.1618710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Green MV, Thayer SA. HIV gp120 upregulates tonic inhibition through α5-containing GABA ARs. Neuropharmacology 2019; 149:161-168. [PMID: 30797029 DOI: 10.1016/j.neuropharm.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
HIV-Associated Neurocognitive disorder (HAND) affects nearly half of infected patients. The HIV envelope protein gp120 is shed by infected cells and is a potent neurotoxin in vitro that reproduces many aspects of HAND when expressed in vivo. Here, we show that HIV gp120 increases the amplitude of a tonic current mediated by γ-aminobutyric acid type-A receptors (GABAARs). Treating rat hippocampal cultures with 600 pM gp120IIIB for 4 h increased a tonic bicuculline-sensitive current, which remained elevated for 24 h. The increased current resulted from upregulation of extrasynaptic α5-containing GABAARs, as indicated by inhibition with the selective inverse agonist basmisanil. Treatment with gp120 increased α5-GABAAR immunoreactivity on the cell surface without new protein synthesis. The increase in tonic inhibition was prevented by a C-X-C chemokine receptor type 4 (CXCR4) antagonist or elimination of microglia from the culture. Treatment with interleukin-1β (IL-1β) increased the tonic current and an IL-1 receptor antagonist blocked the gp120-evoked response. Pharmacological or genetic inhibition of p38 mitogen-activated protein kinase (MAPK) prevented the gp120-evoked increase in tonic current and direct activation of a mutant form of p38 MAPK expressed in neurons increased the current. Collectively, these data show that gp120 activates CXCR4 to stimulate microglia to release IL-1β. Subsequent stimulation of IL-1 receptors activates p38 MAPK in neurons leading to the upregulation of α5-containing GABAARs. Increased tonic inhibition impairs neuroplasticity and inhibition of α5-containing GABAARs improves cognitive function in disease models. Thus, gp120-induced upregulation of α5-containing GABAARs presents a novel therapeutic target for HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA; Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Zhang X, Green MV, Thayer SA. HIV gp120-induced neuroinflammation potentiates NMDA receptors to overcome basal suppression of inhibitory synapses by p38 MAPK. J Neurochem 2019; 148:499-515. [PMID: 30520043 DOI: 10.1111/jnc.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
HIV-associated neurocognitive disorder affects about half of HIV-infected patients. HIV impairs neuronal function through indirect mechanisms mainly mediated by inflammatory cytokines and neurotoxic viral proteins, such as the envelope protein gp120. HIV gp120 elicits a neuroinflammatory response that potentiates NMDA receptor function and induces the loss of excitatory synapses. How gp120 influences neuronal inhibition remains unknown. In this study, we expressed a green fluorescent protein (GFP)-tagged recombinant antibody-like protein that binds to the post-synaptic scaffolding protein gephyrin to label inhibitory synapses in living neurons. Treatment with 600 pM gp120 for 24 h increased the number of labeled inhibitory synapses. HIV gp120 evoked the release of interleukin-1β (IL-1β) from microglia to activate IL-1 receptors on neurons. Subsequent activation of the tyrosine kinase Src and GluN2A-containing NMDA receptors increased the number of inhibitory synapses via a process that required protein synthesis. In naïve cultures, inhibition of neuronal p38 mitogen-activated protein kinase (p38 MAPK) increased the number of inhibitory synapses suggesting that p38 MAPK produces a basal suppression of inhibitory synapses that is overcome in the presence of gp120. Direct activation of a mutant form of p38 MAPK expressed in neurons mimicked basal suppression of inhibitory synapses. This study shows for the first time that gp120-induced neuroinflammation increases the number of inhibitory synapses and that this increase overcomes a basal suppression of synaptic inhibition. Increased inhibition may be an adaptive mechanism enabling neurons to counteract excess excitatory input in order to maintain network homeostasis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Song Y, Zhao X, Wang D, Zheng Y, Dai C, Guo M, Qin L, Wen X, Zhou X, Liu Z. Inhibition of LPS-induced brain injury by NR2B antagonists through reducing assembly of NR2B–CaMKII–PSD95 signal module. Immunopharmacol Immunotoxicol 2019; 41:86-94. [DOI: 10.1080/08923973.2018.1549566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Department of Genetics, Research Center for Neurobiology Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiaofang Zhao
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Di Wang
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Yi Zheng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Chunxiao Dai
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Mengyuan Guo
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Li Qin
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiangru Wen
- Department of Genetics, Research Center for Neurobiology Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Zhian Liu
