1
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 PMCID: PMC11691463 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Ferreira da Silva A, Gomes A, Gonçalves LMD, Fernandes A, Almeida AJ. Exploring the Link Between Periodontitis and Alzheimer's Disease-Could a Nanoparticulate Vaccine Break It? Pharmaceutics 2025; 17:141. [PMID: 40006510 PMCID: PMC11858903 DOI: 10.3390/pharmaceutics17020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, as approximately 55 million people worldwide are affected, with a significant tendency to increase. It reveals three main pathological features: amyloid plaques, neurofibrillary tangles, and neuroinflammation, responsible for the neurodegenerative changes that slowly lead to deterioration of personality and cognitive control. Over a century after the first case report, effective treatments remain elusive, likely due to an incomplete understanding of the precise mechanisms driving its pathogenesis. Recent studies provide growing evidence of an infectious aetiology for AD, a hypothesis reinforced by findings that amyloid beta functions as an antimicrobial peptide. Among the microorganisms already associated with AD, Porphyromonas gingivalis (Pg), the keystone pathogen of periodontitis (PeD), has received particular attention as a possible aetiological agent for AD development. Herein, we review the epidemiological and genetic evidence linking PeD and Pg to AD, highlighting the identification of periodontal bacteria in post mortem analysis of AD patients' brains and identifying putative mechanistic links relevant to the biological plausibility of the association. With the focus on AD research shifting from cure to prevention, the proposed mechanisms linking PeD to AD open the door for unravelling new prophylactic approaches able to reduce the global burden of AD. As hypothesised in this review, these could include a bionanotechnological approach involving the development of an oral nanoparticulate vaccine based on Pg-specific antigens. Such a vaccine could prevent Pg antigens from progressing to the brain and triggering AD pathology, representing a promising step toward innovative and effective AD prevention.
Collapse
Affiliation(s)
| | | | | | | | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; (A.F.d.S.); (A.G.); (L.M.D.G.); (A.F.)
| |
Collapse
|
3
|
Katsipis G, Lavrentiadou SN, Geromichalos GD, Tsantarliotou MP, Halevas E, Litsardakis G, Pantazaki AA. Evaluation of the Anti-Amyloid and Anti-Inflammatory Properties of a Novel Vanadium(IV)-Curcumin Complex in Lipopolysaccharides-Stimulated Primary Rat Neuron-Microglia Mixed Cultures. Int J Mol Sci 2024; 26:282. [PMID: 39796150 PMCID: PMC11720140 DOI: 10.3390/ijms26010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability. V-Cur, a novel hemocompatible Vanadium(IV)-curcumin complex with higher solubility and bioactivity than curcumin, is studied here. Co-cultures consisting of rat primary neurons and microglia were treated with LPS and/or curcumin or V-Cur. V-Cur disrupted LPS-induced overexpression of amyloid precursor protein (APP) and the in vitro aggregation of human insulin (HI), more effectively than curcumin. Cell stimulation with LPS also increased full-length, inactive, and total iNOS levels, and the inflammation markers IL-1β and TNF-α. Both curcumin and V-Cur alleviated these effects, with V-Cur reducing iNOS levels more than curcumin. Complementary insights into possible bioactivity mechanisms of both curcumin and V-Cur were provided by In silico molecular docking calculations on Aβ1-42, APP, Aβ fibrils, HI, and iNOS. This study renders curcumin-based compounds a promising anti-inflammatory intervention that may be proven a strong tool in the effort to mitigate neurodegenerative disease pathology and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George D. Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftherios Halevas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| |
Collapse
|
4
|
Brahmbhatt Y, Alqaderi H, Chinipardaz Z. Association Between Severe Periodontitis and Cognitive Decline in Older Adults. Life (Basel) 2024; 14:1589. [PMID: 39768299 PMCID: PMC11678878 DOI: 10.3390/life14121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Periodontal disease, a progressive inflammatory condition, disrupts the oral microbiome and releases inflammatory cytokines, leading to systemic issues, including cognitive decline. This study investigates the association between severe periodontitis and cognitive decline, exploring the role of alkaline phosphatase (ALP), an enzyme linked to systemic inflammation, as an effect modifier. (2) Methods: We analyzed cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Severe periodontitis was defined using the Centers for Disease Control and Prevention (CDC) and the American Academy of Pediatrics (AAP) case definition. A weighted multivariable logistic regression model assessed the association between severe periodontitis and cognitive decline. An interaction term examined ALP's role as an effect modifier. (3) Results: This study included 1265 participants aged 65 and older. After adjusting for confounders, each one-point increase in cognitive function score was associated with a 2% decrease in the odds of severe periodontitis (OR = 0.98; 95% CI = 0.97-0.99; p = 0.008). ALP was a significant effect modifier in the relationship between severe periodontitis and cognitive decline. (4) Conclusions: This study, using a representative U.S. adult population aged 65 and over, suggests that lower cognitive performance correlates with higher likelihood of severe periodontitis. ALP enhances the association between severe periodontitis and cognitive decline.
Collapse
Affiliation(s)
- Yash Brahmbhatt
- Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| | - Hend Alqaderi
- Department of Public Health, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Zahra Chinipardaz
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| |
Collapse
|
5
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Navalpur Shanmugam NK, Eimer WA, Vijaya Kumar DK, Tanzi RE. The brain pathobiome in Alzheimer's disease. Neurotherapeutics 2024; 21:e00475. [PMID: 39510900 PMCID: PMC11585897 DOI: 10.1016/j.neurot.2024.e00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Nanda Kumar Navalpur Shanmugam
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - William A Eimer
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Deepak K Vijaya Kumar
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
7
|
Butler CA, Ciccotosto GD, Rygh N, Bijlsma E, Dashper SG, Brown AC. Bacterial Membrane Vesicles: The Missing Link Between Bacterial Infection and Alzheimer Disease. J Infect Dis 2024; 230:S87-S94. [PMID: 39255395 PMCID: PMC11385588 DOI: 10.1093/infdis/jiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 09/12/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease, affecting approximately 19% of the global adult population. A relationship between periodontal disease and Alzheimer disease has long been recognized, and recent evidence has been uncovered to link these 2 diseases mechanistically. Periodontitis is caused by dysbiosis in the subgingival plaque microbiome, with a pronounced shift in the oral microbiota from one consisting primarily of Gram-positive aerobic bacteria to one predominated by Gram-negative anaerobes, such as Porphyromonas gingivalis. A common phenomenon shared by all bacteria is the release of membrane vesicles to facilitate biomolecule delivery across long distances. In particular, the vesicles released by P gingivalis and other oral pathogens have been found to transport bacterial components across the blood-brain barrier, initiating the physiologic changes involved in Alzheimer disease. In this review, we summarize recent data that support the relationship between vesicles secreted by periodontal pathogens to Alzheimer disease pathology.
Collapse
Affiliation(s)
| | | | - Nathaniel Rygh
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Elly Bijlsma
- Melbourne Dental School, The University of Melbourne, Australia
| | | | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
8
|
Bathini P, Brai E, Balin BJ, Bimler L, Corry DB, Devanand DP, Doty RL, Ehrlich GD, Eimer WA, Fulop T, Hahn DL, Hammond CJ, Infanti J, Itzhaki R, Lathe R, Little CS, McLeod R, Moein ST, Nelson AR, Perry G, Shemesh OA, Tanzi RE, Webley WC, Schultek NM, Alberi Auber L. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer's Disease. J Infect Dis 2024; 230:S150-S164. [PMID: 39255393 DOI: 10.1093/infdis/jiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.
Collapse
Affiliation(s)
- Praveen Bathini
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
| | | | - Brian J Balin
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lynn Bimler
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David B Corry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Davangere P Devanand
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Psychiatry and Neurology, Irving Medical Center, Columbia University, New York, USA
| | - Richard L Doty
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garth D Ehrlich
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - William A Eimer
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Tamas Fulop
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David L Hahn
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Christine J Hammond
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Infanti
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Itzhaki
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Richard Lathe
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Scott Little
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Shima T Moein
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - George Perry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Or A Shemesh
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rudolph E Tanzi
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Wilmore C Webley
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikki M Schultek
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lavinia Alberi Auber
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- BrainFit4Life, Fribourg, Switzerland
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
- VitalizeDx, Epalinges, Switzerland
- VitalizeDx Eu, Trieste, Italy
| |
Collapse
|
9
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
10
|
Teng S, Han C, Zhou J, He Z, Qian W. m 5C RNA methylation: a potential mechanism for infectious Alzheimer's disease. Front Cell Dev Biol 2024; 12:1440143. [PMID: 39175875 PMCID: PMC11338875 DOI: 10.3389/fcell.2024.1440143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by a variety of factors, including age, genetic susceptibility, cardiovascular disease, traumatic brain injury, and environmental factors. The pathogenesis of AD is largely associated with the overproduction and accumulation of amyloid-β peptides and the hyperphosphorylation of tau protein in the brain. Recent studies have identified the presence of diverse pathogens, including viruses, bacteria, and parasites, in the tissues of AD patients, underscoring the critical role of central nervous system infections in inducing pathological changes associated with AD. Nevertheless, it remains unestablished about the specific mechanism by which infections lead to the occurrence of AD. As an important post-transcriptional RNA modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of biological processes, including RNA splicing, nuclear export, stability, and translation, therefore affecting cellular function. Moreover, it has been recently demonstrated that multiple pathogenic microbial infections are associated with the m5C methylation of the host. However, the role of m5C methylation in infectious AD is still uncertain. Therefore, this review discusses the mechanisms of pathogen-induced AD and summarizes research on the molecular mechanisms of m5C methylation in infectious AD, thereby providing new insight into exploring the mechanism underlying infectious AD.
Collapse
Affiliation(s)
- Sisi Teng
- Department of Neurology, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cunqiao Han
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weiwei Qian
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Lu JJ, Ma J, Wu JJ, Zhen XM, Xiang YT, Lu HY, Zheng MX, Hua XY, Xu JG. Tongue coating-dependent superior temporal sulcus remodeling in amnestic mild cognitive impairment. Brain Res Bull 2024; 214:110995. [PMID: 38844172 DOI: 10.1016/j.brainresbull.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Tongue coating affects cognition, and cognitive decline at early stage also showed relations to functional and structural remodeling of superior temporal sulcus (STS) in amnestic mild cognitive impairment (aMCI). The potential correlation between disparate cognitive manifestations in aMCI patients with different tongue coatings, and corresponding mechanisms of STS remodeling remains uncharted. In this case-control study, aMCI patients were divided into thin coating (n = 18) and thick coating (n = 21) groups. All participants underwent neuropsychological evaluations and multimodal magnetic resonance imaging. Group comparisons were conducted in clinical assessments and neuroimaging measures of banks of the STS (bankssts). Generalized linear models were constructed to explore relationships between neuroimaging measures and cognition. aMCI patients in the thick coating group exhibited significantly poorer immediate and delayed recall and slower information processing speed (IPS) (P < 0.05), and decreased functional connectivity (FC) of bilateral bankssts with frontoparietal cortices (P < 0.05, AlphaSim corrected) compared to the thin coating group. It was found notable correlations between cognition encompassing recall and IPS, and FC of bilateral bankssts with frontoparietal cortices (P < 0.05, Bonferroni's correction), as well as interaction effects of group × regional homogeneity (ReHo) of right bankssts on the first immediate recall (P < 0.05, Bonferroni's correction). aMCI patients with thick coating exhibited poor cognitive performance, which might be attributed to decreased FC seeding from bankssts. Our findings strengthen the understanding of brain reorganization of STS via which tongue coating status impacts cognition in patients with aMCI.
Collapse
Affiliation(s)
- Juan-Juan Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Min Zhen
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Yu Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
12
|
Wang Z, Liu J, Han J, Zhang T, Li S, Hou Y, Su H, Han F, Zhang C. Herpes simplex virus 1 accelerates the progression of Alzheimer's disease by modulating microglial phagocytosis and activating NLRP3 pathway. J Neuroinflammation 2024; 21:176. [PMID: 39026249 PMCID: PMC11264637 DOI: 10.1186/s12974-024-03166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Accumulating evidence implicates that herpes simplex virus type 1 (HSV-1) has been linked to the development and progression of Alzheimer's disease (AD). HSV-1 infection induces β-amyloid (Aβ) deposition in vitro and in vivo, but the effect and precise mechanism remain elusive. Here, we show that HSV-1 infection of the brains of transgenic 5xFAD mice resulted in accelerated Aβ deposition, gliosis, and cognitive dysfunction. We demonstrate that HSV-1 infection induced the recruitment of microglia to the viral core to trigger microglial phagocytosis of HSV-GFP-positive neuronal cells. In addition, we reveal that the NLRP3 inflammasome pathway induced by HSV-1 infection played a crucial role in Aβ deposition and the progression of AD caused by HSV-1 infection. Blockade of the NLRP3 inflammasome signaling reduces Aβ deposition and alleviates cognitive decline in 5xFAD mice after HSV-1 infection. Our findings support the notion that HSV-1 infection is a key factor in the etiology of AD, demonstrating that NLRP3 inflammasome activation functions in the interface of HSV-1 infection and Aβ deposition in AD.