- Department of Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
23
|
Makhathini KB, Abboussi O, Mabandla MV, Daniels WMU. The effects of repetitive stress on tat protein-induced pro-inflammatory cytokine release and steroid receptor expression in the hippocampus of rats. Metab Brain Dis 2018; 33:1743-1753. [PMID: 29987524 DOI: 10.1007/s11011-018-0283-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) affects the central nervous system (CNS) that may lead to the development of HIV-associated neuropathologies. Tat protein is one of the viral proteins that have been linked to the neurotoxic effects of HIV. Since many individuals living with HIV often experience significant adverse circumstances, the present study investigated whether exposure to stressful conditions would exacerbate harmful effects of tat protein on brain function. Tat protein (10 μg/10 μl) was injected bilaterally into the dorsal hippocampus of the animal using stereotaxic techniques. The control group received an injection of saline (10 μl). Some control and tat protein-treated animals were subjected to restrain stress for 6 h per day for 28 days and compared to a non-stress group. All animals underwent two behavioural tests, the open field test (OFT) and the novel object recognition test (NORT) to assess their mood state and cognitive function respectively. The release of pro-inflammatory cytokines (TNF-α and IL-1β) and the expression of mineralocorticoid (MR) and glucocorticoid (GR) receptors were also measured to see whether the impact of the repetitive stress on Tat protein-induced behavioural effects was mediated by elements of the immune system and the HPA axis. Rats treated with tat protein showed the following behavioural changes when compared to control animals: there was a significant decrease in time spent in the center of the open field during the OFT, a significant reduction in time spent with the novel object during the NORT, but no change in locomotor activity. Real-time PCR data showed that the expression levels of GR and MR mRNA were significantly reduced, while Western blot analysis showed that the protein expression levels of TNF-α and IL-1β were significantly increased. The present findings indicated that injection of tat protein into the hippocampus of rats not subjected to stress may lead to anxiety-like behaviour and deficits in learning and memory. Tat-treated animals subjected to stress evoked only a modest effect on their behaviour and neurochemistry, while stress alone led to behavioural and neurochemical changes similar to tat protein.
Collapse
Affiliation(s)
- Khayelihle B Makhathini
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa.
| | - Oualid Abboussi
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa
| | - William M U Daniels
- School of Phyisiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Peroxisome proliferator-activated receptor-gamma: potential molecular therapeutic target for HIV-1-associated brain inflammation. J Neuroinflammation 2017; 14:183. [PMID: 28886715 PMCID: PMC5591559 DOI: 10.1186/s12974-017-0957-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Despite the use of combination antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments remain prevalent due to persistent viral replication and associated brain inflammation. Primary cellular targets of HIV-1 in the brain are macrophages, microglia, and to a certain extent astrocytes which in response to infection release inflammatory markers, viral proteins [i.e., glycoprotein 120 (gp120)] and exhibit impaired glutamate uptake. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. Compelling evidence suggests that PPARγ exerts anti-inflammatory properties in neurological disorders. The goal of this study was to examine the role of PPARγ in the context of HIV-1ADA gp120-induced inflammation in vitro, in primary cultures of rat astrocytes and microglia, and in vivo, in a rodent model of HIV-1ADA gp120-associated brain inflammation. Methods Primary mixed cultures of rat astrocytes and microglia were treated with PPARγ agonists (rosiglitazone or pioglitazone) and exposed to HIV-1ADA gp120. Inflammatory cytokines and indicator of oxidative stress response (TNFα, IL-1β, iNOS) were measured using qPCR, and glutamate transporter (GLT-1) was quantified by immunoblotting. In vivo, rats were administered an intracerebroventricular injection of HIV-1ADA gp120 and an intraperitoneal injection of PPARγ agonist (rosiglitazone) or co-administration with PPARγ antagonist (GW9662). qPCR and immunoblotting analyses were applied to measure inflammatory markers, GLT-1 and PPARγ. Results In primary mixed cultures of rat astrocytes and microglia, HIV-1ADA gp120 exposure resulted in a significant elevation of inflammatory markers and a decrease in GLT-1 expression which were significantly attenuated with rosiglitazone or pioglitazone treatment. Similarly, in vivo, treatment with rosiglitazone reversed the gp120-mediated inflammatory response and downregulation of GLT-1. Furthermore, we demonstrated that the anti-inflammatory effects of PPARγ agonist rosiglitazone were mediated through inhibition of NF-κB. Conclusion Our data demonstrate that gp120 can induce an inflammatory response and decrease expression of GLT-1 in the brain in vitro and in vivo. We have also successfully shown that these effects can be reversed by treatment with PPARγ agonists, rosiglitazone or pioglitazone. Together our data suggest that targeting PPARγ signaling may provide an option for preventing/treating HIV-associated brain inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0957-8) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Aryl hydrocarbon receptor upregulates IL-1β expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Toxicol In Vitro 2017; 41:200-204. [DOI: 10.1016/j.tiv.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/02/2022]