Collapse
Affiliation(s)
- Zhimeng Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University, Beijing, 100084, China
| | - Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanfei Hou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huili Su
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Fangping Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Jones TB, Chu P, Wilkey B, Lynch L, Jentarra G. Regional Differences in Microbial Infiltration of Brain Tissue from Alzheimer's Disease Patients and Control Individuals. Brain Sci 2024; 14:677. [PMID: 39061418 PMCID: PMC11274863 DOI: 10.3390/brainsci14070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and neuropathology including amyloid beta (Aβ) plaques and neurofibrillary tangles (tau). Factors initiating or driving these pathologies remain unclear, though microbes have been increasingly implicated. Our data and others' findings indicate that microbes may be common constituents of the brain. It is notable that Aβ and tau have antimicrobial properties, suggesting a response to microbes in the brain. We used 16S rRNA sequencing to compare major bacterial phyla in post-mortem tissues from individuals exhibiting a range of neuropathology and cognitive status in two brain regions variably affected in AD. Our data indicate that strong regional differences exist, driven in part by the varied presence of Proteobacteria and Firmicutes. We confirmed our data using ELISA of bacterial lipopolysaccharide (LPS) and lipoteichoic acid in the same brain tissue. We identified a potential association between the composition of phyla and the presence of neuropathology but not cognitive status. Declining cognition and increasing pathology correlated closely with serum LPS, but not brain levels of LPS, although brain LPS showed a strong negative correlation with cerebral amyloid angiopathy. Collectively, our data suggest a region-specific heterogeneity of microbial populations in brain tissue potentially associated with neurodegenerative pathology.
Collapse
Affiliation(s)
- T. Bucky Jones
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Ping Chu
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
| | - Brooke Wilkey
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
- School of Medicine, Creighton University, Phoenix, AZ 85012, USA
| | - Leigha Lynch
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
| | - Garilyn Jentarra
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| |
Collapse
|
14
|
Zhang A, Wengler K, Zhu X, Horga G, Goldberg TE, Lee S. Altered Hierarchical Gradients of Intrinsic Neural Timescales in Mild Cognitive Impairment and Alzheimer's Disease. J Neurosci 2024; 44:e2024232024. [PMID: 38658167 PMCID: PMC11209657 DOI: 10.1523/jneurosci.2024-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects millions of seniors in the United States. Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study neurophysiology in AD and its prodromal condition, mild cognitive impairment (MCI). The intrinsic neural timescale (INT), which can be estimated through the magnitude of the autocorrelation of neural signals from rs-fMRI, is thought to quantify the duration that neural information is stored in a local circuit. Such heterogeneity of the timescales forms a basis of the brain functional hierarchy and captures an aspect of circuit dynamics relevant to excitation/inhibition balance, which is broadly relevant for cognitive functions. Given that, we applied rs-fMRI to test whether distinct changes of INT at different hierarchies are present in people with MCI, those progressing to AD (called Converter), and AD patients of both sexes. Linear mixed-effect model was implemented to detect altered hierarchical gradients across populations followed by pairwise comparisons to identify regional differences. High similarities between AD and Converter were observed. Specifically, the inferior temporal, caudate, and pallidum areas exhibit significant alterations in both AD and Converter. Distinct INT-related pathological changes in MCI and AD were found. For AD/Converter, neural information is stored for a longer time in lower hierarchical areas, while higher levels of hierarchy seem to be preferentially impaired in MCI leading to a less pronounced hierarchical gradient. These results inform that the INT holds great potential as an additional measure for AD prediction, even a stable biomarker for clinical diagnosis.
Collapse
Affiliation(s)
- Aiying Zhang
- New York State Psychiatric Institute, New York, New York 10032
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Kenneth Wengler
- New York State Psychiatric Institute, New York, New York 10032
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Xi Zhu
- New York State Psychiatric Institute, New York, New York 10032
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, New York 10032
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Terry E Goldberg
- New York State Psychiatric Institute, New York, New York 10032
- Department of Psychiatry, Columbia University, New York, New York 10032
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York 10032
| | - Seonjoo Lee
- New York State Psychiatric Institute, New York, New York 10032
- Department of Psychiatry, Columbia University, New York, New York 10032
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
15
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Subedi L, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Crother TR. Chlamydia pneumoniae in Alzheimer's disease pathology. Front Neurosci 2024; 18:1393293. [PMID: 38770241 PMCID: PMC11102982 DOI: 10.3389/fnins.2024.1393293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
While recent advances in diagnostics and therapeutics offer promising new approaches for Alzheimer's disease (AD) diagnosis and treatment, there is still an unmet need for an effective remedy, suggesting new avenues of research are required. Besides many plausible etiologies for AD pathogenesis, mounting evidence supports a possible role for microbial infections. Various microbes have been identified in the postmortem brain tissues of human AD patients. Among bacterial pathogens in AD, Chlamydia pneumoniae (Cp) has been well characterized in human AD brains and is a leading candidate for an infectious involvement. However, no definitive studies have been performed proving or disproving Cp's role as a causative or accelerating agent in AD pathology and cognitive decline. In this review, we discuss recent updates for the role of Cp in human AD brains as well as experimental models of AD. Furthermore, based on the current literature, we have compiled a list of potential mechanistic pathways which may connect Cp with AD pathology.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
17
|
Zhang DY, Wang J, Huang G, Langberg S, Ding F, Dokholyan NV. APOE regulates the transport of GM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587789. [PMID: 38617316 PMCID: PMC11014540 DOI: 10.1101/2024.04.02.587789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aβ), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aβ oligomerization and aggregation.
Collapse
|
18
|
Williams ZAP, Lang L, Nicolas S, Clarke G, Cryan J, Vauzour D, Nolan YM. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17:e14462. [PMID: 38593310 PMCID: PMC11003713 DOI: 10.1111/1751-7915.14462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.
Collapse
Affiliation(s)
- Zoë A. P. Williams
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Sarah Nicolas
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - John Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
19
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
20
|
Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep 2024; 14:5376. [PMID: 38438446 PMCID: PMC10912764 DOI: 10.1038/s41598-024-55423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Colocalization of microbial pathogens and the β-amyloid peptide (Aβ) in the brain of Alzheimer's disease (AD) patients suggests that microbial infection may play a role in sporadic AD. Aβ exhibits antimicrobial activity against numerous pathogens, supporting a potential role for Aβ in the innate immune response. While mammalian amyloid is associated with disease, many bacteria form amyloid fibrils to fortify the biofilm that protects the cells from the surrounding environment. In the microbial AD hypothesis, Aβ aggregates in response to infection to combat the pathogen. We hypothesize that this occurs through toxic Aβ oligomers that contain α-sheet structure and form prior to fibrillization. De novo designed α-sheet peptides specifically bind to the α-sheet structure present in the oligomers of both bacterial and mammalian amyloidogenic proteins to neutralize toxicity and inhibit aggregation. Here, we measure the effect of E. coli on Aβ, including upregulation, aggregation, and toxicity. Additionally, we determined the effect of Aβ structure on E. coli amyloid fibrils, or curli comprised of the CsgA protein, and biofilm formation. We found that curli formation by E. coli increased Aβ oligomer production, and Aβ oligomers inhibited curli biogenesis and reduced biofilm cell density. Further, curli and biofilm inhibition by Aβ oligomers increased E. coli susceptibility to gentamicin. Toxic oligomers of Aβ and CsgA interact via α-sheet interactions, neutralizing their toxicity. These results suggest that exposure to toxic oligomers formed by microbial pathogens triggers Aβ oligomer upregulation and aggregation to combat infection via selective interactions between α-sheet oligomers to neutralize toxicity of both species with subsequent inhibition of fibrillization.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA
| | - Anthony Heng
- Department of Neuroscience, University of Washington, Seattle, WA, 98195-5610, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
21
|
Rubinstein T, Brickman AM, Cheng B, Burkett S, Park H, Annavajhala MK, Uhlemann A, Andrews H, Gutierrez J, Paster BJ, Noble JM, Papapanou PN. Periodontitis and brain magnetic resonance imaging markers of Alzheimer's disease and cognitive aging. Alzheimers Dement 2024; 20:2191-2208. [PMID: 38278517 PMCID: PMC10984451 DOI: 10.1002/alz.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION We examined the association of clinical, microbiological, and host response features of periodontitis with MRI markers of atrophy/cerebrovascular disease in the Washington Heights Inwood Columbia Aging Project (WHICAP) Ancillary Study of Oral Health. METHODS We analyzed 468 participants with clinical periodontal data, microbial plaque and serum samples, and brain MRIs. We tested the association of periodontitis features with MRI features, after adjusting for multiple risk factors for Alzheimer's disease/Alzheimer's disease-related dementia (AD/ADRD). RESULTS In fully adjusted models, having more teeth was associated with lower odds for infarcts, lower white matter hyperintensity (WMH) volume, higher entorhinal cortex volume, and higher cortical thickness. Higher extent of periodontitis was associated with lower entorhinal cortex volume and lower cortical thickness. Differential associations emerged between colonization by specific bacteria/serum antibacterial IgG responses and MRI outcomes. DISCUSSION In an elderly cohort, clinical, microbiological, and serological features of periodontitis were associated with MRI findings related to ADRD risk. Further investigation of causal associations is warranted.
Collapse
Affiliation(s)
- Tom Rubinstein
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Adam M. Brickman
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Bin Cheng
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Sandra Burkett
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Heekuk Park
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Medini K. Annavajhala
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Anne‐Catrin Uhlemann
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Howard Andrews
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Jose Gutierrez
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Bruce J. Paster
- The Forsyth InstituteCambridgeMassachusettsUSA
- Department of Oral Medicine, Infection and ImmunityHarvard School of Dental MedicineBostonMassachusettsUSA
| | - James M. Noble
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Panos N. Papapanou
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| |
Collapse
|
22
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Troci A, Philippen S, Rausch P, Rave J, Weyland G, Niemann K, Jessen K, Schmill LP, Aludin S, Franke A, Berg D, Bang C, Bartsch T. Disease- and stage-specific alterations of the oral and fecal microbiota in Alzheimer's disease. PNAS NEXUS 2024; 3:pgad427. [PMID: 38205031 PMCID: PMC10776369 DOI: 10.1093/pnasnexus/pgad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer's disease (AD). The human microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD (average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Alba Troci
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Julius Rave
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Gina Weyland
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Niemann
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Jessen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Lars-Patrick Schmill
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
24
|
Na HS, Jung NY, Song Y, Kim SY, Kim HJ, Lee JY, Chung J. A distinctive subgingival microbiome in patients with periodontitis and Alzheimer's disease compared with cognitively unimpaired periodontitis patients. J Clin Periodontol 2024; 51:43-53. [PMID: 37853506 DOI: 10.1111/jcpe.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
AIM Periodontitis is caused by dysbiosis of oral microbes and is associated with increased cognitive decline in Alzheimer's disease (AD), and recently, a potential functional link was proposed between oral microbes and AD. We compared the oral microbiomes of patients with or without AD to evaluate the association between oral microbes and AD in periodontitis. MATERIALS AND METHODS Periodontitis patients with AD (n = 15) and cognitively unimpaired periodontitis patients (CU) (n = 14) were recruited for this study. Each patient underwent an oral examination and neuropsychological evaluation. Buccal, supragingival and subgingival plaque samples were collected, and microbiomes were analysed by next-generation sequencing. Alpha diversity, beta diversity, linear discriminant analysis effect size, analysis of variance-like differential expression analysis and network analysis were used to compare group oral microbiomes. RESULTS All 29 participants had moderate to severe periodontitis. Group buccal and supragingival samples were indistinguishable, but subgingival samples demonstrated significant alpha and beta diversity differences. Differential analysis showed subgingival samples of the AD group had higher prevalence of Atopobium rimae, Dialister pneumosintes, Olsenella sp. HMT 807, Saccharibacteria (TM7) sp. HMT 348 and several species of Prevotella than the CU group. Furthermore, subgingival microbiome network analysis revealed a distinct, closely connected network in the AD group comprised of various Prevotella spp. and several anaerobic bacteria. CONCLUSIONS A unique microbial composition was discovered in the subgingival region in the AD group. Specifically, potential periodontal pathogens were found to be more prevalent in the subgingival plaque samples of the AD group. These bacteria may possess a potential to worsen periodontitis and other systemic diseases. We recommend that AD patients receive regular, careful dental check-ups to ensure proper oral hygiene management.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea
| | - Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ju Youn Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
25
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part II. Efficacy of BCG and Other Vaccines Against Dementia. J Alzheimers Dis 2024; 98:361-372. [PMID: 38393913 PMCID: PMC10977380 DOI: 10.3233/jad-231323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
There is growing awareness that infections may contribute to the development of senile dementia including Alzheimer's disease (AD), and that immunopotentiation is therefore a legitimate target in the management of diseases of the elderly including AD. In Part I of this work, we provided a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents, culminating in the development of the tuberculosis vaccine strain Bacille Calmette-Guérin (BCG) as a treatment for some types of cancer as well as a prophylactic against infections of the elderly such as pneumonia. In Part II, we critically review studies that BCG and other vaccines may offer a measure of protection against dementia development. Five studies to date have determined that intravesicular BCG administration, the standard of care for bladder cancer, is followed by a mean ∼45% reduction in subsequent AD development in these patients. Although this could potentially be ascribed to confounding factors, the finding that other routine vaccines such as against shingles (herpes zoster virus) and influenza (influenza A virus), among others, also offer a degree of protection against AD (mean 29% over multiple studies) underlines the plausibility that the protective effects are real. We highlight clinical trials that are planned or underway and discuss whether BCG could be replaced by key components of the mycobacterial cell wall such as muramyl dipeptide. We conclude that BCG and similar agents merit far wider consideration as prophylactic agents against dementia.