|
26
|
Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 2017; 7:45657. [PMID: 28374753 PMCID: PMC5379491 DOI: 10.1038/srep45657] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Therapeutic treatment options for central nervous system diseases are greatly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), in conjunction with circulating microbubbles, can be used to induce a targeted and transient increase in BBB permeability, providing a unique approach for the delivery of drugs from the systemic circulation into the brain. While preclinical research has demonstrated the utility of FUS, there remains a large gap in our knowledge regarding the impact of sonication on BBB gene expression. This work is focused on investigating the transcriptional changes in dorsal hippocampal rat microvessels in the acute stages following sonication. Microarray analysis of microvessels was performed at 6 and 24 hrs post-FUS. Expression changes in individual genes and bioinformatic analysis suggests that FUS may induce a transient inflammatory response in microvessels. Increased transcription of proinflammatory cytokine genes appears to be short-lived, largely returning to baseline by 24 hrs. This observation may help to explain some previously observed bioeffects of FUS and may also be a driving force for the angiogenic processes and reduced drug efflux suggested by this work. While further studies are necessary, these results open up intriguing possibilities for novel FUS applications and suggest possible routes for pharmacologically modifying the technique.
Collapse
|
27
|
Piccinelli AC, Morato PN, Dos Santos Barbosa M, Croda J, Sampson J, Kong X, Konkiewitz EC, Ziff EB, Amaya-Farfan J, Kassuya CAL. Limonene reduces hyperalgesia induced by gp120 and cytokines by modulation of IL-1 β and protein expression in spinal cord of mice. Life Sci 2016; 174:28-34. [PMID: 27888114 DOI: 10.1016/j.lfs.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
Abstract
AIMS We have investigated the antihyperalgesic effects of limonene in mice that received intrathecal injection of gp120. MAIN METHODS Male Swiss mice received gp120, IL-1β or TNF-α intrathecally or sterile saline as a control. A mechanical sensitivity test was performed at 2 and 3h after the injection. Spinal cord and blood samples were isolated for protein quantification. KEY FINDINGS Intrathecal administration of gp120 increased mechanical sensitivity measured with an electronic Von Frey apparatus, at 2 and 3h after the injections. Limonene administered orally prior to gp120 administration significantly decreased this mechanical sensitivity at 3h after the gp120 injection. In addition, intrathecal injection of gp120 increased IL-1β and IL-10 in serum, and limonene prevented the ability of gp120 to increase these cytokines. Limonene also inhibited TNF-α and IL-1β-induced mechanical hyperalgesia. Western blot assay demonstrated limonene was capable of increasing SOD expression in the cytoplasm of cells from spinal cord at 4h after intrathecal IL-1β injection. SIGNIFICANCE These results demonstrate that gp120 causes mechanical hyperalgesia and a peripheral increase in IL-1β and IL-10, and that prior administration of limonene inhibits these changes. Also limonene modulates the activation of SOD expression in the spinal cord after spinal IL-1β application. The ability of limonene to inhibit the mechanical hyperalgesia induced by gp120, TNF-α and IL-1β emphasizes the anti-inflammatory action of limonene, specifically its ability to inhibit cytokine production and its consequences.
Collapse
Affiliation(s)
| | - Priscila Neder Morato
- Federal University of Grande Dourados, College of Health Science, Dourados, MS, Brazil
| | | | - Julio Croda
- Oswaldo Cruz Foundation, Campo Grande, Brazil
| | - Jared Sampson
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Xiangpeng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | | | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Jaime Amaya-Farfan
- University of Campinas (UNICAMP), Faculty of Food Engineering (FEA), Brazil
| | | |
Collapse
|
28
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
29
|
HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition. Antimicrob Agents Chemother 2016; 60:2771-81. [PMID: 26902756 DOI: 10.1128/aac.02278-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023] Open
Abstract
This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART.