Collapse
Affiliation(s)
- Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel–Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
26
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
27
|
Lathe R, Schultek NM, Balin BJ, Ehrlich GD, Auber LA, Perry G, Breitschwerdt EB, Corry DB, Doty RL, Rissman RA, Nara PL, Itzhaki R, Eimer WA, Tanzi RE. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer's disease: Research outline and call for collaboration. Alzheimers Dement 2023; 19:5209-5231. [PMID: 37283269 PMCID: PMC10918877 DOI: 10.1002/alz.13076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Brian J. Balin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA
| | | | - Ruth Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - William A. Eimer
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Intracell Research Group Consortium Collaborators
- David L. Hahn (Intracell Research Group, USA), Benedict C. Albensi (Nova Southeastern, USA), James St John (Griffith University, Australia), Jenny Ekberg (Griffith University, Australia), Mark L. Nelson (Intracell Research Group, USA), Gerald McLaughlin (National Institutes of Health, USA), Christine Hammond (Philadelphia College of Osteopathic Medicine, USA), Judith Whittum-Hudson (Wayne State University, USA), Alan P. Hudson (Wayne State University, USA), Guillaume Sacco (Université Cote d’Azur, Centre Hospitalier Universitaire de Nice, CoBTek, France), Alexandra Konig (Université Cote d’Azur and CoBTek, France), Bruno Pietro Imbimbo (Chiesi Farmaceutici, Parma, Italy), Nicklas Linz (Ki Elements Ltd, Saarbrücken, Germany), Nicole Danielle Bell (Author, 'What Lurks in the Woods'), Shima T. Moein (Smell and Taste Center, Department of Otorhinolaryngology, Perelman School of Medicine, University of Philadelphia, USA), Jürgen G. Haas (Infection Medicine, University of Edinburgh Medical School, UK)
| |
Collapse
|
28
|
Muok AR, Kurniyati K, Cassidy CK, Olsthoorn FA, Ortega DR, Mabrouk AS, Li C, Briegel A. A new class of protein sensor links spirochete pleomorphism, persistence, and chemotaxis. mBio 2023; 14:e0159823. [PMID: 37607060 PMCID: PMC10653840 DOI: 10.1128/mbio.01598-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE A new class of bacterial protein sensors monitors intracellular levels of S-adenosylmethionine to modulate cell morphology, chemotaxis, and biofilm formation. Simultaneous regulation of these behaviors enables bacterial pathogens to survive within their niche. This sensor, exemplified by Treponema denticola CheWS, is anchored to the chemotaxis array and its sensor domain is located below the chemotaxis rings. This position may allow the sensor to directly interact with the chemotaxis histidine kinase CheA. Collectively, these data establish a critical role of CheWS in pathogenesis and further illustrate the impact of studying non-canonical chemotaxis proteins.
Collapse
Affiliation(s)
- A. R. Muok
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - K. Kurniyati
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - C. K. Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - F. A. Olsthoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - D. R. Ortega
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. Sidi Mabrouk
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - C. Li
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - A. Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Arabi TZ, Alabdulqader AA, Sabbah BN, Ouban A. Brain-inhabiting bacteria and neurodegenerative diseases: the "brain microbiome" theory. Front Aging Neurosci 2023; 15:1240945. [PMID: 37927338 PMCID: PMC10620799 DOI: 10.3389/fnagi.2023.1240945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Controversies surrounding the validity of the toxic proteinopathy theory of Alzheimer's disease have led the scientific community to seek alternative theories in the pathogenesis of neurodegenerative disorders (ND). Recent studies have provided evidence of a microbiome in the central nervous system. Some have hypothesized that brain-inhabiting organisms induce chronic neuroinflammation, leading to the development of a spectrum of NDs. Bacteria such as Chlamydia pneumoniae, Helicobacter pylori, and Cutibacterium acnes have been found to inhabit the brains of ND patients. Furthermore, several fungi, including Candida and Malassezia species, have been identified in the central nervous system of these patients. However, there remains several limitations to the brain microbiome hypothesis. Varying results across the literature, concerns regarding sample contamination, and the presence of exogenous deoxyribonucleic acids have led to doubts about the hypothesis. These results provide valuable insight into the pathogenesis of NDs. Herein, we provide a review of the evidence for and against the brain microbiome theory and describe the difficulties facing the hypothesis. Additionally, we define possible mechanisms of bacterial invasion of the brain and organism-related neurodegeneration in NDs and the potential therapeutic premises of this theory.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Guan Y, Bao L, Zhou L, Dai C, Li Z, Zhang S, Shang Y, Niu W, Zhang Y, Wang H. Comparative analysis of the fecal microbiota of healthy and injured common kestrel ( Falco tinnunculus) from the Beijing Raptor Rescue Center. PeerJ 2023; 11:e15789. [PMID: 37637157 PMCID: PMC10452619 DOI: 10.7717/peerj.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
The gut microbiota is a complex ecosystem that interacts with many other factors to affect the health and disease states of the host. The common kestrel (Falco tinnunculus) is protected at the national level in China. However, the available sequencing data of the gut microbiota from the feces of wild common kestrels, especially for being rescued individuals by professional organization, remains limited. In the present study, we characterized the fecal bacterial communities of healthy and injured common kestrels, and compared the structure of their fecal microbiota by analyzing the V3-V4 region of the 16S rRNA gene using high-throughput sequencing technology with the Illumina MiSeq platform. We found that Firmicutes, Proteobacteria and Actinobacteria were the most predominant phyla in common kestrels. Further, the beta diversity analysis showed that changes in gut microbes were associated with injuries to the common kestrel. The Bacteroides/Firmicutes ratio was significantly lower in the injured group. At the genus level, Glutamicibacter showed significant difference in the two groups. The aim of our current study was to characterize the basic bacterial composition and community structure in the feces of healthy common kestrels, and then compare the differences in the fecal microbiota between healthy and injured individuals. Patescibacteria, Spirochaetes, and Glutamicibacter may be studied as potential biomarkers for certain diseases in raptors. The results could provide the basic data for additional research on the fecal microbiota of common kestrels and contribute to the rescue of wild raptors in the future.
Collapse
Affiliation(s)
- Yu Guan
- Beijing Normal University, Beijing, China
| | - Lei Bao
- Beijing Normal University, Beijing, China
| | - Lei Zhou
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Chang Dai
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Zhisai Li
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Shuai Zhang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Yugang Shang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | | | | | | |
Collapse
|
32
|
Ayan E, DeMirci H, Serdar MA, Palermo F, Baykal AT. Bridging the Gap between Gut Microbiota and Alzheimer's Disease: A Metaproteomic Approach for Biomarker Discovery in Transgenic Mice. Int J Mol Sci 2023; 24:12819. [PMID: 37629000 PMCID: PMC10454110 DOI: 10.3390/ijms241612819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressively debilitating form of dementia that affects millions of individuals worldwide. Although a vast amount of research has investigated the complex interplay between gut microbiota and neurodegeneration, the metaproteomic effects of microbiota on AD pathogenesis remain largely uncharted territory. This study aims to reveal the role of gut microbiota in AD pathogenesis, particularly regarding changes in the proteome and molecular pathways that are intricately linked to disease progression. We operated state-of-the-art Nano-Liquid Chromatography Mass Spectrometry (nLC-MS/MS) to compare the metaproteomic shifts of 3-month-old transgenic (3M-ALZ) and control (3M-ALM, Alzheimer's Littermate) mice, depicting the early onset of AD with those of 12-month-old ALZ and ALM mice displaying the late stage of AD. Combined with computational analysis, the outcomes of the gut-brain axis-focused inquiry furnish priceless knowledge regarding the intersection of gut microbiota and AD. Accordingly, our data indicate that the microbiota, proteome, and molecular changes in the intestine arise long before the manifestation of disease symptoms. Moreover, disparities exist between the normal-aged flora and the gut microbiota of late-stage AD mice, underscoring that the identified vital phyla, proteins, and pathways hold immense potential as markers for the early and late stages of AD. Our research endeavors to offer a comprehensive inquiry into the intricate interplay between gut microbiota and Alzheimer's Disease utilizing metaproteomic approaches, which have not been widely adopted in this domain. This highlights the exigency for further scientific exploration to elucidate the underlying mechanisms that govern this complex and multifaceted linkage.
Collapse
Affiliation(s)
- Esra Ayan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul 34450, Turkey;
- Koç University Isbank Center for Infectious Diseases (KUISCID), Koç University, Istanbul 34450, Turkey
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94305, USA
| | - Muhittin Abdulkadir Serdar
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
| | | | - Ahmet Tarık Baykal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
- Acıbadem Labmed Clinical Laboratories, R&D Center, İstanbul 34450, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| |
Collapse
|
33
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
34
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
35
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
36
|
Guo H, Li B, Yao H, Liu D, Chen R, Zhou S, Ji Y, Zeng L, Du M. Profiling the oral microbiomes in patients with Alzheimer's disease. Oral Dis 2023; 29:1341-1355. [PMID: 34931394 DOI: 10.1111/odi.14110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To analyse the characteristics of the oral microbiomes and expected to find biomarkers about Alzheimer's disease (AD). SUBJECTS AND METHODS AD patients (n = 26) and cognitive intact people (n = 26) were examined for cognition, depression, oral health and collected saliva and gingival crevicular fluid (GCF) in the morning. Full-length 16S rRNA gene was amplified and sequencing was performed using the PacBio platform. RESULTS The predominant bacterium of salivary microbiome and periodontal microbiome from AD patients was Streptococcus oralis and Porphyromonas gingivalis, respectively. With respect to β diversity analysis, there was a significance difference in periodontal microbiome between AD patients and cognitively intact subjects. The relative abundance of Veillonella parvula significantly increased in oral microbiomes from AD patients. Interestingly, the dominant species were different between early-onset AD and late-onset AD patients. Moreover, the predominant species were changed as the clinical severity of AD. Furthermore, the correlation analysis revealed that V. parvula was associated with AD in both saliva and GCF and that P. gingivalis was associated with AD only in GCF. CONCLUSIONS In this study, the microbiome community of oral microbes was altered in AD patients and periodontal microbiome was sensitive to cognition changes. Moreover, V. parvula and P. gingivalis were associated with AD.
Collapse
Affiliation(s)
- Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Biao Li
- Wuhan Mental Health Center, Wuhan, Hubei, China
| | - Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Danfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Rourong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuhui Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Lin Zeng
- Wuhan Mental Health Center, Wuhan, Hubei, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
37
|
Kim J, Seok H, Jeon JH, Choi WS, Seo GH, Park DW. Association of scrub typhus with incidence of dementia: a nationwide population-based cohort study in Korea. BMC Infect Dis 2023; 23:127. [PMID: 36859244 PMCID: PMC9976677 DOI: 10.1186/s12879-023-08107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Scrub typhus is a mite-borne infectious rickettsial disease that can occur in rural and urban areas, with an especially high prevalence in older populations. This disease causes systemic vasculitis that can invade the central nervous system. Considering these characteristics, here we examined whether scrub typhus was associated with the occurrence of dementia, using large population-based cohort data. METHOD This population-based cohort study enrolled patients aged 60-89 years using data from the Health Insurance Review and Assessment database of South Korea between 2009 and 2018. We defined scrub typhus and dementia using International Classification of Diseases, Tenth Edition diagnostic codes. The control group was stratified according to age and sex at a ratio of 1:5 to the case group in the study population. The index date was set after 90 days beyond the date of the scrub typhus diagnosis, while the observation period was from the time of the index appointment to December 31, 2020. The primary outcome was newly diagnosed dementia. The secondary outcome was dementia classification, such as Alzheimer's disease, vascular dementia, and other. All analyses were conducted by matching age, gender, and comorbidity. RESULTS During the observation period, 10,460 of 71,047 (14.7%) people who had a history of scrub typhus versus 42,965 of 355,235 (12.1%) people in the control group, that is, with no history of scrub typhus, were diagnosed with dementia (adjusted hazard ratio, 1.12; 95% confidence interval, 1.10-1.15, p < 0.001). The Kaplan-Meier curves for time to cumulative incidence of dementia showed that the dementia incidence in both groups increased over time, while individuals with a past history of scrub typhus had a higher incidence of dementia than the control group. Second, the risk of Alzheimer's disease was significantly higher among patients with a history of scrub typhus (adjusted hazard ratio, 1.15; 95% confidence interval 1.13-1.18, p < 0.001). CONCLUSION In conclusion, a history of scrub typhus infection in old age is significantly associated with an increase in dementia, especially Alzheimer's disease. Our results suggest that prevention and appropriate treatment of scrub typhus should be emphasized as a dementia prevention measure.
Collapse
Affiliation(s)
- Jooyun Kim
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Hyeri Seok
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Ji Hoon Jeon
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Won Suk Choi
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Gi Hyeon Seo
- Health Insurance Review and Assessment Service, 60 Hyeoksin-ro, Wonju-si, Gangwon-do, 26465, Republic of Korea.
| | - Dae Won Park
- Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea.
| |
Collapse
|
38
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
39
|
The Association of the Oral Microbiota with the Effects of Acid Stress Induced by an Increase of Brain Lactate in Schizophrenia Patients. Biomedicines 2023; 11:biomedicines11020240. [PMID: 36830777 PMCID: PMC9953675 DOI: 10.3390/biomedicines11020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The altered cerebral energy metabolism central to schizophrenia can be linked to lactate accumulation. Lactic acid is produced by gastrointestinal bacteria, among others, and readily crosses the blood-brain barrier, leading to the brain acidity. This study aimed to examine the association of the oral microbiota with the effects of acid stress induced by an increase of brain lactate in schizophrenia patients. The study included patients with a diagnosis of acute polyphasic psychotic disorder meeting criteria for schizophrenia at 3-month follow-up. Results: Individuals with a significantly higher total score on the Positive and Negative Syndrome Scale had statistically significantly lower lactate concentrations compared to those with a lower total score and higher brain lactate. We observed a positive correlation between Actinomyces and lactate levels in the anterior cingulate cap and a negative correlation between bacteria associated with lactate metabolism and some clinical assessment scales. Conclusions: Shifts in the oral microbiota in favour of lactate-utilising bacterial genera may represent a compensatory mechanism in response to increased lactate production in the brain. Assessment of neuronal function mediated by ALA-LAC-dependent NMDA regulatory mechanisms may, thus, support new therapies for schizophrenia, for which acidosis has become a differentiating feature of individuals with schizophrenia endophenotypes.