Collapse
|
30
|
Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 2015; 23:231-69. [PMID: 26246395 DOI: 10.1007/s10787-015-0239-y] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This review examines the pharmacokinetics, modes of action and therapeutic properties of the anti-malarial drugs, hydroxychloroquine (HCQ) and chloroquine (CQ), in the treatment of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and related conditions, as well as osteoarthritis (OA). KEY FINDINGS Both HCQ and CQ have historically been employed successfully for the treatment of SLE and RA for over 70 years. HCQ has been used extensively for SLE where it has a good reputation for controlling the dermatological complications in SLE. It has also been reported to effectively control the symptoms of Sjøgren's syndrome, as well as preventing thrombosis in phospholipid antibody (aPL) syndrome. In RA and SLE, HCQ is preferred because of the lower incidence of gastrointestinal adverse reactions compared with CQ and it might have a lower risk of ocular adverse reactions. There is increasing evidence that HCQ may reduce atherosclerosis and risks of cardiovascular disease in rheumatic patients. Both HCQ and CQ have been shown to improve glycaemia and reduce the risks of type II diabetes mellitus. Although both HCQ and CQ are effective in low-moderate RA, HCQ is now preferred as part of combination therapy for more severe disease. The advantages of combination therapy are that the doses of the individual drugs may be lowered so reducing adverse reactions. Both HCQ and CQ are diastereoisomers, have basic properties and are given as the sulphate and phosphate salts. While being relatively well absorbed orally and with good bioavailability, they have long and variable plasma terminal elimination half-lives (approximately 40-60 days). This reflects their high volume of distribution, V D (HCQ 44,000L; CQ 65,000L) which extends into aqueous compartments, long mean residence time (HCQ 1300 h; CQ 900 h) and with about half the drugs (metabolites) undergoing renal clearance. The strong binding to melanin reflects the ocular injury and dermatological properties of these drugs. The consensus is that the occurrence of ocular adverse reactions can be minimised by close attention to the dose (which should be set on a body weight basis) with regular (e.g. quarterly) retinal examination. Although HCQ and CQ can pass through the placenta, the use of these drugs during pregnancy does not appear to risk harm to the baby and might be beneficial to the mother with SLE and her child by controlling the SLE disease activity, which is known to be an important factor affecting pregnancy outcome. The modes of action of HCQ and CQ in these arthritides represent somewhat of an enigma. Undoubtedly, these drugs have multiple actions related, in part, their ability to accumulate in lysosomes and autophagosomes of phagocytic cells as well as affecting MHC Class II expression and antigen presentation; actions of the production of pro-inflammatory cytokines [e.g. interleukin-1 (IL-1) tumour necrosis factor-α (TNFα)]; control of toll-like receptor-9 activation; and leucocyte generation of reactive oxygen species (ROS); i.e. antioxidant activity. The actions of these drugs on T and B cells are less clear but may depend on these leucocyte-mediated actions. Anti-malarials also protect against cytokine-mediated cartilage resorption. This and other actions may underlie the potential benefits in treating OA. The exact relationships of these various actions, mostly determined in vitro, have not been specifically defined in vivo or ex vivo in relation to clinical efficacy. OUTCOMES HCQ and CQ have a good reputation for being effective and relatively safe treatments in SLE, mild-moderate RA and Sjøgren's syndrome. There is need for (a) more information on their mode of action in relation to the control of these diseases, (b) scope for developing formulations that have improved pharmacokinetic and therapeutic properties and safety, and (c) further exploring their use in drug combinations not only with other disease modifying agents but also with biologics.
Collapse
Affiliation(s)
- K D Rainsford
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Ann L Parke
- Department of Rheumatology, St Francis Hospital and Medical Center, Hartford, CT, 06105, USA
| | | | - W F Kean
- Department of Medicine (Rheumatology), McMaster University Faculty of Health Sciences, Hamilton, ON, L8S 4K9, Canada.
- Department of Medicine (Rheumatology), McMaster University Faculty of Health Sciences, Suite #708, 1 Young Street, Hamilton, ON, L8N 1T8, Canada.
| |
Collapse
|
31
|
Atluri VSR, Hidalgo M, Samikkannu T, Kurapati KRV, Jayant RD, Sagar V, Nair MPN. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci 2015; 9:212. [PMID: 26113810 PMCID: PMC4461820 DOI: 10.3389/fncel.2015.00212] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/17/2015] [Indexed: 02/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders.
Collapse
Affiliation(s)
- Venkata Subba Rao Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Melissa Hidalgo
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Kesava Rao Venkata Kurapati
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Rahul Dev Jayant
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Vidya Sagar
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|