Collapse
|
40
|
Bredesen DE, Toups K, Hathaway A, Gordon D, Chung H, Raji C, Boyd A, Hill BD, Hausman-Cohen S, Attarha M, Chwa WJ, Kurakin A, Jarrett M. Precision Medicine Approach to Alzheimer's Disease: Rationale and Implications. J Alzheimers Dis 2023; 96:429-437. [PMID: 37807782 PMCID: PMC10741308 DOI: 10.3233/jad-230467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
The neurodegenerative disease field has enjoyed extremely limited success in the development of effective therapeutics. One potential reason is the lack of disease models that yield accurate predictions and optimal therapeutic targets. Standard clinical trials have pre-determined a single treatment modality, which may be unrelated to the primary drivers of neurodegeneration. Recent proof-of-concept clinical trials using a precision medicine approach suggest a new model of Alzheimer's disease (AD) as a chronic innate encephalitis that creates a network insufficiency. Identifying and addressing the multiple potential contributors to cognitive decline for each patient may represent a more effective strategy. Here we review the rationale for a precision medicine approach in prevention and treatment of cognitive decline associated with AD. Results and implications from recent proof-of-concept clinical trials are presented. Randomized controlled trials, with much larger patient numbers, are likely to be significant to establishing precision medicine protocols as a standard of care for prevention and treatment of cognitive decline. Furthermore, combining this approach with the pharmaceutical approach offers the potential for enhanced outcomes. However, incorporating precision medicine approaches into everyday evaluation and care, as well as future clinical trials, would require fundamental changes in trial design, IRB considerations, funding considerations, laboratory evaluation, personalized treatment plans, treatment teams, and ultimately in reimbursement guidelines. Nonetheless, precision medicine approaches to AD, based on a novel model of AD pathophysiology, offer promise that has not been realized to date with monotherapeutic approaches.
Collapse
Affiliation(s)
- Dale E. Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kat Toups
- Bay Area Wellness, Walnut Creek, CA, USA
| | | | | | | | - Cyrus Raji
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Boyd
- CNS Vital Signs, Morrisville, NC, USA
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, USA
| | | | | | - Won Jong Chwa
- Department of Radiology, St. Louis University, St. Louis, MO, USA
| | - Alexei Kurakin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
41
|
Milano C, Hoxhaj D, Del Chicca M, Pascazio A, Paoli D, Tommasini L, Vergallo A, Pizzanelli C, Tognoni G, Nuti A, Ceravolo R, Siciliano G, Hampel H, Baldacci F. Alzheimer's Disease and Neurosyphilis: Meaningful Commonalities and Differences of Clinical Phenotype and Pathophysiological Biomarkers. J Alzheimers Dis 2023; 94:611-625. [PMID: 37334599 DOI: 10.3233/jad-230170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Neurosyphilis-associated cognitive and behavioral impairment- historically coined as "general paralysis of the insane"- share clinical and neuroradiological features with the neurodegenerative disease spectrum, in particular Alzheimer's disease (AD). Anatomopathological similarities have been extensively documented, i.e., neuronal loss, fibrillary alterations, and local amyloid-β deposition. Consequently, accurate classification and timely differential diagnosis may be challenging. OBJECTIVE To describe clinical, bio-humoral, brain MRI, FDG-PET, and amyloid-PET features in cases of neurosyphilis with an AD-like phenotypical presentation, as well as clinical outcome in terms of response to antibiotic therapy. METHODS We selected the studies comparing patients with AD and with neurosyphilis associated cognitive impairment, to investigate candidate biomarkers classifying the two neurological diseases. RESULTS The neuropsychological phenotype of general paralysis, characterized by episodic memory impairment and executive disfunction, substantially mimics clinical AD features. Neuroimaging often shows diffuse or medial temporal cortical atrophy, thus contributing to a high rate of misdiagnosis. Cerebrospinal fluid (CSF)-based analysis may provide supportive diagnostic value, since increased proteins or cells are often found in neurosyphilis, while published data on pathophysiological AD candidate biomarkers are controversial. Finally, psychometric testing using cross-domain cognitive tests, may highlight a wider range of compromised functions in neurosyphilis, involving language, attention, executive function, and spatial ability, which are atypical for AD. CONCLUSION Neurosyphilis should be considered a potential etiological differential diagnosis of cognitive impairment whenever imaging, neuropsychological or CSF features are atypical for AD, in order to promptly start antibiotic therapy and delay or halt cognitive decline and disease progression.
Collapse
Affiliation(s)
- Chiara Milano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domeniko Hoxhaj
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Del Chicca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessia Pascazio
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Davide Paoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Tommasini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Chiara Pizzanelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angelo Nuti
- Division of Neurology, Versilia Hospital, Lido di Camaiore, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
42
|
Hu X, Haas JG, Lathe R. The electronic tree of life (eToL): a net of long probes to characterize the microbiome from RNA-seq data. BMC Microbiol 2022; 22:317. [PMID: 36550399 PMCID: PMC9773549 DOI: 10.1186/s12866-022-02671-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbiome analysis generally requires PCR-based or metagenomic shotgun sequencing, sophisticated programs, and large volumes of data. Alternative approaches based on widely available RNA-seq data are constrained because of sequence similarities between the transcriptomes of microbes/viruses and those of the host, compounded by the extreme abundance of host sequences in such libraries. Current approaches are also limited to specific microbial groups. There is a need for alternative methods of microbiome analysis that encompass the entire tree of life. RESULTS We report a method to specifically retrieve non-human sequences in human tissue RNA-seq data. For cellular microbes we used a bioinformatic 'net', based on filtered 64-mer sequences designed from small subunit ribosomal RNA (rRNA) sequences across the Tree of Life (the 'electronic tree of life', eToL), to comprehensively (98%) entrap all non-human rRNA sequences present in the target tissue. Using brain as a model, retrieval of matching reads, re-exclusion of human-related sequences, followed by contig building and species identification, is followed by confirmation of the abundance and identity of the corresponding species groups. We provide methods to automate this analysis. The method reduces the computation time versus metagenomics by a factor of >1000. A variant approach is necessary for viruses. Again, because of significant matches between viral and human sequences, a 'stripping' approach is essential. Contamination during workup is a potential problem, and we discuss strategies to circumvent this issue. To illustrate the versatility of the method we report the use of the eToL methodology to unambiguously identify exogenous microbial and viral sequences in human tissue RNA-seq data across the entire tree of life including Archaea, Bacteria, Chloroplastida, basal Eukaryota, Fungi, and Holozoa/Metazoa, and discuss the technical and bioinformatic challenges involved. CONCLUSIONS This generic methodology is likely to find wide application in microbiome analysis including diagnostics.
Collapse
Affiliation(s)
- Xinyue Hu
- Program in Bioinformatics, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Jürgen G Haas
- Division of Infection Medicine, University of Edinburgh, Little France, Edinburgh, EH16 4SB, UK
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh, Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
43
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
44
|
Dziedzic A. Is Periodontitis Associated with Age-Related Cognitive Impairment? The Systematic Review, Confounders Assessment and Meta-Analysis of Clinical Studies. Int J Mol Sci 2022; 23:15320. [PMID: 36499656 PMCID: PMC9739281 DOI: 10.3390/ijms232315320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
It has been suggested that molecular pathological mechanisms responsible for periodontitis can be linked with biochemical alterations in neurodegenerative disorders. Hypothetically, chronic systemic inflammation as a response to periodontitis plays a role in the etiology of cognitive impairment. This study aimed to determine whether periodontitis (PDS) is a risk factor for age-related cognitive impairment (ACI) based on evidence of clinical studies. A comprehensive, structured systematic review of existing data adhering to the Preferred Reporting Items for Systematic Review and Meta Analyses (PRISMA) guidelines was carried out. Five electronic databases, PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched for key terms published in peer-reviewed journals until January 2021. The Newcastle-Ottawa scale was used to assess the quality of studies and risk of bias. The primary and residual confounders were explored and evaluated. A meta-analysis synthesizing quantitative data was carried out using a random-effects model. Seventeen clinical studies were identified, including 14 cohort, one cross-sectional, and two case-control studies. Study samples ranged from 85 to 262,349 subjects, with follow-up between 2 and 32 years, and age above 45 years, except for two studies. The findings of studies suggesting the PDS-ACI relationship revealed substantial differences in design and methods. A noticeable variation related to the treatment of confounders was observed. Quality assessment unveiled a moderate quality of evidence and risk of bias. The subgroups meta-analysis and pooled sensitivity analysis of results from seven eligible studies demonstrated overall that the presence of PDS is associated with an increased risk of incidence of cognitive impairment (OR = 1.36, 95% CI 1.03-1.79), particularly dementia (OR = 1.39, 95% CI 1.02-1.88) and Alzheimer's disease (OR = 1.03 95% CI 0.98-1.07)). However, a considerable heterogeneity of synthesized data (I2 = 96%) and potential publication bias might affect obtained results. While there is a moderate statistical association between periodontitis and dementia, as well as Alzheimer's disease, the risk of bias in the evidence prevents conclusions being drawn about the role of periodontitis as a risk factor for age-related cognitive impairment.
Collapse
Affiliation(s)
- Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
45
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
46
|
Mancuso R, Agostini S, Appelt DM, Balin BJ. Editorial: Infection, inflammation, and neurodegeneration: A critical path to Alzheimer's disease, Volume II. Front Aging Neurosci 2022; 14:1044047. [DOI: 10.3389/fnagi.2022.1044047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
|
47
|
Treponema denticola Induces Neuronal Apoptosis by Promoting Amyloid-β Accumulation in Mice. Pathogens 2022; 11:pathogens11101150. [PMID: 36297207 PMCID: PMC9610539 DOI: 10.3390/pathogens11101150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Neuronal apoptosis is a major contributor to Alzheimer's disease (AD). Periodontitis is a significant risk factor for AD. The periodontal pathogens Porphyromonas gingivalis and Treponema denticola have been shown to initiate the hallmark pathologies and behavioral symptoms of AD. Studies have found that T. denticola infection induced Tau hyperphosphorylation and amyloid β accumulation in the hippocampi of mice. Aβ accumulation is closely associated with neuronal apoptosis. However, the roles of T. denticola in neuronal apoptosis remain unclear and its roles in AD pathology need further study. Objective: This study aimed to investigate whether oral infection with T. denticola induced alveolar bone loss and neuronal apoptosis in mice. Methods: C57BL/6 mice were orally administered with T. denticola, Micro-CT was employed to assess the alveolar bone resorption. Western blotting, quantitative PCR, and TUNEL staining were utilized to detect the apoptosis-associated changes in mouse hippocampi. N2a were co-cultured with T. denticola to verify in vivo results. Results: Mice infected with T. denticola exhibited more alveolar bone loss compared with the control mice. T. denticola oral infection induced neuronal apoptosis in hippocampi of mice. Consistent results of the apoptosis-associated protein expression were observed in N2a cells treated with T. denticola and Aβ1-42 in vitro. However, the Aβ inhibitor reversed these results, suggesting that Aβ1-42 mediates T. denticola infection-induced neuronal apoptosis. Conclusions: This study found that oral infected T. denticola caused alveolar bone loss, and induced neuronal apoptosis by promoting Aβ accumulation in mice, providing evidence for the link between periodontitis and AD.
Collapse
|
48
|
Yu J, Kong Z, Zhan L, Shen L, He L. Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. COMPUTER SCIENCE & INFORMATION TECHNOLOGY 2022; 12:123-134. [PMID: 36880061 PMCID: PMC9985071 DOI: 10.5121/csit.2022.121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM-MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22.
Collapse
Affiliation(s)
- Jun Yu
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Zhaoming Kong
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lifang He
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
49
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
50
|
Ganz T, Fainstein N, Ben-Hur T. When the infectious environment meets the AD brain. Mol Neurodegener 2022; 17:53. [PMID: 35986296 PMCID: PMC9388962 DOI: 10.1186/s13024-022-00559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background The Amyloid theory of Alzheimer’s disease (AD) suggests that the deposition of Amyloid β (Aβ) in the brain triggers a chain of events, involving the deposition of phosphorylated Tau and other misfolded proteins, leading to neurodegeneration via neuroinflammation, oxidative stress, and neurovascular factors. The infectious theory linked various infectious agents with the development of AD, raising the possibility that they serve as etiological causes of the disease. Are these theories mutually exclusive, or do they coincide? Main body In this review, we will discuss how the two theories converge. We present a model by which (1) the systemic infectious burden accelerates the development of AD brain pathology via bacterial Amyloids and other pathogen-associated molecular patterns (PAMPs), and (2) the developing AD brain pathology increases its susceptibility to the neurotoxicity of infectious agents -derived PAMPs, which drive neurodegeneration via activated microglia. Conclusions The reciprocal effects of amyloid deposition and systemic infectious burden may lead to a vicious cycle fueling Alzheimer’s disease pathogenesis.
Collapse
|